Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 852
Filter
1.
Elife ; 132024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896448

ABSTRACT

ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins , RNA, Long Noncoding , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Humans , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , DNA Replication Timing , Protein Binding , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
2.
Sci Rep ; 14(1): 14584, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918441

ABSTRACT

PTBP1 is an oncogene that regulates the splicing of precursor mRNA. However, the relationship between PTBP1 expression and gene methylation, cancer prognosis, and tumor microenvironment remains unclear. The expression profiles of PTBP1 across various cancers were derived from the TCGA, as well as the GTEx and CGGA databases. The CGGA mRNA_325, CGGA mRNA_301, and CGGA mRNA_693 datasets were utilized as validation cohorts. Immune cell infiltration scores were approximated using the TIMER 2.0 tool. Functional enrichment analysis for groups with high and low PTBP1 expression was conducted using Gene Set Enrichment Analysis (GSEA). Methylation data were predominantly sourced from the SMART and Mexpress databases. Linked-omics analysis was employed to perform functional enrichment analysis of genes related to PTBP1 methylation, as well as to conduct protein functional enrichment analysis. Single-cell transcriptome analysis and spatial transcriptome analysis were carried out using Seurat version 4.10. Compared to normal tissues, PTBP1 is significantly overexpressed and hypomethylated in various cancers. It is implicated in prognosis, immune cell infiltration, immune checkpoint expression, genomic variation, tumor neoantigen load, and tumor mutational burden across a spectrum of cancers, with particularly notable effects in low-grade gliomas. In the context of gliomas, PTBP1 expression correlates with WHO grade and IDH1 mutation status. PTBP1 expression and methylation play an important role in a variety of cancers. PTBP1 can be used as a marker of inflammation, progression and prognosis in gliomas.


Subject(s)
Biomarkers, Tumor , Gene Expression Regulation, Neoplastic , Glioma , Heterogeneous-Nuclear Ribonucleoproteins , Polypyrimidine Tract-Binding Protein , Tumor Microenvironment , Humans , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Prognosis , Biomarkers, Tumor/genetics , Glioma/genetics , Glioma/pathology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , DNA Methylation , Gene Expression Profiling , Inflammation/genetics , Transcriptome , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Disease Progression , Multiomics
3.
Genome Biol ; 25(1): 162, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902825

ABSTRACT

BACKGROUND: The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS: We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS: Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.


Subject(s)
Alternative Splicing , Down-Regulation , Neurons , Nonsense Mediated mRNA Decay , Polypyrimidine Tract-Binding Protein , Animals , Mice , Neurons/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Exons , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation/genetics , Neurogenesis/genetics
4.
Biochem Biophys Res Commun ; 724: 150221, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38865811

ABSTRACT

MYB is a key regulator of hematopoiesis and erythropoiesis, and dysregulation of MYB is closely involved in the development of leukemia, however the mechanism of MYB regulation remains still unclear so far. Our previous study identified a long noncoding RNA (lncRNA) derived from the -34 kb enhancer of the MYB locus, which can promote MYB expression, the proliferation and migration of human leukemia cells, and is therefore termed MY34UE-AS. Then the interacting partner proteins of MY34UE-AS were identified and studied in the present study. hnRNPA0 was identified as a binding partner of MY34UE-AS through RNA pulldown assay, which was further validated through RNA immunoprecipitation (RIP). hnRNPA0 interacted with MY34UE-AS mainly through its RRM2 domain. hnRNPA0 overexpression upregulated MYB and increased the proliferation and migration of K562 cells, whereas hnRNPA0 knockdown showed opposite effects. Rescue experiments showed MY34UE-AS was required for above mentioned functions of hnRNPA0. These results reveal that hnRNPA0 is involved in leukemia through upregulating MYB expression by interacting with MY34UE-AS, suggesting that the hnRNPA0/MY34UE-AS axis could serve as a potential target for leukemia treatment.


Subject(s)
Cell Proliferation , Leukemia , Proto-Oncogene Proteins c-myb , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Proto-Oncogene Proteins c-myb/genetics , K562 Cells , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Cell Movement/genetics , Gene Expression Regulation, Leukemic , Enhancer Elements, Genetic , Protein Binding , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics
5.
Biomolecules ; 14(5)2024 May 09.
Article in English | MEDLINE | ID: mdl-38785973

ABSTRACT

One of the hallmarks of cancer is metabolic reprogramming in tumor cells, and aerobic glycolysis is the primary mechanism by which glucose is quickly transformed into lactate. As one of the primary rate-limiting enzymes, pyruvate kinase (PK) M is engaged in the last phase of aerobic glycolysis. Alternative splicing is a crucial mechanism for protein diversity, and it promotes PKM precursor mRNA splicing to produce PKM2 dominance, resulting in low PKM1 expression. Specific splicing isoforms are produced in various tissues or illness situations, and the post-translational modifications are linked to numerous disorders, including cancers. hnRNPs are one of the main components of the splicing factor families. However, there have been no comprehensive studies on hnRNPs regulating PKM alternative splicing. Therefore, this review focuses on the regulatory network of hnRNPs on PKM pre-mRNA alternative splicing in tumors and clinical drug research. We elucidate the role of alternative splicing in tumor progression, prognosis, and the potential mechanism of abnormal RNA splicing. We also summarize the drug targets retarding tumorous splicing events, which may be critical to improving the specificity and effectiveness of current therapeutic interventions.


Subject(s)
Alternative Splicing , Heterogeneous-Nuclear Ribonucleoproteins , Neoplasms , Pyruvate Kinase , Humans , Alternative Splicing/genetics , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Animals
6.
Nat Commun ; 15(1): 4110, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750024

ABSTRACT

Maturation of eukaryotic pre-mRNAs via splicing and polyadenylation is modulated across cell types and conditions by a variety of RNA-binding proteins (RBPs). Although there exist over 1,500 RBPs in human cells, their binding motifs and functions still remain to be elucidated, especially in the complex environment of tissues and in the context of diseases. To overcome the lack of methods for the systematic and automated detection of sequence motif-guided pre-mRNA processing regulation from RNA sequencing (RNA-Seq) data we have developed MAPP (Motif Activity on Pre-mRNA Processing). Applying MAPP to RBP knock-down experiments reveals that many RBPs regulate both splicing and polyadenylation of nascent transcripts by acting on similar sequence motifs. MAPP not only infers these sequence motifs, but also unravels the position-dependent impact of the RBPs on pre-mRNA processing. Interestingly, all investigated RBPs that act on both splicing and 3' end processing exhibit a consistently repressive or activating effect on both processes, providing a first glimpse on the underlying mechanism. Applying MAPP to normal and malignant brain tissue samples unveils that the motifs bound by the PTBP1 and RBFOX RBPs coordinately drive the oncogenic splicing program active in glioblastomas demonstrating that MAPP paves the way for characterizing pre-mRNA processing regulators under physiological and pathological conditions.


Subject(s)
Polyadenylation , RNA Precursors , RNA Splicing , RNA-Binding Proteins , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA Precursors/metabolism , RNA Precursors/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Nucleotide Motifs , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing Factors/metabolism , RNA Splicing Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics
7.
Front Immunol ; 15: 1375168, 2024.
Article in English | MEDLINE | ID: mdl-38690287

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma. The HTLV-1 Tax constitutively activates nuclear factor-κB (NF-κB) to promote the survival and transformation of HTLV-1-infected T cells. Despite extensive study of Tax, how Tax interacts with host factors to regulate NF-κB activation and HTLV-1-driven cell proliferation is not entirely clear. Here, we showed that overexpression of Poly (rC)-binding protein 1 (PCBP1) promoted Tax-mediated IκB kinase (IKK)-NF-κB signaling activation, whereas knockdown of PCBP1 attenuated Tax-dependent IKK-NF-κB activation. However, Tax activation of HTLV-1 long terminal repeat was unaffected by PCBP1. Furthermore, depletion of PCBP1 led to apoptosis and reduced proliferation of HTLV-1-transformed cells. Mechanistically, PCBP1 interacted and co-localized with Tax in the cytoplasm, and PCBP1 KH3 domain was indispensable for the interaction between PCBP1 and Tax. Moreover, PCBP1 facilitated the assembly of Tax/IKK complex. Collectively, our results demonstrated that PCBP1 may exert an essential effect in Tax/IKK complex combination and subsequent NF-κB activation, which provides a novel insight into the pathogenetic mechanisms of HTLV-1.


Subject(s)
DNA-Binding Proteins , Gene Products, tax , Heterogeneous-Nuclear Ribonucleoproteins , Human T-lymphotropic virus 1 , NF-kappa B , RNA-Binding Proteins , Humans , Gene Products, tax/metabolism , NF-kappa B/metabolism , Human T-lymphotropic virus 1/physiology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Signal Transduction , HEK293 Cells , Protein Binding , Cell Proliferation , HTLV-I Infections/metabolism , HTLV-I Infections/virology , Apoptosis , I-kappa B Kinase/metabolism , Host-Pathogen Interactions
8.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701759

ABSTRACT

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Subject(s)
Alternative Splicing , Cell Differentiation , Chromatin , Heterogeneous-Nuclear Ribonucleoproteins , Neurons , Polypyrimidine Tract-Binding Protein , Transcription Factors , Alternative Splicing/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Animals , Cell Differentiation/genetics , Chromatin/metabolism , Mice , Neurons/metabolism , Neurons/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription, Genetic , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Exons/genetics , Humans , Cell Self Renewal/genetics
9.
J Clin Invest ; 134(11)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662454

ABSTRACT

Widespread alterations in RNA alternative splicing (AS) have been identified in adult gliomas. However, their regulatory mechanism, biological significance, and therapeutic potential remain largely elusive. Here, using a computational approach with both bulk and single-cell RNA-Seq, we uncover a prognostic AS signature linked with neural developmental hierarchies. Using advanced iPSC glioma models driven by glioma driver mutations, we show that this AS signature could be enhanced by EGFRvIII and inhibited by in situ IDH1 mutation. Functional validations of 2 isoform switching events in CERS5 and MPZL1 show regulations of sphingolipid metabolism and SHP2 signaling, respectively. Analysis of upstream RNA binding proteins reveals PTBP1 as a key regulator of the AS signature where targeting of PTBP1 suppresses tumor growth and promotes the expression of a neuron marker TUJ1 in glioma stem-like cells. Overall, our data highlights the role of AS in affecting glioma malignancy and heterogeneity and its potential as a therapeutic vulnerability for treating adult gliomas.


Subject(s)
Alternative Splicing , Glioma , Polypyrimidine Tract-Binding Protein , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Glioma/therapy , Humans , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Animals , Mice , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Adult , Induced Pluripotent Stem Cells/metabolism , Cell Line, Tumor , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
10.
Elife ; 132024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597390

ABSTRACT

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Subject(s)
Alternative Splicing , Exons , Neurons , Polypyrimidine Tract-Binding Protein , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
11.
Radiother Oncol ; 196: 110310, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677328

ABSTRACT

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a kind of malignant head and neck tumor with high mortality. lncRNAs are valuable diagnostic biomarkers and therapeutic targets for various tumors. This study investigated the effects and mechanism of LINC00313 in nasopharyngeal carcinoma. METHODS: Cell Counting Kit-8 (CCK-8) and immunohistochemistry were used for assessing cell proliferation. The levels of autophagy-related proteins, and stem cell markers were detected. Immunofluorescence assay was used for LC3 detection. Methylated RNA Immunoprecipitation (meRIP) of LINC00313 in NPC cells was assessed. The localization of LINC00313 was verified by luorescence in situ hybridization (FIHS). The interaction between LINC00313 and the downstream targets were analyzed and confirmed by immunoprecipitation (RIP). Besides, the tumorigenesis roles of LINC00313 were confirmed in tumor growth mice model. RESULTS: LINC00313 was increased in NPC tissues and cells. LINC00313 knockdown enhanced autophagy, and decreased stemness and cell viability of NPC cells through regulating STIM1. METTL3/IGF2BP1-mediated m6A modification promoted the stabilization and up-regulation of LINC00313. LINC00313 activated AKT/mTOR pathway in NPC cells through PTBP1/STIM1 axis. Moreover, LINC00313 promoted tumor growth and metastasis in xenograft model. CONCLUSION: Upregulation of LINC00313 suppressed autophagy and promoted stemness of NPC cells through PTBP1/STIM1 axis.


Subject(s)
Autophagy , Heterogeneous-Nuclear Ribonucleoproteins , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Polypyrimidine Tract-Binding Protein , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Mice , Animals , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Cell Proliferation , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Mice, Nude
12.
Folia Histochem Cytobiol ; 62(1): 25-36, 2024.
Article in English | MEDLINE | ID: mdl-38563050

ABSTRACT

INTRODUCTION: Endometriosis (EMs), manifested by pain and infertility, is a chronic inflammatory disease. The precise pathophysiology of this disease remains uncertain. Insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) and polypyrimidine tract-binding protein 1 (PTBP1) have both been found to regulate proliferation, apoptosis, and invasion. This study aimed to investigate the effects of IGF2BP1/PTBP1 in treating EMs. MATERIALS AND METHODS: qRT-PCR and western blotting were employed to quantify IGF2BP1 and PTBP1 expression in six patients with EMs (mean age 33.83 years). The correlation analysis, STRING database prediction, and RNA immunoprecipitation were utilized to identify the relationship between IGF2BP1 and PTBP1. Ectopic endometrial volume, weight, HE staining, and IGF2BP1 silencing were utilized to estimate the effects of IGF2BP1 in EMs model rats. qRT-PCR, CCK-8, 5-ethynyl-2'-deoxyuridine (EDU) labeling, Transwell assay, and flow cytometry were utilized to assess the effects of IGF2BP1/PTBP1 on the proliferation, migration, invasion, and apoptosis of ectopic endometrial stromal cells (eESCs). Furthermore, western blotting was employed to evaluate expressions of PCNA, VEGF, and E-cadherin in EMs rats and eESCs. RESULTS: The mRNA and protein levels of IGF2BP1 and PTBP1 in the ectopic and eutopic endometrium of EMs patients were significantly increased. RNA immunoprecipitation revealed a close interaction of IGF2BP1 with PTBP1. Additionally, the endometrial volume, weight, and histopathologic scores in rats were significantly reduced after IGF2BP1 silencing. IGF2BP1 silencing also decreased the expression of PCNA and VEGF, and increased E-cadherin expression in endometrial tissues of EMs rats. Moreover, IGF2BP1 silencing inhibited proliferation, migration, and invasion and promoted apoptosis through PTBP1 in eESCs. CONCLUSIONS: IGF2BP1 exhibits potential beneficial properties in the management of EMs by interacting with PTBP1, thereby highlighting IGF2BP1 as a promising therapeutic target for EMs.


Subject(s)
Endometriosis , Adult , Animals , Female , Humans , Rats , Cadherins/metabolism , Cell Proliferation , Endometriosis/pathology , Endometrium/pathology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/metabolism
13.
Biol Cell ; 116(5): e2300128, 2024 May.
Article in English | MEDLINE | ID: mdl-38538536

ABSTRACT

BACKGROUND INFORMATION: The dual-specificity phosphatase 3 (DUSP3) regulates cell cycle progression, proliferation, senescence, and DNA repair pathways under genotoxic stress. This phosphatase interacts with HNRNPC protein suggesting an involvement in the regulation of HNRNPC-ribonucleoprotein complex stability. In this work, we investigate the impact of DUSP3 depletion on functions of HNRNPC aiming to suggest new roles for this enzyme. RESULTS: The DUSP3 knockdown results in the tyrosine hyperphosphorylation state of HNRNPC increasing its RNA binding ability. HNRNPC is present in the cytoplasm where it interacts with IRES trans-acting factors (ITAF) complex, which recruits the 40S ribosome on mRNA during protein synthesis, thus facilitating the translation of mRNAs containing IRES sequence in response to specific stimuli. In accordance with that, we found that DUSP3 is present in the 40S, monosomes and polysomes interacting with HNRNPC, just like other previously identified DUSP3 substrates/interacting partners such as PABP and NCL proteins. By downregulating DUSP3, Tyr-phosphorylated HNRNPC preferentially binds to IRES-containing mRNAs within ITAF complexes preferentially in synchronized or stressed cells, as evidenced by the higher levels of proteins such as c-MYC and XIAP, but not their mRNAs such as measured by qPCR. Under DUSP3 absence, this increased phosphorylated-HNRNPC/RNA interaction reduces HNRNPC-p53 binding in presence of RNAs releasing p53 for specialized cellular responses. Similarly, to HNRNPC, PABP physically interacts with DUSP3 in an RNA-dependent manner. CONCLUSIONS AND SIGNIFICANCE: Overall, DUSP3 can modulate cellular responses to genotoxic stimuli at the translational level by maintaining the stability of HNRNPC-ITAF complexes and regulating the intensity and specificity of RNA interactions with RRM-domain proteins.


Subject(s)
DNA Damage , Dual Specificity Phosphatase 3 , Heterogeneous-Nuclear Ribonucleoprotein Group C , RNA, Messenger , Humans , Dual Specificity Phosphatase 3/metabolism , Dual Specificity Phosphatase 3/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Phosphorylation , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism
14.
J Biol Chem ; 300(3): 105733, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336291

ABSTRACT

RNA Binding Proteins regulate, in part, alternative pre-mRNA splicing and, in turn, gene expression patterns. Polypyrimidine tract binding proteins PTBP1 and PTBP2 are paralogous RNA binding proteins sharing 74% amino acid sequence identity. Both proteins contain four structured RNA-recognition motifs (RRMs) connected by linker regions and an N-terminal region. Despite their similarities, the paralogs have distinct tissue-specific expression patterns and can regulate discrete sets of target exons. How two highly structurally similar proteins can exert different splicing outcomes is not well understood. Previous studies revealed that PTBP2 is post-translationally phosphorylated in the unstructured N-terminal, Linker 1, and Linker 2 regions that share less sequence identity with PTBP1 signifying a role for these regions in dictating the paralog's distinct splicing activities. To this end, we conducted bioinformatics analysis to determine the evolutionary conservation of RRMs versus linker regions in PTBP1 and PTBP2 across species. To determine the role of PTBP2 unstructured regions in splicing activity, we created hybrid PTBP1-PTBP2 constructs that had counterpart PTBP1 regions swapped to an otherwise PTBP2 protein and assayed on differentially regulated exons. We also conducted molecular dynamics studies to investigate how negative charges introduced by phosphorylation in PTBP2 unstructured regions can alter their physical properties. Collectively, results from our studies reveal an important role for PTBP2 unstructured regions and suggest a role for phosphorylation in the differential splicing activities of the paralogs on certain regulated exons.


Subject(s)
Alternative Splicing , Polypyrimidine Tract-Binding Protein , Vertebrates , Animals , Humans , Mice , Rats , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Molecular Dynamics Simulation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Organ Specificity , Phosphorylation , Polypyrimidine Tract-Binding Protein/chemistry , Polypyrimidine Tract-Binding Protein/metabolism , Species Specificity , Vertebrates/genetics , Chickens/genetics
15.
Carcinogenesis ; 45(6): 409-423, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38366384

ABSTRACT

In recent decades, considerable evidence has emerged indicating the involvement of tRNA-derived fragments (tRFs) in cancer progression through various mechanisms. However, the biological effects and mechanisms of tRFs in lung adenocarcinoma (LUAD) remain unclear. In this study, we screen out tRF-29-79, a 5'-tRF derived from tRNAGlyGCC, through profiling the tRF expressions in three pairs of LUAD tissues. We show that tRF-29-79 is downregulated in LUAD and downregulation of tRF-29-79 is associated with poorer prognosis. In vivo and in vitro assay reveal that tRF-29-79 inhibits proliferation, migration and invasion of LUAD cells. Mechanistically, we discovered that tRF-29-79 interacts with the RNA-binding protein PTBP1 and facilitates the transportation of PTBP1 from nucleus to cytoplasm, which regulates alternative splicing in the 3' untranslated region (UTR) of SLC1A5 pre-mRNA. Given that SLC1A5 is a core transporter of glutamine, we proved that tRF-29-79 mediate glutamine metabolism of LUAD through affecting the stability of SLC1A5 mRNA, thus exerts its anticancer function. In summary, our findings uncover the novel mechanism that tRF-29-79 participates in glutamine metabolism through interacting with PTBP1 and regulating alternative splicing in the 3' UTR of SLC1A5 pre-mRNA.


Subject(s)
Adenocarcinoma of Lung , Amino Acid Transport System ASC , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoproteins , Lung Neoplasms , Polypyrimidine Tract-Binding Protein , Humans , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Amino Acid Transport System ASC/metabolism , Amino Acid Transport System ASC/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Animals , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Cell Movement , Prognosis , Cell Line, Tumor , Alternative Splicing , Female , Glutamine/metabolism , Male
16.
Neurobiol Dis ; 193: 106454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408684

ABSTRACT

Axonal mitochondria defects are early events in the pathogenesis of motoneuron disorders such as spinal muscular atrophy and amyotrophic lateral sclerosis. The RNA-binding protein hnRNP R interacts with different motoneuron disease-related proteins such as SMN and TDP-43 and has important roles in axons of motoneurons, including axonal mRNA transport. However, whether hnRNP R also modulates axonal mitochondria is currently unknown. Here, we show that axonal mitochondria exhibit altered function and motility in hnRNP R-deficient motoneurons. Motoneurons lacking hnRNP R show decreased anterograde and increased retrograde transport of mitochondria in axons. Furthermore, hnRNP R-deficiency leads to mitochondrial hyperpolarization, caused by decreased complex I and reversed complex V activity within the respiratory chain. Taken together, our data indicate a role for hnRNP R in regulating transport and maintaining functionality of axonal mitochondria in motoneurons.


Subject(s)
Axons , Motor Neurons , Membrane Potentials , Motor Neurons/metabolism , Axons/pathology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Mitochondria/metabolism
17.
BMC Vet Res ; 20(1): 25, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218813

ABSTRACT

BACKGROUND: Poly C Binding Protein 1 (PCBP1) belongs to the heterogeneous nuclear ribonucleoprotein family. It is a multifunctional protein that participates in several functional circuits and plays a variety of roles in cellular processes. Although PCBP1 has been identified in several mammals, its function in porcine was unclear. RESULTS: In this study, we cloned the gene of porcine PCBP1 and analyzed its evolutionary relationships among different species. We found porcine PCBP1 protein sequence was similar to that of other animals. The subcellular localization of PCBP1 in porcine kidney cells 15 (PK-15) cells was analyzed by immunofluorescence assay (IFA) and revealed that PCBP1 was mainly localized to the nucleus. Reverse transcription-quantitative PCR (RT-qPCR) was used to compare PCBP1 mRNA levels in different tissues of 30-day-old pigs. Results indicated that PCBP1 was expressed in various tissues and was most abundant in the liver. Finally, the effects of PCBP1 on cell cycle and apoptosis were investigated following its overexpression or knockdown in PK-15 cells. The findings demonstrated that PCBP1 knockdown arrested cell cycle in G0/G1 phase, and enhanced cell apoptosis. CONCLUSIONS: Porcine PCBP1 is a highly conserved protein, plays an important role in determining cell fate, and its functions need further study.


Subject(s)
Carrier Proteins , RNA-Binding Proteins , Swine , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Apoptosis/physiology , Protein Binding , Mammals
18.
Biochem Soc Trans ; 52(1): 111-122, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38174726

ABSTRACT

Cells encounter a variety of stresses throughout their lifetimes. Oxidative stress can occur via a myriad of factors, including exposure to chemical toxins or UV light. Importantly, these stressors induce chemical changes (e.g. chemical modifications) to biomolecules, such as RNA. Commonly, guanine is oxidized to form 8-oxo-7,8-hydroxyguanine (8-oxoG) and this modification can disrupt a plethora of cellular processes including messenger RNA translation and stability. Polynucleotide phosphorylase (PNPase), heterogeneous nuclear ribonucleoprotein D (HNRPD/Auf1), poly(C)-binding protein (PCBP1/HNRNP E1), and Y-box binding protein 1 (YB-1) have been identified as four RNA-binding proteins that preferentially bind 8-oxoG-modified RNA over unmodified RNA. All four proteins are native to humans and PNPase is additionally found in bacteria. Additionally, under oxidative stress, cell survival declines in mutants that lack PNPase, Auf1, or PCBP1, suggesting they are critical to the oxidative stress response. This mini-review captures the current understanding of the PNPase, HNRPD/Auf1, PCBP1, and YB-1 proteins and the mechanism that has been outlined so far by which they recognize and interact with 8-oxoG-modified RNAs.


Subject(s)
RNA-Binding Proteins , RNA , Humans , RNA-Binding Proteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , RNA, Messenger/metabolism , Gene Expression Regulation
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167011, 2024 03.
Article in English | MEDLINE | ID: mdl-38176460

ABSTRACT

Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.


Subject(s)
Breast Neoplasms , Tamoxifen , Humans , Female , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , MCF-7 Cells , Drug Resistance, Neoplasm/genetics , Glycolysis , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism
20.
Article in English | MEDLINE | ID: mdl-38281704

ABSTRACT

Alternative splicing (AS) plays an important role in various physiological processes in eukaryotes, such as the stress response. However, patterns of AS events remain largely unexplored during salinity acclimation in fishes. In this study, we conducted AS analysis using RNA-seq datasets to explore splicing patterns in the gill tissues of rainbow trout exposed to altered salinity environments, ranging from 0 ‰ (T0) to 30 ‰ (T30). The results revealed 1441, 351, 483, 1051 and 1049 differentially alternatively spliced (DAS) events in 5 pairwise comparisons, including T6 vs. T0, T12 vs. T0, T18 vs. T0, T24 vs. T0, and T30 vs. T0, respectively. These DAS events were derived from 1290, 328, 444, 963 and 948 genes. Enrichment analysis indicated that these DAS genes were related to RNA splicing and processing. Among these, 14 DAS genes were identified as members of the large heterogeneous nuclear RNP (hnRNP) gene family. Alternative 3' splice site (A3SS), exon skipping (SE) and intron retention (RI) events resulted in the fragmentation or even loss of the functional RNA recognition motif (RRM) domains in hnrnpa0, hnrnp1a, hnrnp1b and hnrnpc genes. The incomplete RRM domains would hinder the interactions between hnRNP genes and pre-mRNAs. It would in turn influence the splicing patterns and mRNA stability of downstream target genes in response to salinity changes. The study provides insights into salinity acclimation in gill tissues of rainbow trout and serves as a significant reference on the osmoregulation mechanisms at post-transcription regulation levels in fish.


Subject(s)
Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Salinity , Alternative Splicing , Gills/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...