Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
2.
Xenotransplantation ; 31(4): e12877, 2024.
Article in English | MEDLINE | ID: mdl-39077824

ABSTRACT

INTRODUCTION: Inflammatory responses and coagulation disorders are a relevant challenge for successful cardiac xenotransplantation on its way to the clinic. To cope with this, an effective and clinically practicable anti-inflammatory and anti-coagulatory regimen is needed. The inflammatory and coagulatory response can be reduced by genetic engineering of the organ-source pigs. Furthermore, there are several therapeutic strategies to prevent or reduce inflammatory responses and coagulation disorders following xenotransplantation. However, it is still unclear, which combination of drugs should be used in the clinical setting. To elucidate this, we present data from pig-to-baboon orthotopic cardiac xenotransplantation experiments using a combination of several anti-inflammatory drugs. METHODS: Genetically modified piglets (GGTA1-KO, hCD46/hTBM transgenic) were used for orthotopic cardiac xenotransplantation into captive-bred baboons (n = 14). All animals received an anti-inflammatory drug therapy including a C1 esterase inhibitor, an IL-6 receptor antagonist, a TNF-α inhibitor, and an IL-1 receptor antagonist. As an additive medication, acetylsalicylic acid and unfractionated heparin were administered. The immunosuppressive regimen was based on CD40/CD40L co-stimulation blockade. During the experiments, leukocyte counts, levels of C-reactive protein (CRP) as well as systemic cytokine and chemokine levels and coagulation parameters were assessed at multiple timepoints. Four animals were excluded from further data analyses due to porcine cytomegalovirus/porcine roseolovirus (PCMV/PRV) infections (n = 2) or technical failures (n = 2). RESULTS: Leukocyte counts showed a relevant perioperative decrease, CRP levels an increase. In the postoperative period, leukocyte counts remained consistently within normal ranges, CRP levels showed three further peaks after about 35, 50, and 80 postoperative days. Analyses of cytokines and chemokines revealed different patterns. Some cytokines, like IL-8, increased about 2-fold in the perioperative period, but then decreased to levels comparable to the preoperative values or even lower. Other cytokines, such as IL-12/IL-23, decreased in the perioperative period and stayed at these levels. Besides perioperative decreases, there were no relevant alterations observed in coagulation parameters. In summary, all parameters showed an unremarkable course with regard to inflammatory responses and coagulation disorders following cardiac xenotransplantation and thus showed the effectiveness of our approach. CONCLUSION: Our preclinical experience with the anti-inflammatory drug therapy proved that controlling of inflammation and coagulation disorders in xenotransplantation is possible and well-practicable under the condition that transmission of pathogens, especially of PCMV/PRV to the recipient is prevented because PCMV/PRV also induces inflammation and coagulation disorders. Our anti-inflammatory regimen should also be applicable and effective in the clinical setting of cardiac xenotransplantation.


Subject(s)
Animals, Genetically Modified , Heart Transplantation , Inflammation , Papio , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Heart Transplantation/methods , Swine , Inflammation/immunology , Blood Coagulation/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Heterografts/immunology , Galactosyltransferases/genetics , Immunosuppressive Agents/pharmacology , Cytokines/metabolism
3.
Xenotransplantation ; 31(3): e12865, 2024.
Article in English | MEDLINE | ID: mdl-38853364

ABSTRACT

Recent clinical xenotransplantation and human decedent studies demonstrate that clinical hyperacute rejection of genetically engineered porcine organs can be reliably avoided but that antibody mediated rejection (AMR) continues to limit graft survival. We previously identified porcine glycans and proteins which are immunogenic after cardiac xenotransplantation in non-human primates, but the clinical immune response to antigens present in glycan depleted triple knockout (TKO) donor pigs is poorly understood. In this study we use fluorescence barcoded human embryonic kidney cells (HEK) and HEK cell lines expressing porcine glycans (Gal and SDa) or proteins (tetraspanin-29 [CD9], membrane cofactor protein [CD46], protectin, membrane attack complex inhibition factor [CD59], endothelial cell protein C receptor, and Annexin A2) to screen antibody reactivity in human serum from 160 swine veterinarians, a serum source with potential occupational immune challenge from porcine tissues and pathogens. High levels of anti-Gal IgM were present in all samples and lower levels of anti-SDa IgM were present in 41% of samples. IgM binding to porcine proteins, primarily CD9 and CD46, previously identified as immunogenic in pig to non-human primate cardiac xenograft recipients, was detected in 28 of the 160 swine veterinarian samples. These results suggest that barcoded HEK cell lines expressing porcine protein antigens can be useful for screening human patient serum. A comprehensive analysis of sera from clinical xenotransplant recipients to define a panel of commonly immunogenic porcine antigens will likely be necessary to establish an array of porcine non-Gal antigens for effective monitoring of patient immune responses and allow earlier therapies to reverse AMR.


Subject(s)
Graft Rejection , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Humans , Swine , Graft Rejection/immunology , HEK293 Cells , Veterinarians , Polysaccharides/immunology , Animals, Genetically Modified , Antibodies, Heterophile/immunology , Antibodies, Heterophile/blood , Heterografts/immunology , Immunoglobulin M/immunology , Immunoglobulin M/blood
4.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791196

ABSTRACT

Fish germ cell transplantation holds great potential for conserving endangered species, improving cultured fish breeds, and exploring reproductive techniques. However, low transplantation efficiency is a common issue in heterotransplantation. This study transplanted fat greenling (Hexagrammos otakii) spermatogonia into the testes of spotted sea bass (Lateolabrax maculatus) to investigate factors that might affect the colonization and fixation of heterologous transplanted germ cells. Results indicated that transplanted fat greenling spermatogonia cells were successfully detected in the early transplantation phase in spotted sea bass. Their numbers gradually decreased over time, and after 10 days post-transplantation, more than 90% of the transplanted cells underwent apoptosis. Transcriptome sequencing analysis of the testes of spotted sea bass and fat greenling spermatogonia on days 1 and 10 post-transplantation revealed that this apoptosis process involved many immune-related genes and their associated signaling pathways. Acute immune rejection marker genes prf1 and gzmb were detected in the spotted sea bass testes, while immune tolerance genes lck and zap-70 were expressed in the fat greenling spermatogonia. Additionally, differential expression of prf1 and gzmb genes was screened from spotted sea bass, with experimental evidence indicating that PRF1 and GZMB protein from spotted sea bass primarily induce apoptosis in transplanted fat greenling spermatogonia via the mitochondrial apoptosis pathway, at the protein level. This suggests that the difficulties in heterotransplantation are primarily related to acute immune rejection, with PRF1 and GZMB playing significant roles.


Subject(s)
Bass , Heterografts , Spermatogonia , Animals , Male , Apoptosis , Bass/genetics , Bass/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Perforin/metabolism , Perforin/genetics , Spermatogonia/metabolism , Testis/metabolism , Heterografts/immunology , Conservation of Natural Resources
5.
Xenotransplantation ; 31(3): e12862, 2024.
Article in English | MEDLINE | ID: mdl-38761019

ABSTRACT

Prolonged survival in preclinical renal xenotransplantation demonstrates that early antibody mediated rejection (AMR) can be overcome. It is now critical to evaluate and understand the pathobiology of late graft failure and devise new means to improve post xenograft outcomes. In renal allotransplantation the most common cause of late renal graft failure is transplant glomerulopathy-largely due to anti-donor MHC antibodies, particularly anti-HLA DQ antibodies. We evaluated the pig renal xenograft pathology of four long-surviving (>300 days) rhesus monkeys. We also evaluated the terminal serum for the presence of anti-SLA class I and specifically anti-SLA DQ antibodies. All four recipients had transplant glomerulopathy and expressed anti-SLA DQ antibodies. In one recipient tested for anti-SLA I antibodies, the recipient had antibodies specifically reacting with two of three SLA I alleles tested. These results suggest that similar to allotransplantation, anti-MHC antibodies, particularly anti-SLA DQ, may be a barrier to improved long-term xenograft outcomes.


Subject(s)
Graft Rejection , Heterografts , Histocompatibility Antigens Class I , Kidney Transplantation , Macaca mulatta , Transplantation, Heterologous , Animals , Transplantation, Heterologous/methods , Graft Rejection/immunology , Kidney Transplantation/methods , Histocompatibility Antigens Class I/immunology , Swine , Heterografts/immunology , Histocompatibility Antigens Class II/immunology , Graft Survival/immunology , Isoantibodies/immunology , Humans
6.
Xenotransplantation ; 31(2): e12859, 2024.
Article in English | MEDLINE | ID: mdl-38646924

ABSTRACT

Antibody-mediated rejection (AMR) is a common cause of graft failure after pig-to-nonhuman primate organ transplantation, even when the graft is from a pig with multiple genetic modifications. The specific factors that initiate AMR are often uncertain. We report two cases of pig kidney transplantation into immunosuppressed baboons in which we identify novel factors associated with the initiation of AMR. In the first, membranous nephropathy was the initiating factor that was then associated with the apparent loss of the therapeutic anti-CD154 monoclonal antibody in the urine when severe proteinuria was present. This observation suggests that proteinuria may be associated with the loss of any therapeutic monoclonal antibody, for example, anti-CD154 or eculizumab, in the urine, resulting in xenograft rejection. In the second case, the sequence of events and histopathology tentatively suggested that pyelonephritis may have initiated acute-onset AMR. The association of a urinary infection with graft rejection has been well-documented in ABO-incompatible kidney allotransplantation based on the expression of an antigen on the invading microorganism shared with the kidney graft, generating an immune response to the graft. To our knowledge, these potential initiating factors of AMR in pig xenografts have not been highlighted previously.


Subject(s)
Graft Rejection , Heterografts , Immunosuppressive Agents , Kidney Transplantation , Papio , Transplantation, Heterologous , Animals , Female , Male , Graft Rejection/immunology , Heterografts/immunology , Immunosuppression Therapy/methods , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Swine , Transplantation, Heterologous/methods , Transplantation, Heterologous/adverse effects
7.
Nature ; 621(7978): 404-414, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648862

ABSTRACT

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Subject(s)
Epitopes , Gene Editing , Immunotherapy , Leukemia, Myeloid, Acute , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antigens, CD34/metabolism , Bone Marrow Transplantation , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Hematopoiesis , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Heterografts/immunology , Immunotherapy/adverse effects , Immunotherapy/methods , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen/immunology , Recurrence , T-Lymphocytes/immunology , Transplantation Conditioning , Tumor Escape , Xenograft Model Antitumor Assays
8.
Clin Exp Immunol ; 206(3): 422-438, 2021 12.
Article in English | MEDLINE | ID: mdl-34487545

ABSTRACT

Graft versus host disease (GvHD) is a major clinical problem with a significant unmet medical need. We examined the role of cytotoxic T lymphocyte antigen-4 (CTLA-4) in a xenogenic GvHD (xeno-GvHD) model induced by injection of human peripheral mononuclear cells (hPBMC) into irradiated non-obese diabetic (NOD) SCID gamma (NSG) mice. Targeting the CTLA-4 pathway by treatment with CTLA-4 immunoglobulin (Ig) prevented xeno-GvHD, while anti-CTLA-4 antibody treatment exacerbated the lethality and morbidity associated with GvHD. Xeno-GvHD is associated with infiltration of hPBMCs into the lungs, spleen, stomach, liver and colon and an increase in human proinflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α and interleukin (IL)-5. Infiltration of donor cells and increases in cytokines were attenuated by treatment with CTLA-4 Ig, but remained either unaffected or enhanced by anti-CTLA-4 antibody. Further, splenic human T cell phenotyping showed that CTLA-4 Ig treatment prevented the engraftment of human CD45+ cells, while anti-CTLA-4 antibody enhanced donor T cell expansion, particularly CD4+ (CD45RO+ ) subsets, including T box transcription factor TBX21 (Tbet)+ CXCR3+ and CD25+ forkhead box protein 3 (FoxP3) cells. Comprehensive analysis of transcriptional profiling of human cells isolated from mouse spleen identified a set of 417 differentially expressed genes (DEGs) by CTLA-4 Ig treatment and 13 DEGs by anti-CTLA-4 antibody treatment. The CTLA-4 Ig regulated DEGs mapped to down-regulated apoptosis, inflammasome, T helper type 17 (Th17) and regulatory T cell (Treg ) pathways and enhanced Toll-like receptor (TLR) receptor signaling, TNF family signaling, complement system and epigenetic and transcriptional regulation, whereas anti-CTLA-4 antibody produced minimal to no impact on these gene pathways. Our results show an important role of co-inhibitory CTLA-4 signaling in xeno-GvHD and suggest the therapeutic utility of other immune checkpoint co-inhibitory pathways in the treatment of immune-mediated diseases driven by hyperactive T cells.


Subject(s)
CTLA-4 Antigen/immunology , Cytokines/blood , Graft vs Host Disease/immunology , Heterografts/immunology , Leukocytes, Mononuclear/immunology , Alanine Transaminase/blood , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Aspartate Aminotransferases/blood , Humans , Immunoglobulin G/administration & dosage , Immunoglobulin G/immunology , Ipilimumab/pharmacology , Lymphocyte Activation/immunology , Mice , Mice, Inbred NOD , Mice, SCID , T-Lymphocytes, Cytotoxic/immunology
9.
JCI Insight ; 6(13)2021 07 08.
Article in English | MEDLINE | ID: mdl-34081628

ABSTRACT

Existing patient-derived xenograft (PDX) mouse models of solid tumors lack a fully tumor donor-matched, syngeneic, and functional immune system. We developed a model that overcomes these limitations by engrafting lymphopenic recipient mice with a fresh, undisrupted piece of solid tumor, whereby tumor-infiltrating lymphocytes (TILs) persisted in the recipient mice for several weeks. Successful tumor engraftment was achieved in 83% to 89% of TIL-PDX mice, and these were seen to harbor exhausted immuno-effector as well as functional immunoregulatory cells persisting for at least 6 months postengraftment. Combined treatment with interleukin-15 stimulation and immune checkpoint inhibition resulted in complete or partial tumor response in this model. Further, depletion of cytotoxic T lymphocytes and/or natural killer cells before combined immunotherapy revealed that both cell types were required for maximal tumor regression. Our TIL-PDX model provides a valuable resource for powerful mechanistic and therapeutic studies in solid tumors.


Subject(s)
Heterografts , Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasm Transplantation , Neoplasms , T-Lymphocytes, Cytotoxic/immunology , Adjuvants, Immunologic/pharmacology , Animals , Disease Models, Animal , Heterografts/immunology , Heterografts/pathology , Humans , Immune Checkpoint Inhibitors/pharmacology , Interleukin-15/metabolism , Mice , Neoplasm Transplantation/immunology , Neoplasm Transplantation/methods , Neoplasms/immunology , Neoplasms/therapy , Transplantation, Heterologous/methods , Xenograft Model Antitumor Assays/methods
10.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33988715

ABSTRACT

HIV-specific CD8+ T cells partially control viral replication and delay disease progression, but they rarely provide lasting protection, largely due to immune escape. Here, we show that engrafting mice with memory CD4+ T cells from HIV+ donors uniquely allows for the in vivo evaluation of autologous T cell responses while avoiding graft-versus-host disease and the need for human fetal tissues that limit other models. Treating HIV-infected mice with clinically relevant HIV-specific T cell products resulted in substantial reductions in viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an IL-15 superagonist, but it was ultimately limited by the pervasive selection of a diverse array of escape mutations, recapitulating patterns seen in humans. By applying mathematical modeling, we show that the kinetics of the CD8+ T cell response have a profound impact on the emergence and persistence of escape mutations. This "participant-derived xenograft" model of HIV provides a powerful tool for studying HIV-specific immunological responses and facilitating the development of effective cell-based therapies.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , Heterografts/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line , HEK293 Cells , HIV Infections/virology , Heterografts/virology , Humans , Immunotherapy/methods , Interleukin-15/immunology , Mice , Mutation/immunology , Viremia/immunology , Viremia/virology , Virus Replication/immunology
11.
Cell Rep Med ; 2(4): 100247, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33948577

ABSTRACT

Sickle cell disease (SCD) is caused by a 20A > T mutation in the ß-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact ß-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus ß-to-ßs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10-12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.


Subject(s)
Anemia, Sickle Cell/genetics , Antigens, CD34/metabolism , Hematopoietic Stem Cells/metabolism , Heterografts/immunology , Macaca mulatta/genetics , Animals , Gene Editing/methods , Gene Targeting/methods , Hematopoietic Stem Cell Transplantation/methods , Hemoglobin, Sickle/genetics , Humans , Mice , RNA, Guide, Kinetoplastida/metabolism , beta-Globins/genetics
12.
PLoS One ; 16(5): e0243010, 2021.
Article in English | MEDLINE | ID: mdl-33939711

ABSTRACT

The single-epithelial cell layer of the gut mucosa serves as an essential barrier between the host and luminal microflora and plays a major role in innate immunity against invading pathogens. Nuclear factor kB (NF-κB), a central component of the cellular signaling machinery, regulates immune response and inflammation. NF-κB proteins are activated by signaling pathways downstream to microbial recognition receptors and cytokines receptors. Highly regulated NF-κB activity in intestinal epithelial cells (IEC) is essential for normal gut homeostasis; dysregulated activity has been linked to a number of disease states, including inflammatory bowel diseases (IBD) such as Crohn's Disease (CD). Our aim was to visualize and quantify spatial and temporal dynamics of NF-κB activity in steady state and inflamed human gut. Lentivirus technology was used to transduce the IEC of human gut xenografts in SCID mice with a NF-κB luminescence reporter system. NF-κB signaling was visualized and quantified using low resolution, intravital imaging of the whole body and high resolution, immunofluorescence microscopic imaging of the tissues. We show that NF-κB is activated in select subset of IEC with low "leaky" NF-κB activity. These unique inflammatory epithelial cells are clustered in the gut into discrete hotspots of NF-κB activity that are visible in steady state and selectively activated by systemic LPS and human TNFα or luminal bacteria. The presence of inflammatory hotspots in the normal and inflamed gut might explain the patchy mucosal lesions characterizing CD and thus could have important implications for diagnosis and therapy.


Subject(s)
Heterografts/immunology , Intestinal Mucosa/immunology , NF-kappa B/metabolism , Animals , HEK293 Cells , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/transplantation , Lipopolysaccharides/pharmacology , Mice , Mice, SCID , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
13.
Cell Death Dis ; 12(4): 371, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824267

ABSTRACT

Although the mixed lineage leukemia 5 (MLL5) gene has prognostic implications in acute promyelocyte leukemia (APL), the underlying mechanism remains to be elucidated. Here, we demonstrate the critical role exerted by MLL5 in APL regarding cell proliferation and resistance to drug-induced apoptosis, through mtROS regulation. Additionally, MLL5 overexpression increased the responsiveness of APL leukemic cells to all-trans retinoic acid (ATRA)-induced differentiation, via regulation of the epigenetic modifiers SETD7 and LSD1. In silico analysis indicated that APL blasts with MLL5high transcript levels were associated with retinoic acid binding and downstream signaling, while MLL5low blasts displayed decreased expression of epigenetic modifiers (such as KMT2C, PHF8 and ARID4A). Finally, APL xenograft transplants demonstrated improved engraftment of MLL5-expressing cells and increased myeloid differentiation over time. Concordantly, evaluation of engrafted blasts revealed increased responsiveness of MLL5-expressing cells to ATRA-induced granulocytic differentiation. Together, we describe the epigenetic changes triggered by the interaction of MLL5 and ATRA resulting in enhanced granulocytic differentiation.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Differentiation/drug effects , DNA-Binding Proteins/metabolism , Heterografts/immunology , Leukemia, Promyelocytic, Acute/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Heterografts/metabolism , Histone Demethylases/drug effects , Histone Demethylases/metabolism , Humans , Transcription Factors/drug effects , Transcription Factors/metabolism
14.
Cells ; 10(2)2021 02 17.
Article in English | MEDLINE | ID: mdl-33671173

ABSTRACT

Osteosarcoma (OS) is a rare malignant primary tumor of mesenchymal origin affecting bone. It is characterized by a complex genotype, mainly due to the high frequency of chromothripsis, which leads to multiple somatic copy number alterations and structural rearrangements. Any effort to design genome-driven therapies must therefore consider such high inter- and intra-tumor heterogeneity. Therefore, many laboratories and international networks are developing and sharing OS patient-derived xenografts (OS PDX) to broaden the availability of models that reproduce OS complex clinical heterogeneity. OS PDXs, and new cell lines derived from PDXs, faithfully preserve tumor heterogeneity, genetic, and epigenetic features and are thus valuable tools for predicting drug responses. Here, we review recent achievements concerning OS PDXs, summarizing the methods used to obtain ectopic and orthotopic xenografts and to fully characterize these models. The availability of OS PDXs across the many international PDX platforms and their possible use in PDX clinical trials are also described. We recommend the coupling of next-generation sequencing (NGS) data analysis with functional studies in OS PDXs, as well as the setup of OS PDX clinical trials and co-clinical trials, to enhance the predictive power of experimental evidence and to accelerate the clinical translation of effective genome-guided therapies for this aggressive disease.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Heterografts/immunology , Osteosarcoma/immunology , Animals , Humans , Osteosarcoma/genetics , Transplantation, Heterologous/methods , Xenograft Model Antitumor Assays/methods
15.
Cancer Sci ; 112(1): 144-154, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33113266

ABSTRACT

Eomesodermin (Eomes) is a T-box transcription factor that drives the differentiation and function of cytotoxic lymphocytes. However, the underlying function and mechanism of Eomes in tumor cells remains elusive. Here, we studied the role of Eomes in human esophageal squamous cell carcinoma (ESCC). Using 2 human ESCC cell lines, we found that Eomes knockdown reduced esophageal cancer cell proliferation and that the esophageal cancer cell cycle was blocked in the G2/M phase. Mechanistically, we identified CCL20 as the main downstream target of Eomes. Furthermore, we found that CCL20 could chemoregulate regulatory T cells (Tregs) through their specific receptor CCR6, then promoting the proliferation of esophageal cancer cells. Eomes knockdown also delayed the growth of human ESCC xenografts in BALB/c nude mice. Importantly, in 133 human ESCC tissues, high Eomes levels were associated with poor clinical prognosis. Overall, our findings suggested that the Eomes-CCL20-CCR6 pathway plays a vital role in human ESCC progress. Therefore, targeting this pathway may represent a promising strategy for controlling human ESCC.


Subject(s)
Chemokine CCL20/immunology , Esophageal Neoplasms/immunology , Esophageal Squamous Cell Carcinoma/immunology , Receptors, CCR6/immunology , T-Box Domain Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Line, Tumor , Cell Movement/immunology , Cell Proliferation/physiology , Disease Progression , Female , G2 Phase Cell Cycle Checkpoints/immunology , Gene Expression Regulation, Neoplastic/immunology , Heterografts/immunology , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Prognosis
16.
Scand J Immunol ; 93(4): e13018, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33372305

ABSTRACT

Valvular heart disease continues to afflict millions of people around the world. In many cases, the only corrective treatment for valvular heart disease is valve replacement. Valve replacement options are currently limited, and the most common construct utilized are xenogenic tissue heart valves. The main limitation with the use of this valve type is the development of valvular deterioration. Valve deterioration results in intrinsic permanent changes in the valve structure, often leading to hemodynamic compromise and clinical symptoms of valve re-stenosis. A significant amount of research has been performed regarding the incidence of valve deterioration and determination of significant risk factors for its development. As a result, many believe that the underlying driver of valve deterioration is a chronic immune-mediated rejection process of the foreign xenogenic-derived tissue. The underlying mechanisms of how this occurs are an area of ongoing research and active debate. In this review, we provide an overview of the important components of the immune system and how they respond to xenografts. A review of the proposed mechanisms of xenogenic heart valve deterioration is provided including the immune response to xenografts. Finally, we discuss the role of strategies to combat valve degeneration such as preservation protocols, epitope modification and decellularization.


Subject(s)
Heart Valve Diseases/immunology , Heart Valves/immunology , Heterografts/immunology , Immunity/immunology , Animals , Hemodynamics/immunology , Humans
17.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Article in English | MEDLINE | ID: mdl-33009951

ABSTRACT

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Subject(s)
Brain Neoplasms/drug therapy , Glioma/drug therapy , Heterografts/immunology , Organoids/pathology , Temozolomide/therapeutic use , Animals , Brain Neoplasms/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioma/genetics , Heterografts/drug effects , Humans , Mice , Neoplasm Recurrence, Local/genetics , Organoids/immunology , Precision Medicine/methods , Rats
18.
Int J Surg ; 83: 184-188, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32987208

ABSTRACT

BACKGROUND: There are many causes of systemic complement activation, which may have detrimental effects on a pig xenograft. Transgenic expression of one or more human complement-regulatory proteins (hCRPs), e.g., hCD46, provides some protection to the xenograft, but it is not known whether it protects the xenograft from the effects of systemic complement activation. We used wild-type (WT) pig aortic endothelial cells (pAECs) to activate complement, and determined whether the expression of hCD46 on a1,3galactosyltransferase gene-knockout (GTKO) pAECs protected them from injury. METHODS: CFSE-labeled and non-labeled pAECs from a WT, a GTKO, or a GTKO/hCD46 pig were separately incubated with heat-inactivated pooled human serum in vitro. Antibody pre-bonded CFSE-labeled and non-labeled pAECs were mixed, and then incubated with rabbit complement. The complement-dependent cytotoxicity was measured by flow cytometry. RESULTS: There was significantly less lysis of GTKO/CD46 pAECs (6%) by 50% human serum compared to that of WT (91%, p<0.001) or GTKO (32%, p<0.01) pAECs. The lysis of GTKO pAECs was significantly increased when mixed with WT pAECs (p<0.05). In contrast, there was no significant change in cytotoxicity of GTKO/CD46 pAECs when mixed with WT pAECs. CONCLUSIONS: The expression of hCD46 protected pAECs from systemic complement activation.


Subject(s)
Complement Activation , Heterografts/immunology , Membrane Cofactor Protein/physiology , Animals , Animals, Genetically Modified , Aorta/immunology , Cytotoxicity, Immunologic , Endothelial Cells/immunology , Humans , Swine
19.
Transplantation ; 104(8): 1566-1573, 2020 08.
Article in English | MEDLINE | ID: mdl-32732833

ABSTRACT

BACKGROUND: Xenogeneic organ transplantation has been proposed as a potential approach to fundamentally solve organ shortage problem. Xenogeneic immune responses across species is one of the major obstacles for clinic application of xeno-organ transplantation. The generation of glycoprotein galactosyltransferase α 1, 3 (GGTA1) knockout pigs has greatly contributed to the reduction of hyperacute xenograft rejection. However, severe xenograft rejection can still be induced by xenoimmune responses to the porcine major histocompatibility complex antigens swine leukocyte antigen class I and class II. METHODS: We simultaneously depleted GGTA1, ß2-microglobulin (ß2M), and major histocompatibility complex class II transactivator (CIITA) genes using clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins technology in Bamma pig fibroblast cells, which were further used to generate GGTA1ß2MCIITA triple knockout (GBC-3KO) pigs by nuclear transfer. RESULTS: The genotype of GBC-3KO pigs was confirmed by polymerase chain reaction and Sanger sequencing, and the loss of expression of α-1,3-galactose, SLA-I, and SLA-II was demonstrated by flow cytometric analysis using fluorescent-conjugated lectin from bandeiraea simplicifolia, anti-ß2-microglobulin, and swine leukocyte antigen class II DR antibodies. Furthermore, mixed lymphocyte reaction assay revealed that peripheral blood mononuclear cells from GBC-3KO pigs were significantly less effective than (WT) pig peripheral blood mononuclear cells in inducing human CD3CD4 and CD3CD8 T-cell activation and proliferation. In addition, GBC-3KO pig skin grafts showed a significantly prolonged survival in immunocompetent C57BL/6 mice, when compared with wild-type pig skin grafts. CONCLUSIONS: Taken together, these results demonstrate that elimination of GGTA1, ß2M, and CIITA genes in pigs can effectively alleviate xenogeneic immune responses and prolong pig organ survival in xenogenesis. We believe that this work will facilitate future research in xenotransplantation.


Subject(s)
Graft Rejection/prevention & control , Heterografts/immunology , Organ Transplantation/methods , Transplantation, Heterologous/methods , Allografts/supply & distribution , Animals , Animals, Genetically Modified/immunology , CRISPR-Cas Systems/genetics , Disease Models, Animal , Female , Galactosyltransferases/genetics , Galactosyltransferases/immunology , Gene Knockout Techniques/methods , Genes, MHC Class II/genetics , Genes, MHC Class II/immunology , Graft Rejection/immunology , Graft Survival/genetics , Graft Survival/immunology , Heterografts/transplantation , Humans , Male , Mice , Organ Transplantation/adverse effects , Swine/genetics , Swine/immunology , Transplantation, Heterologous/adverse effects , beta 2-Microglobulin/genetics , beta 2-Microglobulin/immunology
20.
Biomed Res Int ; 2020: 9680474, 2020.
Article in English | MEDLINE | ID: mdl-32596401

ABSTRACT

BACKGROUND: Animal tissues and tissue-derived biomaterials are widely used in the field of xenotransplantation and regenerative medicine. A potential immunogenic risk that affects the safety and effectiveness of xenografts is the presence of remnant α-Gal antigen (synthesized by GGTA1 or/and iGb3S). GGTA1 knockout mice have been developed as a suitable model for the analysis of anti-Gal antibody-mediated immunogenicity. However, we are yet to establish whether GGTA1/iGb3S double knockout (G/i DKO) mice are sensitive to Gal antigen-positive xenoimplants. METHODS: α-Gal antigen expression in the main organs of G/i DKO mice or bovine bone substitutes was detected via a standardized ELISA inhibition assay. Serum anti-α-Gal antibody titers of G/i DKO mice after immunization with rabbit red blood cells (RRBC) and implantation of raw lyophilized bone substitutes (Gal antigen content was 8.14 ± 3.17 × 1012/mg) or Guanhao Biotech bone substitutes (50% decrease in Gal antigen relative to the raw material) were assessed. The evaluation of total serum antibody, inflammatory cytokine, and splenic lymphocyte subtype populations and the histological analysis of implants and thymus were performed to systematically assess the immune response caused by bovine bone substitutes and bone substitute grafts in G/i DKO mice. RESULTS: α-Gal epitope expression was reduced by 100% in the main organs of G/i DKO mice, compared with their wild-type counterparts. Following immunization with RRBC, serum anti-Gal antibody titers of G/i DKO mice increased from 80- to 180-fold. After subcutaneous implantation of raw lyophilized bone substitutes and Guanhao Biotech bone substitutes into G/i DKO mice, specific anti-α-Gal IgG, anti-α-Gal IgM, and related inflammatory factors (IFN-γ and IL-6) were significantly increased in the raw lyophilized bone substitute group but showed limited changes in the Guanhao Biotech bone substitute group, compared with the control. CONCLUSION: G/i DKO mice are sensitive to Gal antigen-positive xenogeneic grafts and can be effectively utilized for evaluating the α-Gal-mediated immunogenic risk of xenogeneic grafts.


Subject(s)
Bone Matrix , Galactosyltransferases/genetics , Heterografts/immunology , Transplantation, Heterologous , Animals , Bone Matrix/immunology , Bone Matrix/transplantation , Bone Substitutes , Cattle , Erythrocytes/immunology , Galactosyltransferases/metabolism , Mice , Mice, Knockout , Rabbits , alpha-Galactosidase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL