Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.133
1.
Plant Physiol Biochem ; 210: 108567, 2024 May.
Article En | MEDLINE | ID: mdl-38554538

Heterotrimeric G-proteins are key modulators of multiple signaling and developmental pathways in plants, in which they act as molecular switches to engage in transmitting various stimuli signals from outside into the cells. Substantial studies have identified G proteins as essential components of the organismal response to abiotic stress, leading to adaptation and survival in plants. Meanwhile, sugars are also well acknowledged key players in stress perception, signaling, and gene expression regulation. Connections between the two significant signaling pathways in stress response are of interest to a general audience in plant biology. In this article, advances unraveling a pivotal role of G proteins in the process of sugar signals outside the cells being translated into the operation of autophagy in cells during stress are reviewed. In addition, we have presented recent findings on G proteins regulating the response to drought, salt, alkali, cold, heat and other abiotic stresses. Perspectives on G-protein research are also provided in the end. Since G protein signaling regulates many agronomic traits, elucidation of detailed mechanism of the related pathways would provide useful insights for the breeding of abiotic stress resistant and high-yield crops.


Heterotrimeric GTP-Binding Proteins , Plant Proteins , Signal Transduction , Stress, Physiological , Heterotrimeric GTP-Binding Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Sugars/metabolism , Plants/metabolism , Gene Expression Regulation, Plant , Plant Physiological Phenomena
2.
Am J Physiol Cell Physiol ; 326(5): C1410-C1422, 2024 May 01.
Article En | MEDLINE | ID: mdl-38525541

Adipose dysfunction in lipodystrophic SEIPIN deficiency is associated with multiple metabolic disorders and increased risks of developing cardiovascular diseases, such as atherosclerosis, cardiac hypertrophy, and heart failure. Recently, adipose transplantation has been found to correct adipose dysfunction and metabolic disorders in lipodystrophic Seipin knockout mice; however, whether adipose transplantation could improve lipodystrophy-associated cardiovascular consequences is still unclear. Here, we aimed to explore the effects of adipose transplantation on lipodystrophy-associated metabolic cardiovascular diseases in Seipin knockout mice crossed into atherosclerosis-prone apolipoprotein E (Apoe) knockout background. At 2 months of age, lipodystrophic Seipin/Apoe double knockout mice and nonlipodystrophic Apoe knockout controls were subjected to adipose transplantation or sham operation. Seven months later, mice were euthanized. Our data showed that although adipose transplantation had no significant impact on endogenous adipose atrophy or gene expression, it remarkably increased plasma leptin but not adiponectin concentration in Seipin/Apoe double knockout mice. This led to significantly reduced hyperlipidemia, hepatic steatosis, and insulin resistance in Seipin/Apoe double knockout mice. Consequently, atherosclerosis burden, intraplaque macrophage infiltration, and aortic inflammatory gene expression were all attenuated in Seipin/Apoe double knockout mice with adipose transplantation. However, adipocyte morphology, macrophage infiltration, or fibrosis of the perivascular adipose tissue was not altered in Seipin/Apoe double knockout mice with adipose transplantation, followed by no significant improvement of vasoconstriction or relaxation. In conclusion, we demonstrate that adipose transplantation could alleviate lipodystrophy-associated metabolic disorders and atherosclerosis but has an almost null impact on perivascular adipose abnormality or vascular dysfunction in lipodystrophic Seipin/Apoe double knockout mice.NEW & NOTEWORTHY Adipose transplantation (AT) reverses multiply metabolic derangements in lipodystrophy, but whether it could improve lipodystrophy-related cardiovascular consequences is unknown. Here, using Seipin/Apoe double knockout mice as a lipodystrophy disease model, we showed that AT partially restored adipose functionality, which translated into significantly reduced atherosclerosis. However, AT was incapable of reversing perivascular adipose abnormality or vascular dysfunction. The current study provides preliminary experimental evidence on the therapeutic potential of AT on lipodystrophy-related metabolic cardiovascular diseases.


Adipose Tissue , Atherosclerosis , GTP-Binding Protein gamma Subunits , Lipodystrophy , Mice, Knockout , Animals , Mice , Adipose Tissue/metabolism , Adipose Tissue/transplantation , Apolipoproteins E/genetics , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , GTP-Binding Protein gamma Subunits/deficiency , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Insulin Resistance , Leptin/blood , Leptin/metabolism , Lipodystrophy/metabolism , Lipodystrophy/genetics , Lipodystrophy/pathology , Mice, Inbred C57BL
3.
Dis Model Mech ; 17(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38454882

Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.


GTP-Binding Protein gamma Subunits , Heterotrimeric GTP-Binding Proteins , Lipodystrophy, Congenital Generalized , Lipodystrophy , Animals , Humans , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , GTP-Binding Protein gamma Subunits/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Lipodystrophy/genetics
4.
J Biol Chem ; 300(3): 105756, 2024 Mar.
Article En | MEDLINE | ID: mdl-38364891

Heterotrimeric G proteins (Gαßγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.


Heterotrimeric GTP-Binding Proteins , Receptors, G-Protein-Coupled , Amino Acid Motifs , Cell Membrane/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Humans , Animals , Protein Engineering
5.
Stem Cells Dev ; 33(7-8): 177-188, 2024 Apr.
Article En | MEDLINE | ID: mdl-38386508

Seipin deficiency is an important cause of type 2 Berardinelli-Seip congenital dyslipidemia (BSCL2). BSCL2 is a severe lipodystrophy syndrome with lack of adipose tissue, hepatic steatosis, insulin resistance, and normal or higher bone mineral density. Bone marrow mesenchymal stem cells (BMSCs) are believed to maintain bone and fat homeostasis by differentiating into osteoblasts and adipocytes. We aimed to explore the role of seipin in the osteogenic/adipogenic differentiation balance of BMSCs. Seipin loxP/loxP mice are used to explore metabolic disorders caused by seipin gene mutations. Compared with wild-type mice, subcutaneous fat deficiency and ectopic fat accumulation were higher in seipin knockout mice. Microcomputed tomography of the tibia revealed the increased bone content in seipin knockout mice. We generated seipin-deficient BMSCs in vitro and revealed that lipogenic genes are downregulated and osteogenic genes are upregulated in seipin-deficient BMSCs. In addition, peroxisome proliferator-activated receptor gamma (PPARγ) signaling is reduced in seipin-deficient BMSCs, while using the PPARγ activator increased the lipogenic differentiation and decreased osteogenic differentiation of seipin-deficient BMSCs. Our findings indicated that bone and lipid metabolism can be regulated by seipin through modulating the differentiation of mesenchymal stem cells. Thus, a new insight of seipin mutations in lipid metabolism disorders was revealed, providing a prospective strategy for MSC transplantation-based treatment of BSCL2.


GTP-Binding Protein gamma Subunits , Heterotrimeric GTP-Binding Proteins , Mesenchymal Stem Cells , Animals , Mice , Cell Differentiation/genetics , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Knockout , Osteogenesis/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , X-Ray Microtomography
6.
Plant Commun ; 5(4): 100813, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38213027

Modern crop varieties display a degree of mismatch between their current distributions and the suitability of the local climate for their productivity. To address this issue, we present Oryza CLIMtools (https://gramene.org/CLIMtools/oryza_v1.0/), the first resource for pan-genome prediction of climate-associated genetic variants in a crop species. Oryza CLIMtools consists of interactive web-based databases that enable the user to (1) explore the local environments of traditional rice varieties (landraces) in South-East Asia and (2) investigate the environment by genome associations for 658 Indica and 283 Japonica rice landrace accessions collected from georeferenced local environments and included in the 3K Rice Genomes Project. We demonstrate the value of these resources by identifying an interplay between flowering time and temperature in the local environment that is facilitated by adaptive natural variation in OsHD2 and disrupted by a natural variant in OsSOC1. Prior quantitative trait locus analysis has suggested the importance of heterotrimeric G proteins in the control of agronomic traits. Accordingly, we analyzed the climate associations of natural variants in the different heterotrimeric G protein subunits. We identified a coordinated role of G proteins in adaptation to the prevailing potential evapotranspiration gradient and revealed their regulation of key agronomic traits, including plant height and seed and panicle length. We conclude by highlighting the prospect of targeting heterotrimeric G proteins to produce climate-resilient crops.


Heterotrimeric GTP-Binding Proteins , Oryza , Oryza/genetics , Phenotype , Quantitative Trait Loci/genetics , Agriculture , Heterotrimeric GTP-Binding Proteins/genetics
7.
Genes (Basel) ; 15(1)2024 Jan 18.
Article En | MEDLINE | ID: mdl-38255003

Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gß, and Gγ. In Arabidopsis, the Gßγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gß exhibit constitutively active defense responses, suggesting a contrasting negative role for Gß in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gßγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gßγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.


Arabidopsis , Heterotrimeric GTP-Binding Proteins , Solanum lycopersicum , Arabidopsis/genetics , Cell Death/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Apoptosis/genetics , Nicotiana , Solanum lycopersicum/genetics
8.
Arq Bras Cardiol ; 120(12): e20230396, 2023 Dec.
Article Pt, En | MEDLINE | ID: mdl-38126445

BACKGROUND: Central Illustration : G Protein Subunit Beta 3 (GNB3) Variant Is Associated with Biochemical Changes in Brazilian Patients with Hypertension. BACKGROUND: Genes and their variants associated with environmental factors contribute to the development of the hypertensive phenotype. The G protein beta 3 subunit gene (GNB3) is involved in the intracellular signaling process, and its variants have been related to susceptibility to arterial hypertension. OBJECTIVE: To determine the association of the GNB3 variant (rs5443:C>T) with arterial hypertension, biochemical parameters, age, and obesity in hypertensive and normotensive individuals from Ouro Preto, Minas Gerais, Brazil. METHOD: The identification of variants was performed by real-time PCR, using the TaqMan® system, in 310 samples (155 hypertensive and 155 normotensive). Biochemical analyses (renal function, lipid profile and glycemia) were performed from the serum using UV/Vis spectrophotometry and ion-selective electrode. A multiple logistic regression model was used to identify factors associated with arterial hypertension. The analysis of continuous variables with normal distribution was performed using the unpaired Student's t test; non-normal data were analyzed using Mann-Whitney. P < 0.05 was considered significant. RESULTS: The rs5443:C>T variant was not associated with arterial hypertension in the evaluated population (p = 0.88). Regarding biochemical measures, the T allele was associated with high levels of triglycerides, glucose and uric acid in hypertensive individuals (p < 0.05). CONCLUSION: These results show the importance of genetic diagnosis to prevent the causes and consequences of diseases and imply that the GNB3 rs5443:C>T variant may be associated with changes in the biochemical profile in hypertensive individuals.


Heterotrimeric GTP-Binding Proteins , Hypertension , Humans , Alleles , Blood Pressure/genetics , Brazil , Genotype , Hypertension/genetics , Protein Subunits/genetics , Heterotrimeric GTP-Binding Proteins/genetics
9.
PLoS Genet ; 19(11): e1011015, 2023 Nov.
Article En | MEDLINE | ID: mdl-37910589

Heterotrimeric G (αßγ) proteins are canonical transducers of G-protein-coupled receptor (GPCR) signaling and play critical roles in communication between cells and their environment. Many GPCRs and heterotrimeric G proteins localize to primary cilia and modulate cilia morphology via mechanisms that are not well understood. Here, we show that RIC-8, a cytosolic guanine nucleotide exchange factor (GEF) and chaperone for Gα protein subunits, shapes cilia membrane morphology in a subset of Caenorhabditis elegans sensory neurons. Consistent with its role in ciliogenesis, C. elegans RIC-8 localizes to cilia in different sensory neuron types. Using domain mutagenesis, we demonstrate that while the GEF function alone is not sufficient, both the GEF and Gα-interacting chaperone motifs of RIC-8 are required for its role in cilia morphogenesis. We identify ODR-3 as the RIC-8 Gα client and demonstrate that RIC-8 functions in the same genetic pathway with another component of the non-canonical G protein signaling AGS-3 to shape cilia morphology. Notably, despite defects in AWC cilia morphology, ags-3 null mutants exhibit normal chemotaxis toward benzaldehyde unlike odr-3 mutant animals. Collectively, our findings describe a novel function for the evolutionarily conserved protein RIC-8 and non-canonical RIC-8-AGS-3-ODR-3 signaling in cilia morphogenesis and uncouple Gα ODR-3 functions in ciliogenesis and olfaction.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cilia , Guanine Nucleotide Exchange Factors , Heterotrimeric GTP-Binding Proteins , Morphogenesis , Animals , Humans , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cilia/genetics , Cilia/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Morphogenesis/genetics , Nucleotides/metabolism , Sensory Receptor Cells/metabolism
10.
Int J Mol Sci ; 24(20)2023 Oct 17.
Article En | MEDLINE | ID: mdl-37894940

Single-nucleotide polymorphisms in G protein subunits are linked to an increased risk of cardiovascular events among the general population. We assessed the effects of GNB3 c.825C > T, GNAQ -695/-694GC > TT, and GNAS c.393C > T polymorphisms on the risk of cardiovascular events among 454 patients undergoing renal replacement therapy. The patients were followed up for a median of 4.5 years after the initiation of dialysis. Carriers of the TT/TT genotype of GNAQ required stenting because of coronary artery stenosis (p = 0.0009) and developed cardiovascular events involving more than one organ system (p = 0.03) significantly earlier and more frequently than did the GC/TT or GC/GC genotypes. Multivariate analysis found that the TT/TT genotype of GNAQ was an independent risk factor for coronary artery stenosis requiring stent (hazard ratio, 4.5; p = 0.001), cardiovascular events (hazard ratio, 1.93; p = 0.04) and cardiovascular events affecting multiple organs (hazard ratio, 4.9; p = 0.03). In the subgroup of male patients left ventricular dilatation with abnormally increased LVEDD values occurred significantly more frequently in TT genotypes of GNB3 than in CT/CC genotypes (p = 0.007). Our findings suggest that male dialysis patients carrying the TT genotype of GNB3 are at higher risk of left ventricular dilatation and that dialysis patients carrying the TT/TT genotype of GNAQ are prone to coronary artery stenosis and severe cardiovascular events.


Coronary Stenosis , Heterotrimeric GTP-Binding Proteins , Humans , Male , Genotype , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Polymorphism, Single Nucleotide , Protein Subunits/genetics , Renal Dialysis/adverse effects , Renal Replacement Therapy , Female
11.
J Biol Chem ; 299(11): 105269, 2023 11.
Article En | MEDLINE | ID: mdl-37739036

Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.


Heterotrimeric GTP-Binding Proteins , Protein Prenylation , Humans , Amino Acid Motifs , Drug Resistance/genetics , HeLa Cells , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Models, Molecular , Mutation , Protein Prenylation/drug effects , Protein Structure, Tertiary , Protein Transport/drug effects , Signal Transduction/drug effects
12.
Trends Plant Sci ; 28(12): 1406-1421, 2023 12.
Article En | MEDLINE | ID: mdl-37625950

Heterotrimeric G-protein-mediated signaling is a key mechanism to transduce a multitude of endogenous and environmental signals in diverse organisms. The scope and expectations of plant G-protein research were set by pioneering work in metazoans. Given the similarity of the core constituents, G-protein-signaling mechanisms were presumed to be universally conserved. However, because of the enormous diversity of survival strategies and endless forms among eukaryotes, the signal, its interpretation, and responses vary even among different plant groups. Earlier G-protein research in arabidopsis (Arabidopsis thaliana) has emphasized its divergence from Metazoa. Here, we compare recent evidence from diverse plant lineages with the available arabidopsis G-protein model and discuss the conserved and novel protein components, signaling mechanisms, and response regulation.


Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Signal Transduction , Plants/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Plant Proteins/metabolism
13.
Int J Mol Sci ; 24(13)2023 Jul 03.
Article En | MEDLINE | ID: mdl-37446209

Heterotrimeric G protein-mediated signaling plays a vital role in physiological and developmental processes in eukaryotes. On the other hand, because of the absence of a G protein-coupled receptor and self-activating mechanism of the Gα subunit, plants appear to have different regulatory mechanisms, which remain to be elucidated, compared to canonical G protein signaling established in animals. Here we report that Arabidopsis heterotrimeric G protein subunits, such as Gα (GPA1) and Gß (AGB1), regulate plant growth under stress conditions through the analysis of heterotrimeric G protein mutants. Flg22-mediated growth inhibition in wild-type roots was found to be caused by a defect in the elongation zone, which was partially blocked in agb1-2 but not gpa1-4. These results suggest that AGB1 may negatively regulate plant growth under biotic stress conditions. In addition, GPA1 and AGB1 exhibited genetically opposite effects on FCA-mediated growth inhibition under heat stress conditions. Therefore, these results suggest that plant G protein signaling is probably related to stress-mediated growth regulation for developmental plasticity in response to biotic and abiotic stress conditions.


Arabidopsis Proteins , Arabidopsis , GTP-Binding Protein beta Subunits , Heterotrimeric GTP-Binding Proteins , Arabidopsis Proteins/metabolism , Mutation , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Signal Transduction , Gene Expression Regulation, Plant , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
14.
Trends Plant Sci ; 28(9): 1033-1044, 2023 09.
Article En | MEDLINE | ID: mdl-37156701

Heterotrimeric G proteins - comprising Gα, Gß, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.


Arabidopsis , Heterotrimeric GTP-Binding Proteins , Oryza , Oryza/genetics , Oryza/metabolism , Zea mays/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Signal Transduction , Arabidopsis/genetics , Phenotype
16.
Genetics ; 223(4)2023 04 06.
Article En | MEDLINE | ID: mdl-36763503

G protein-coupled receptors play broad roles in development and stem cell biology, but few roles for G protein-coupled receptor signaling in complex tissue regeneration have been uncovered. Planarian flatworms robustly regenerate all tissues and provide a model with which to explore potential functions for G protein-coupled receptor signaling in somatic regeneration and pluripotent stem cell biology. As a first step toward exploring G protein-coupled receptor function in planarians, we investigated downstream signal transducers that work with G protein-coupled receptors, called heterotrimeric G proteins. Here, we characterized the complete heterotrimeric G protein complement in Schmidtea mediterranea for the first time and found that 7 heterotrimeric G protein subunits promote regeneration. We further characterized 2 subunits critical for regeneration, Gαq1 and Gß1-4a, finding that they promote the late phase of anterior polarity reestablishment, likely through anterior pole-produced Follistatin. Incidentally, we also found that 5 G protein subunits modulate planarian behavior. We further identified a putative serotonin receptor, gcr052, that we propose works with Gαs2 and Gßx2 in planarian locomotion, demonstrating the utility of our strategy for identifying relevant G protein-coupled receptors. Our work provides foundational insight into roles of heterotrimeric G proteins in planarian biology and serves as a useful springboard toward broadening our understanding of G protein-coupled receptor signaling in adult tissue regeneration.


Heterotrimeric GTP-Binding Proteins , Planarians , Animals , Planarians/genetics , Stem Cells , Heterotrimeric GTP-Binding Proteins/genetics , Receptors, G-Protein-Coupled
17.
J Biol Chem ; 299(2): 102880, 2023 02.
Article En | MEDLINE | ID: mdl-36626984

Heterotrimeric G protein stimulation via G protein-coupled receptors promotes downstream proliferative signaling. Mutations can occur in Gα proteins which prevent GTP hydrolysis; this allows the G proteins to signal independently of G protein-coupled receptors and can result in various cancers, such as uveal melanoma (UM). Most UM cases harbor Q209L, Q209P, or R183C mutations in Gαq/11 proteins, rendering the proteins constitutively active (CA). Although it is generally thought that active, GTP-bound Gα subunits are dissociated from and signal independently of Gßγ, accumulating evidence indicates that some CA Gα mutants, such as Gαq/11, retain binding to Gßγ, and this interaction is necessary for signaling. Here, we demonstrate that disrupting the interaction between Gßγ and Gαq is sufficient to inhibit aberrant signaling driven by CA Gαq. Introduction of the I25A point mutation in the N-terminal α helical domain of CA Gαq to inhibit Gßγ binding, overexpression of the G protein Gαo to sequester Gßγ, and siRNA depletion of Gß subunits inhibited or abolished CA Gαq signaling to the MAPK and YAP pathways. Moreover, in HEK 293 cells and in UM cell lines, we show that Gαq-Q209P and Gαq-R183C are more sensitive to the loss of Gßγ interaction than Gαq-Q209L. Our study challenges the idea that CA Gαq/11 signals independently of Gßγ and demonstrates differential sensitivity between the Gαq-Q209L, Gαq-Q209P, and Gαq-R183C mutants.


Heterotrimeric GTP-Binding Proteins , Signal Transduction , Humans , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Mutation , Signal Transduction/genetics
19.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Article En | MEDLINE | ID: mdl-36250681

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Arabidopsis Proteins , Arabidopsis , Heterotrimeric GTP-Binding Proteins , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Immunity , Gene Expression Regulation, Plant
20.
PLoS Pathog ; 18(12): e1010781, 2022 12.
Article En | MEDLINE | ID: mdl-36516199

PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.


Heterotrimeric GTP-Binding Proteins , Pasteurella multocida , Animals , Swine , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Carrier Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Pasteurella multocida/genetics , Pasteurella multocida/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
...