Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 351
Filter
1.
J Vet Med Sci ; 86(9): 986-991, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39069477

ABSTRACT

Fesaviruses, picorna-like RNA viruses, were discovered in 2014 in feces from cats in an animal shelter in the United States but have not since been reported elsewhere. In this study, we collected cat fecal samples from 20 adult cats from an animal shelter in Tokyo, Japan, and examined them for viral pathogens. Next generation sequencing (NGS) was performed to detect both RNA and DNA virus sequences. Sequences of a total of 7 RNA viruses including some common feline pathogenic viruses were detected across 8 samples, while no DNA virus sequences were identified in any sample. Of the RNA virus sequences detected in the samples, two sequences, 4,746 and 4,439 bp, demonstrated 90.3% and 85.0% similarity, respectively, to the fesavirus 4 sequence in the database. To confirm the NGS results, quantitative RT-PCR (qRT-PCR) assays were developed using specific primers and probes designed based on the contig sequences. Based on the qRT-PCR assays, we detected relatively high copy-numbers of fesavirus 4 RNA in the two fecal samples from which the fesavirus 4 sequences were originally obtained, and low copy numbers in other samples. These results demonstrate the presence of fesavirus 4 in cats in Japan for the first time.


Subject(s)
Cat Diseases , Feces , Animals , Cats , Japan/epidemiology , Feces/virology , Cat Diseases/virology , Cat Diseases/diagnosis , Picornaviridae/isolation & purification , Picornaviridae/genetics , Picornaviridae/classification , Picornaviridae Infections/veterinary , Picornaviridae Infections/virology , Picornaviridae Infections/diagnosis , Picornaviridae Infections/epidemiology , High-Throughput Nucleotide Sequencing/veterinary , RNA, Viral/genetics , Male , Female
2.
J Vet Med Sci ; 86(8): 828-832, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38897953

ABSTRACT

Strangles is a globally widespread, commonly diagnosed and important infectious disease of equids caused by Streptococcus equi subsp. equi. We performed whole genome sequencing of 19 S. equi isolates collected from imported horses at the Japanese border. Of these isolates, 15 isolates were obtained from clinical cases and 4 were from subclinical cases. The 19 isolates were grouped into 3 Bayesian analysis of population structure (BAPS) groups by the core genome single nucleotide polymorphism analysis corresponding to exporting country, SeM typing, or exporter of the horses. The 19 isolates possessed same pathogenic genes regardless of clinical status in imported horses and no antimicrobial resistance genes. The disease status of the horses may rather reflect the prior exposure of animals with sub-clinical infection to S. equi.


Subject(s)
Horse Diseases , Streptococcal Infections , Horses , Animals , Horse Diseases/microbiology , Japan , Streptococcal Infections/veterinary , Streptococcal Infections/microbiology , High-Throughput Nucleotide Sequencing/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus equi/genetics , Streptococcus equi/isolation & purification , Genome, Bacterial
3.
Vet Med Sci ; 10(4): e1499, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38879881

ABSTRACT

BACKGROUND: This study presents the case of non-purulent encephalomyelitis associated with astrovirus infection in a sheep from Eastern Anatolia, Türkiye. METHODS: A necropsy was performed on a sheep showing nervous signs. Afterwards, brain tissue samples were taken and examined with histopathological, immunohistochemical and molecular techniques. RESULTS: Neuropathologic changes included neuronal degeneration, diffuse gliosis, multifocal perivascular cuffing, neuronophagy and neuronal necrosis in the cerebrum, the cerebellum and the cervical spinal cord. Aerobic and anaerobic bacterial culture, selective culture for Listeria monocytogenes, and PCR analysis for rabies virus, tick-borne encephalitis virus, Türkiye encephalitis virus, small ruminant lentiviruses and border disease virus were negative. However, the presence of astrovirus RNA in cerebral, cerebellar and spinal cord samples was demonstrated by a pan-astrovirus RT-PCR. Immunohistochemical examinations revealed astrovirus antigens within the neuronal cytoplasm. High-throughput sequencing techniques identified the causative agent as a member of the genotype species Mamastrovirus 13 but representing a distinct genetic lineage with similarity to ovine astrovirus 1 in the open-reading frames (ORF)1ab region and muskox astrovirus in the ORF2 region. CONCLUSION: This report provides evidence that astroviruses are potentially encephalitis-causing pathogens in ovine populations in Türkiye, featuring an astrovirus strain distinct from those previously identified in sheep.


Subject(s)
Astroviridae Infections , High-Throughput Nucleotide Sequencing , Sheep Diseases , Animals , Sheep , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Sheep Diseases/virology , Sheep Diseases/pathology , High-Throughput Nucleotide Sequencing/veterinary , Encephalomyelitis/veterinary , Encephalomyelitis/virology , Sheep, Domestic , Astroviridae/isolation & purification , Astroviridae/genetics , Mamastrovirus/isolation & purification , Mamastrovirus/genetics , Phylogeny
4.
Vet Microbiol ; 295: 110136, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38875877

ABSTRACT

This study aimed to analyze the species and abundance of viruses carried by avian species in live poultry markets. In 2022, we collected 196 bird samples from two representative live poultry markets in Guangdong, China, of which 147 were randomly selected for metatranscriptome sequencing to construct a metatranscriptome library. This analysis yielded 17 viral families. Statistical analysis of the virus abundance of the six libraries showed that Picornaviridae, Retroviridae, Coronaviridae, and Othomyxoviridae were more abundant in the J1, J2, and J3 libraries, and Coronaviridae, Retroviridae, and Faviviridae were more abundant in the Y1, Y2, and E1 libraries. Finally, samples were screened using nested PCR and three viruses were identified. The positive results combined with high-throughput sequencing abundance data showed a positive correlation between virus abundance and the number of positive samples. This study provides scientific data to support the diagnosis and prevention of avian viral diseases.


Subject(s)
High-Throughput Nucleotide Sequencing , Poultry Diseases , Poultry , Viruses , Animals , High-Throughput Nucleotide Sequencing/veterinary , China/epidemiology , Poultry/virology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Viruses/genetics , Viruses/isolation & purification , Viruses/classification , Chickens/virology
5.
Avian Pathol ; 53(5): 430-438, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38742448

ABSTRACT

The infectious bursal disease virus (IBDV) is a significant pathogen affecting the poultry industry worldwide. Its epidemiological history has been marked by the emergence of strains with different antigenic, pathogenic, and genetic features, some of which have shown notable spread potential. The A2dB1b genotype, also known as novel variant, has become widespread and gained increased relevance in IBDV epidemiology. This genotype was described in China in the 2010s and rapidly spread in Asia and Africa. The present study describes the circulation of the A2dB1b genotype in Argentina. Applying a next-generation sequencing approach, we obtained the complete coding sequence of 18 Argentine viruses. The high level of genomic homogeneity observed amongst these viruses, their monophyletic clustering in both partial and complete segments A and B derived phylogenies, and their close relatedness to some Chinese strains suggest that a unique transcontinental spread event from China to Argentina occurred recently. The apparent success of the A2dB1b genotype spreading throughout Asia, Africa, and South America may partially be due to specific amino acid characteristics. Novel residues in the hypervariable region of VP2 may help A2dB1b IBDVs evade the protection elicited by the applied commercial vaccines. Our findings underscore the importance of continuous characterization of field samples and evaluation of the control measures currently applied to fight against this specific IBDV genotype.


Subject(s)
Birnaviridae Infections , Chickens , Genome, Viral , Genotype , Infectious bursal disease virus , Phylogeny , Poultry Diseases , Infectious bursal disease virus/genetics , Animals , Argentina/epidemiology , Birnaviridae Infections/veterinary , Birnaviridae Infections/virology , Birnaviridae Infections/epidemiology , Poultry Diseases/virology , Poultry Diseases/epidemiology , Chickens/virology , China/epidemiology , High-Throughput Nucleotide Sequencing/veterinary , Genomics , East Asian People
6.
Trop Anim Health Prod ; 56(4): 150, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691202

ABSTRACT

Understanding how evolutionary factors related to climate adaptation and human selection have influenced the genetic architecture of domesticated animals is of great interest in biology. In the current study, by using 304 whole genomes from different geographical regions (including Europe, north Africa, Southwest Asia, east Asia, west Africa, south Asia, east Africa, Australia and Turkey), We evaluate global sheep population dynamics in terms of genetic variation and population structure. We further conducted comparative population analysis to study the genetic underpinnings of climate adaption to local environments and also morphological traits. In order to identify genomic signals under selection, we applied fixation index (FST) and also nucleotide diversity (θπ) statistical measurements. Our results revealed several candidate genes on different chromosomes under selection for local climate adaptation (e.g. HOXC12, HOXC13, IRF1, FGD2 and GNAQ), body size (PDGFA, HMGA2, PDE3A) and also morphological related traits (RXFP2). The discovered candidate genes may offer newel insights into genetic underpinning of regional adaptation and commercially significant features in local sheep.


Subject(s)
Sheep, Domestic , Animals , Sheep, Domestic/genetics , Sheep, Domestic/physiology , Genetic Variation , High-Throughput Nucleotide Sequencing/veterinary , Adaptation, Physiological/genetics , Sequence Analysis, DNA , Selection, Genetic , Sheep/genetics
7.
Avian Pathol ; 53(5): 408-418, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38662518

ABSTRACT

Runting and stunting syndrome (RSS) is an enteric viral disease in commercial poultry that directly affects gut health; however, its influence on gut microbiota remains unknown. This study aimed to investigate the compositional changes in the bacterial community of the ileum of 7-day-old broiler chicks naturally affected or not affected by RSS, using next-generation sequencing (NGS) technology. Twenty-one samples were obtained from the ileal contents and mucosa of 11 chicks with RSS and 10 healthy chicks, raised in a dark house system located on a farm in the state of Minas Gerais, Brazil. The results revealed overall changes in the gut microbiota of the chicks with RSS, including a decrease in microbial richness and diversity. In particular, there was a decrease in Lactobacillus and an increase in Candidatus Arthromitus and Clostridium sensu stricto 1. These results indicate a relationship between viral infection and the gut microbial composition, which can cause gut dysbiosis and may influence inflammation in this organ.RESEARCH HIGHLIGHTS RSS causes dysbiosis of the gut microbiota of the ilea of chicks.A difference was found in gut microbiota between chicks with or without RSS.Candidatus Arthromitus was predominant in chicks with RSS.Clostridium sensu stricto 1 was strictly associated with chicks with RSS.


Subject(s)
Chickens , Gastrointestinal Microbiome , Metagenomics , Poultry Diseases , Animals , Chickens/microbiology , Chickens/virology , Poultry Diseases/microbiology , Poultry Diseases/virology , Brazil/epidemiology , Dysbiosis/veterinary , Dysbiosis/microbiology , Ileum/microbiology , High-Throughput Nucleotide Sequencing/veterinary , Growth Disorders/veterinary , Growth Disorders/microbiology , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
8.
J Vet Cardiol ; 52: 78-89, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508121

ABSTRACT

INTRODUCTION: The employment of advanced molecular biology technologies has expanded the diagnostic investigation of cardiomyopathies in dogs; these technologies have predominantly been performed on postmortem samples, although the recent use of endomyocardial biopsy in living dogs has enabled a better premortem diagnostic approach to study the myocardial injury. ANIMALS, MATERIALS, AND METHODS: Endomyocardial biopsies were collected in nine dogs with a dilated cardiomyopathy phenotype (DCM-p) and congestive heart failure and submitted to histologic examination, next-generation sequencing (NGS), and polymerase chain reaction analysis. Data from three healthy dogs (Fastq files) were retrieved from a previously approved study and used as a control group for ribonucleic acid sequencing. RESULTS: Histologic examination revealed endocardial fibrosis in six of nine dogs, whereas lymphocytic interstitial infiltrates were detected in two of nine dogs, and lymphoplasmacytic and macrophage infiltrates were detected in one of nine dogs. On polymerase chain reaction analysis, two dogs tested positive for canine parvovirus two and one dog for canine distemper virus. Gene-expression pathways involved in cellular energy metabolism (especially carbohydrates-insulin) and cardiac structural proteins were different in all DCM-p dogs compared to those in the control group. When dogs with lymphocytic interstitial infiltrates were compared to those in the control group, NGS analysis revealed the predominant role of genes related to inflammation and pathogen infection. CONCLUSIONS: Next-generation sequencing technology performed on in vivo endomyocardial biopsies has identified different molecular and genetic factors that could play a role in the development and/or progression of DCM-p in dogs.


Subject(s)
Cardiomyopathy, Dilated , Dog Diseases , Gene Expression Profiling , Myocardium , Dogs , Animals , Cardiomyopathy, Dilated/veterinary , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Dog Diseases/genetics , Dog Diseases/pathology , Dog Diseases/diagnosis , Biopsy/veterinary , Male , Female , Myocardium/pathology , Myocardium/metabolism , Gene Expression Profiling/veterinary , Phenotype , High-Throughput Nucleotide Sequencing/veterinary
9.
Vet Parasitol ; 327: 110142, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308933

ABSTRACT

Infections with liver and rumen flukes are among the most frequent parasitic diseases in cattle worldwide. In Europe, the predominant liver fluke species is Fasciola hepatica, and the recently rapidly spreading rumen flukes are mostly Calicophoron daubneyi and occasionally Paramphistomum leydeni. In this study, 1638 faecal samples from individual dairy cows from 24 northern and 18 southern German farms as well as one central German farm, all preselected for potential F. hepatica infection, were examined to determine in-herd prevalences of liver and rumen fluke infections. Furthermore, individual faecal egg counts (FECs) were determined in the northern and central German cows. On farms with patent F. hepatica infections, the mean in-herd prevalence was 15.8% in northern Germany, 41.6% in southern Germany and 14.0% in the central German farm. Rumen fluke infections resulted in high in-herd prevalences in all regions with a mean prevalence of 46.0% in northern, 48.4% in southern and 40.0% in central Germany. Individual FECs varied between 0.1 and 4.1 (mean 0.4) eggs per gram faeces (EPG) for F. hepatica and between 0.1 and 292.4 (mean 16.9) EPG for rumen flukes. Mean in-herd prevalence and mean FECs did not differ significantly between mono- and coinfected farms for either fluke species. Comparison of the classical sedimentation technique and the Flukefinder® method on a subset of 500 faecal samples revealed a similar number of positive samples, however, Flukefinder® mean FECs were three to four times higher for liver and rumen fluke eggs, respectively, with an increasing gap between EPG levels with rising egg counts. Fluke egg size measurement confirmed P. leydeni eggs on average to be larger in length and width (161.0 µm x 87.1 µm) than those of C. daubneyi (141.8 µm x 72.9 µm). However, due to overlap of measurements, morphological species identification based on egg size proved unreliable. For accurate identification, a real-time pyrosequencing approach was established, offering the advantage over classical Sanger sequencing of unambiguously identifying rumen fluke mixed species infections. Real-time pyrosequencing confirmed C. daubneyi (78.1% [50/64]) as the predominant rumen fluke species in Germany, while P. leydeni was detected in 12.5% (8/64) of sampled cows. A total of 9.4% (6/64) cows were infected with both C. daubneyi and P. leydeni, representing the first finding of a mixed infection in domestic ruminants in Europe to date.


Subject(s)
Cattle Diseases , Coinfection , Fasciola hepatica , Fascioliasis , Paramphistomatidae , Sheep Diseases , Trematoda , Trematode Infections , Sheep , Female , Cattle , Animals , Fasciola hepatica/genetics , Paramphistomatidae/genetics , Prevalence , Rumen/parasitology , Sheep Diseases/parasitology , Ovum , Trematode Infections/epidemiology , Trematode Infections/veterinary , Trematode Infections/parasitology , Ruminants , Feces/parasitology , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Coinfection/veterinary , High-Throughput Nucleotide Sequencing/veterinary , Fascioliasis/epidemiology , Fascioliasis/veterinary , Fascioliasis/parasitology
10.
Vet Immunol Immunopathol ; 268: 110702, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38183837

ABSTRACT

Profiling the T cell receptor (TCR) repertoire using next-generation sequencing has become common in both human and translational research. Companion dogs with spontaneous tumors, including canine melanoma, share several features, e.g., natural occurrence, shared environmental exposures, natural outbred population, and immunocompetence. T cells play an important role in the adaptive immune system by recognizing specific antigens via a surface TCR. As such, understanding the canine T cell response to vaccines, cancer, immunotherapies, and infectious diseases is critically important for both dog and human health. Off-the-shelf commercial reagents, kits and services are readily available for human, non-human primate, and mouse in this context. However, these resources are limited for the canine. In this study, we present a cost-effective protocol for analysis of canine TCR beta chain genes. Workflow can be accomplished in 1-2 days starting with total RNA and resulting in libraries ready for sequencing on Illumina platforms.


Subject(s)
Receptors, Antigen, T-Cell, alpha-beta , T-Lymphocytes , Dogs , Animals , Mice , Receptors, Antigen, T-Cell, alpha-beta/genetics , High-Throughput Nucleotide Sequencing/veterinary
11.
J Vet Diagn Invest ; 36(1): 120-123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38018659

ABSTRACT

Infectious bovine keratoconjunctivitis (IBK) is associated with 2 species of Moraxella: M. bovis and M. bovoculi. A third novel Moraxella spp., designated tentatively as M. oculi, has been identified from the eyes of cattle with and without pinkeye. These 3 Moraxella spp. can be found in various combinations within the same clinical sample, making speciation of this genus directly from a sample impossible with Sanger sequencing. Assessing Moraxella diversity found in IBK- and non-IBK-affected cattle eyes, independent of culture, may provide additional information about IBK by avoiding the selectivity bias of culturing. We developed a targeted NGS panel to detect and speciate these 3 Moraxella spp. directly from bovine ocular swabs. Our targeted panel amplifies bacterial essential genes and the 16S-23S ribosomal RNA intergenic spacer region (ITS) of the 3 Moraxella spp. and speciates based on these sequences. Our panel was able to differentiate the 3 species directly from DNA extracted from 13 swabs (6 from healthy animals, 7 from animals with IBK), and every swab except one (clinically healthy eye) had the 3 Moraxella spp. Targeted NGS with sequencing of Moraxella spp. housekeeping genes appears to be a suitable method for speciation of Moraxella directly from ocular swabs.


Subject(s)
Cattle Diseases , Keratoconjunctivitis, Infectious , Moraxellaceae Infections , Mycoplasma Infections , Cattle , Animals , Moraxella/genetics , Keratoconjunctivitis, Infectious/diagnosis , Keratoconjunctivitis, Infectious/microbiology , Mycoplasma Infections/veterinary , Moraxellaceae Infections/diagnosis , Moraxellaceae Infections/veterinary , Moraxellaceae Infections/microbiology , Cattle Diseases/diagnosis , Cattle Diseases/microbiology , High-Throughput Nucleotide Sequencing/veterinary
12.
Res Vet Sci ; 167: 105117, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160490

ABSTRACT

Manufacturers may intentionally or unintentionally incorporate ingredients not specified on the label of canned pet foods. Including any unacknowledged ingredients in a food product is considered food fraud or misbranding. Contamination of pet foods may occur in the processing of the foods, including potential cross-contamination in packaging facilities. Of the methods available to identify meat species in food products, Sanger sequencing and several next-generation sequencing methods are available, but there are limitations including the number of targets analyzed at a time and the method specificity. In this study, we developed a targeted next-generation sequencing panel to detect meat species in canned pet foods using Ion Torrent technology. The panel contains multiple primers targeting mitochondrial genes from as many as 27 animal species, of which 7 major animal species were validated. The meat species targets could be identified from samples spiked with as low as 0.01% w/w of the contaminating meat species in a vegetarian food matrix material. Targeted NGS in the current study enriches species-specific multiple target areas in the mitochondrial genome of the target material, which gives high accuracy in the sequencing results.


Subject(s)
High-Throughput Nucleotide Sequencing , Meat , Animals , Meat/analysis , High-Throughput Nucleotide Sequencing/veterinary , High-Throughput Nucleotide Sequencing/methods , DNA Primers
13.
Vet Res ; 54(1): 95, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37853447

ABSTRACT

When resequencing animal genomes, some short reads cannot be mapped to the reference genome and are usually discarded. In this study, unmapped reads from 302 German Black Pied cattle were analyzed to identify potential pathogenic DNA. These unmapped reads were assembled and blasted against NCBI's database to identify bacterial and viral sequences. The results provided evidence for the presence of pathogens. We found sequences of Bovine parvovirus 3 and Mycoplasma species. These findings emphasize the information content of unmapped reads for gaining insight into bacterial and viral infections, which is important for veterinarians and epidemiologists.


Subject(s)
Cattle Diseases , Virus Diseases , Cattle , Animals , Sequence Analysis, DNA/veterinary , Whole Genome Sequencing/veterinary , Virus Diseases/veterinary , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/veterinary
14.
Am J Vet Res ; 84(10): 1-6, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37536687

ABSTRACT

OBJECTIVE: To report the density, and the major constituents, of the bacteria on the skin surface of healthy dogs and to assess if scraping the skin before sampling was necessary. ANIMALS: 20 healthy dogs were recruited for the study, with informed consent in all cases. METHODS: Flocked swabs were used to sample the skin surface and to sample the skin surface after superficial scraping with a blunted spatula. Both samples were taken within a brass guide of 3.5 cm-2 area. Next-generation 16S rRNA sequencing was used to identify and quantify components of the bacterial microbiome. RESULTS: The median density of the bacterial microbiome on the ventral abdomen of 20 healthy dogs was approximately 1.1 X 105 cm-2 (IQR 1.22 X 104, 1.6 X 105 cm-2). Sphingomonas species were isolated on 17 of the 20 dogs and Corynebacterium kroppstedtii from 15. CLINICAL RELEVANCE: This is the first study to report the density of the canine skin microbiome. Superficial scraping of the skin before swabbing does not affect the result of sampling the microbiome in healthy dogs. These results will increase our understanding of the biology of canine skin.


Subject(s)
Microbiota , Skin , Dogs , Animals , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Bacteria , Microbiota/genetics , High-Throughput Nucleotide Sequencing/veterinary
15.
Poult Sci ; 102(10): 102974, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573845

ABSTRACT

Pigeon paramyxovirus-1 (PPMV-1), a genetic variant of avian paramyxovirus-1 (APMV-1), has been identified in Columbiformes and is the primary cause of diseases in captive and free-ranging pigeons. However, it has also been reported that PPMV-1 can infect chickens naturally and experimentally, thus posing a potential threat to the poultry industry. This study investigated a lethal outbreak of paramyxovirus infection that occurred among 16 oriental turtle doves (Streptopelia orientalis) in a walk-in aviary at a zoo from March to April 2021. Necropsies were performed, and histopathological findings revealed mild to moderate lymphoplasmacytic infiltration in several organs, such as the pancreas, liver, kidneys, and lungs. Reverse transcription polymerase chain reaction (RT-PCR) using formalin-fixed paraffin-embedded tissue blocks, virus isolation from fresh tissue, and in situ hybridization against the fusion (F) protein confirmed the diagnosis for PPMV-1 infection. The isolated strain NTU/C239/21 was fully sequenced by next-generation sequencing, and the results of phylogenetic analyses revealed that the F protein of NTU/C239/21 shared 98.8% nucleotide sequence identity with Pigeon/Taiwan/AHRI121/2017, which was isolated from a feral pigeon in Taiwan. The present study is the first to identify PPMV-1 infection in Streptopelia orientalis and suggests that Streptopelia orientalis may also play an important role in spreading the infection, similar to pigeons in APMV-1 spreading.


Subject(s)
Columbidae , Newcastle Disease , Animals , Columbidae/genetics , Newcastle Disease/epidemiology , Phylogeny , Chickens/genetics , Newcastle disease virus , High-Throughput Nucleotide Sequencing/veterinary , Genotype , In Situ Hybridization/veterinary
16.
Am J Vet Res ; 84(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37290754

ABSTRACT

OBJECTIVE: While the clinical utility of next-generation DNA sequencing (NGS) as a diagnostic tool for infections in humans and traditional pets has been demonstrated, there is a lack of data regarding its utility for exotic animals. For exotic patients, traditional culturing is especially challenging for anaerobic and fungal pathogens. Therefore, diagnosis often relies on PCR, which provides a high degree of sensitivity and specificity, although it targets only a predetermined, finite pathogen panel. NGS provides the same benefits as PCR, while also offering de novo identification and quantification of all bacteria and fungi present in a clinical sample, including novel pathogen discovery. PROCEDURES: Clinical samples from 78 exotic animal patients were collected simultaneously for conventional culture testing and NGS analysis. Results provided by each laboratory were compared for the presence and absence of bacterial and fungal pathogens and commensals. RESULTS: Results showed large bacterial and fungal species diversity in the study cohort and a lack of sensitivity of microbial culture testing. Culture failed to grow 15% of putative bacterial and 81% of putative fungal pathogens that were identified by NGS. The probability of a "no growth" diagnosis was 14% higher for bacteria and 49% higher for fungi with culture versus NGS testing if fungal culture was conducted. CLINICAL RELEVANCE: Culture testing failed to diagnose a substantial number of both bacterial and fungal pathogens, which were detected by NGS. This highlights the limitations of traditional culture-based testing and displays the clinically advanced utility of NGS-based diagnostics in exotic animal medicine.


Subject(s)
Bacteria , DNA , Humans , Animals , Bacteria/genetics , DNA, Bacterial/genetics , High-Throughput Nucleotide Sequencing/veterinary , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/veterinary
17.
Rev Sci Tech ; 42: 103-110, 2023 May.
Article in English | MEDLINE | ID: mdl-37232313

ABSTRACT

Advances in technology and decreasing costs have accelerated the use of high-throughput sequencing (HTS) for both diagnosis and characterisation of infectious animal diseases. High-throughput sequencing offers several advantages over previous techniques, including rapid turnaround times and the ability to resolve single nucleotide changes among samples, both of which are important for epidemiological investigations of outbreaks. However, due to the plethora of genetic data being routinely generated, the storage and analysis of these data are proving challenging in their own right. In this article, the authors provide insight into the aspects of data management and analysis that should be considered before adopting HTS for routine animal health diagnostics. These elements fall largely into three interrelated categories: data storage, data analysis and quality assurance. Each has numerous complexities and may need to be adapted as HTS evolves. Making appropriate strategic decisions about bioinformatic sequence analysis early on in project development will help to avert major issues in the long term.


Les avancées technologiques dans le domaine du séquençage à haut débit (SHD) et la diminution des coûts liés à cette technique en ont accéléré l'utilisation à des fins de diagnostic et de caractérisation des maladies animales infectieuses. Le séquençage à haut débit offre plusieurs avantages par rapport aux techniques antérieures, en particulier la rapidité de son exécution et une résolution de l'ordre d'un seul changement de nucléotide parmi plusieurs échantillons, ce qui présente un grand intérêt lors des enquêtes épidémiologiques sur les foyers. Néanmoins, la pléthore de données génétiques générées en routine par le SHD devient un véritable problème en termes de stockage et d'analyse de ces données. Les auteurs apportent un éclairage sur les aspects de la gestion et de l'analyse des données qu'il convient de prendre en compte avant d'adopter le SHD pour le diagnostic de routine en santé animale. Ces éléments relèvent de trois catégories étroitement reliées : le stockage de données, l'analyse de données et l'assurance qualité. Chacun de ces aspects présente de nombreuses complexités et nécessitera sans doute d'être adapté à mesure que le SHD évolue. Lorsqu'elles sont prises dès la phase initiale d'un projet, des décisions stratégiques appropriées en matière d'analyse bio-informatique de séquences peuvent contribuer à éviter des problèmes majeurs sur le long terme.


Los avances tecnológicos y la reducción de los costos han acelerado el uso de la secuenciación de alto rendimiento (SAR) con fines de diagnóstico y caracterización de enfermedades animales infecciosas. La secuenciación de alto rendimiento presenta varias ventajas en comparación con otras técnicas anteriores, en particular ciclos más rápidos y una resolución que permite detectar diferencias de un solo nucleótido entre las muestras, aspectos ambos de gran importancia para el estudio epidemiológico de brotes infecciosos. Sin embargo, debido al sinnúmero de datos genéticos que constantemente se generan, no es de extrañar que esté resultando problemático almacenar y analizar los datos obtenidos. Los autores arrojan luz sobre los aspectos de la gestión y el análisis de datos que conviene tener en cuenta antes de aplicar la SAR a las labores sistemáticas de diagnóstico en sanidad animal. Estos elementos corresponden a grandes líneas a tres categorías relacionadas entre sí: el almacenamiento de datos; el análisis de datos; y la garantía de calidad. Cada una de ellas presenta multitud de complicaciones y exige un proceso permanente de adaptación a medida que la técnica de secuenciación va evolucionando. El hecho de adoptar las buenas decisiones estratégicas sobre el análisis bioinformático de secuencias en los primeros momentos de la concepción de un proyecto ayudará a evitar importantes problemas a largo plazo.


Subject(s)
Animal Diseases , Communicable Diseases , Animals , Computational Biology/methods , Communicable Diseases/veterinary , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/veterinary
18.
J Vet Med Sci ; 85(6): 642-646, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37183016

ABSTRACT

The novel domestic cat hepadnavirus (DCH), a member of the Hepadnaviridae, was first detected in Australia and has recently been identified in more countries. In this study, we explored the DCH genome using next-generation sequencing of a plasma sample from a cat with a fever of unknown cause. Nucleotide sequence analysis showed the virus to be relatively genetically distant from the first reported DCH in Australia, showing 89% homology. Then we conducted an epidemiological survey by PCR of plasma samples collected from 203 cats that visited a veterinary hospital for diagnosis and treatment. Two of the 203 surveyed cats a were positive for DCH. One of the two positive cases had elevated liver enzymes of unknown etiology, and the other had hepatocellular adenoma. Our study indicated that DCH infection was observed in domestic cats in the Tokyo area of Japan as well as other reported areas in the world. Further investigations are needed to define the clinical importance of DCH.


Subject(s)
Cat Diseases , Hepadnaviridae , Animals , Cats , Japan/epidemiology , Hepadnaviridae/genetics , Tokyo , High-Throughput Nucleotide Sequencing/veterinary , Cat Diseases/diagnosis , Cat Diseases/epidemiology
19.
Vector Borne Zoonotic Dis ; 23(6): 341-349, 2023 06.
Article in English | MEDLINE | ID: mdl-37184895

ABSTRACT

Background: A massive outbreak of dengue-like illness was reported from Pune district of Maharashtra, India during May-June 2022. Isolation and characterization of the etiological agent at genomic level for possible mutations that led to higher transmissibility is the topic of the study. Methods: Entomological investigations were carried out by ICMR-National Institute of Virology (Pune, India); Aedes aegypti mosquitoes were collected and processed for virus detection by molecular techniques. Positive mosquito pools were processed for virus isolation in cell culture. Sanger sequencing and whole-genome sequencing (WGS) using Oxford Nanopore Technology platform were used for genomic characterization. Results: Reverse transcriptase RT-PCR and qRT-PCR analysis detected chikungunya virus (CHIKV) in mosquito samples. Six CHIKV isolates were obtained. WGS revealed four nonsynonymous mutations in the structural polyprotein region, and five in the nonstructural polyprotein encoding region when compared with Yawat-2000 and Shivane-2016 strains. Sixty-four nucleotide changes in the nonstructural polyprotein region and 35 in the structural polyprotein region were detected. One isolate had an exclusive amino acid change, T1123I, in the nsP2 (protease) region. Conclusion: Abundant Ae. aegypti breeding and detection of CHIKV RNA in mosquitoes confirmed it as a chikungunya outbreak. Novel mutations detected in the epidemic strain warrants investigations to address their role in disease severity, transmission, and fitness.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Animals , Chikungunya virus/genetics , India/epidemiology , Chikungunya Fever/epidemiology , Chikungunya Fever/veterinary , Genomics , Disease Outbreaks , High-Throughput Nucleotide Sequencing/veterinary , Polyproteins/genetics , Mosquito Vectors
20.
Vet Microbiol ; 282: 109752, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37104939

ABSTRACT

Infectious bovine keratoconjunctivitis (IBK), commonly known as pinkeye, has a marked negative impact on the economy of the cattle industry. Moraxella species, including Mor. bovis and Mor. bovoculi, which have been associated with this disease, colonize clinically healthy eyes as well, suggesting that there are intrinsic changes that may occur to the ocular microbiota or the involvement of additional unrecognized organisms that contribute to IBK. To evaluate this, 104 ocular swabs collected from eyes with IBK or clinically healthy eyes from 16 different cattle herds were subjected to 16 S rRNA gene PCR and next generation sequencing (NGS) analysis. Organisms detected were similar across the herds and there was no difference in the total number of bacterial groups detected among IBK cases and controls. However, the percentages of the different organisms detected varied between the two groups, including Moraxella spp., with more Moraxella spp. in eyes with IBK than controls. Further, using culture and whole genome NGS, a new species of Moraxella (suggested name Mor. oculobovii) was detected from the eyes of cattle from two farms. This strain is non-hemolytic on blood agar, is missing the RTX operon, and is likely a non-pathogenic strain of the bovine ocular microbiome. Alteration of the ocular microbiota composition may have a predisposing role, enhancing bacterial infection and the occurrence of clinical IBK. Future studies are required to evaluate if these changes are permanent or if there is a shift in the microbiome following recovery from the infection and how antibiotics might affect the microbiome.


Subject(s)
Cattle Diseases , Conjunctivitis, Bacterial , Keratoconjunctivitis, Infectious , Keratoconjunctivitis , Moraxellaceae Infections , Mycoplasma Infections , Animals , Cattle , High-Throughput Nucleotide Sequencing/veterinary , Keratoconjunctivitis, Infectious/epidemiology , Keratoconjunctivitis, Infectious/microbiology , Keratoconjunctivitis/epidemiology , Keratoconjunctivitis/veterinary , Keratoconjunctivitis/microbiology , Conjunctivitis, Bacterial/microbiology , Conjunctivitis, Bacterial/veterinary , Moraxella/genetics , Mycoplasma Infections/veterinary , Moraxellaceae Infections/epidemiology , Moraxellaceae Infections/veterinary , Moraxellaceae Infections/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL