Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.423
Filter
1.
Arch Virol ; 169(8): 171, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090322

ABSTRACT

In this study, we compared the effects of different bovine leukemia virus (BLV) strains and bovine lymphocyte antigen (BoLA)-DRB3 alleles in cattle with enzootic bovine leukosis (EBL) aged either <3 years or ≥3 years. The frequency of infection with BLV belonging to group A or B-1 in cattle aged <3 years with EBL was significantly higher than that in cattle aged ≥3 years, regardless of which BoLA-DRB3 allele was present. This suggests that infection with group A or B-1 BLV contributes more strongly to the development of EBL in young cattle than the presence of early-EBL-onset susceptibility BoLA-DRB3 alleles.


Subject(s)
Alleles , Enzootic Bovine Leukosis , Genetic Predisposition to Disease , Leukemia Virus, Bovine , Animals , Leukemia Virus, Bovine/genetics , Leukemia Virus, Bovine/immunology , Enzootic Bovine Leukosis/virology , Cattle , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology
2.
HLA ; 104(1): e15599, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39041289

ABSTRACT

Xenotransplantation is a potential option for individuals for whom an acceptable human allograft is unavailable. Individuals with broadly reactive HLA antibodies due to prior exposure to foreign HLA are potential candidates for a clinical xenotransplant trial. It remains controversial if allosensitisation results in the development of cross-reactive antibodies against SLA. This may require increased histocompatibility scrutiny for highly sensitised individuals prior to enrollment in a clinical trial. Serum samples were obtained from non-human primates sensitised via serial skin transplantation from maximally MHC-mismatched donor, as reported. Sera from pre- and post-allosensitisation timepoints were assessed in a flow crossmatch (FXM) for IgM and IgG binding to pig splenocytes with or without red blood cell adsorption. Xenoreactive antibodies were eluted from pig splenocytes and screened on a single antigen HLA bead assay. A MHC Matchmaker algorithm was developed to predict potential conserved amino acid motifs among the pig, NHP, and human. Our sensitised NHP model was used to demonstrate that allosensitisation does not result in an appreciable difference in xenoreactive antibody binding in a cell-based FXM. However, antibody elution and screening on single antigen HLA beads suggest the existence of potential cross-reactive antibodies against SLA. The cross-reactive IgG after allosensitisation were predicted by comparing the recipient Mamu alleles against its previous allograft donor Mamu alleles and the donor pig SLA alleles. Our study suggests that allosensitisation could elevate cross-reactive antibodies, but a more sensitive assay than a cell-based FXM is required to detect them. The MHC Matchmaker algorithm was developed as a potential tool to help determine amino acid motif conservation and reactivity pattern.


Subject(s)
Cross Reactions , Flow Cytometry , Histocompatibility Antigens Class I , Histocompatibility Testing , Animals , Humans , Cross Reactions/immunology , Histocompatibility Testing/methods , Flow Cytometry/methods , Swine , Histocompatibility Antigens Class I/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Isoantibodies/immunology , Isoantibodies/blood , Transplantation, Heterologous , Histocompatibility Antigens Class II/immunology , Skin Transplantation , Immunoglobulin M/immunology , Immunoglobulin M/blood , HLA Antigens/immunology , Lymphocytes/immunology , Algorithms
3.
Nature ; 632(8023): 182-191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048822

ABSTRACT

CD4+ T cells can either enhance or inhibit tumour immunity. Although regulatory T cells have long been known to impede antitumour responses1-5, other CD4+ T cells have recently been implicated in inhibiting this response6,7. Yet, the nature and function of the latter remain unclear. Here, using vaccines containing MHC class I (MHC-I) neoantigens (neoAgs) and different doses of tumour-derived MHC-II neoAgs, we discovered that whereas the inclusion of vaccines with low doses of MHC-II-restricted peptides (LDVax) promoted tumour rejection, vaccines containing high doses of the same MHC-II neoAgs (HDVax) inhibited rejection. Characterization of the inhibitory cells induced by HDVax identified them as type 1 regulatory T (Tr1) cells expressing IL-10, granzyme B, perforin, CCL5 and LILRB4. Tumour-specific Tr1 cells suppressed tumour rejection induced by anti-PD1, LDVax or adoptively transferred tumour-specific effector T cells. Mechanistically, HDVax-induced Tr1 cells selectively killed MHC-II tumour antigen-presenting type 1 conventional dendritic cells (cDC1s), leading to low numbers of cDC1s in tumours. We then documented modalities to overcome this inhibition, specifically via anti-LILRB4 blockade, using a CD8-directed IL-2 mutein, or targeted loss of cDC2/monocytes. Collectively, these data show that cytotoxic Tr1 cells, which maintain peripheral tolerance, also inhibit antitumour responses and thereby function to impede immune control of cancer.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Immunotherapy , T-Lymphocytes, Regulatory , Mice , Animals , Antigens, Neoplasm/immunology , Dendritic Cells/immunology , T-Lymphocytes, Regulatory/immunology , Female , Cancer Vaccines/immunology , Histocompatibility Antigens Class II/immunology , Mice, Inbred C57BL , Cell Line, Tumor , Male , Neoplasms/immunology , Neoplasms/therapy , Interleukin-10/metabolism , Interleukin-10/immunology , T-Lymphocytes, Cytotoxic/immunology
4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39000461

ABSTRACT

Antigen presentation is a crucial mechanism that drives the T cell-mediated immune response and the development of Multiple Sclerosis (MS). Genetic alterations within the highly variable Major Histocompatibility Complex Class II (MHC II) have been proven to result in significant changes in the molecular basis of antigen presentation and the clinical course of patients with both Adult-Onset MS (AOMS) and Pediatric-Onset MS (POMS). Among the numerous polymorphisms of the Human Leucocyte Antigens (HLA), within MHC II complex, HLA-DRB1*15:01 has been labeled, in Caucasian ethnic groups, as a high-risk allele for MS due to the ability of its structure to increase affinity to Myelin Basic Protein (MBP) epitopes. This characteristic, among others, in the context of the trimolecular complex or immunological synapsis, provides the foundation for autoimmunity triggered by environmental or endogenous factors. As with all professional antigen presenting cells, macrophages are characterized by the expression of MHC II and are often implicated in the formation of MS lesions. Increased presence of M1 macrophages in MS patients has been associated both with progression and onset of the disease, each involving separate but similar mechanisms. In this critical narrative review, we focus on macrophages, discussing how HLA genetic alterations can promote dysregulation of this population's homeostasis in the periphery and the Central Nervous System (CNS). We also explore the potential interconnection in observed pathological macrophage mechanisms and the function of the diverse structure of HLA alleles in neurodegenerative CNS, seen in MS, by comparing available clinical with molecular data through the prism of HLA-immunogenetics. Finally, we discuss available and experimental pharmacological approaches for MS targeting the trimolecular complex that are based on cell phenotype modulation and HLA genotype involvement and try to reveal fertile ground for the potential development of novel drugs.


Subject(s)
Alleles , Macrophages , Multiple Sclerosis , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Macrophages/immunology , Macrophages/metabolism , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Antigen Presentation/genetics , Genetic Predisposition to Disease , Animals , Polymorphism, Genetic
5.
Sci Adv ; 10(28): eadk2091, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996030

ABSTRACT

The mechanism by which interferon regulatory factor 8 (IRF8) mutation contributes to lymphomagenesis is unknown. We modeled IRF8 variants in B cell lymphomas and found that they affected the expression of regulators of antigen presentation. Expression of IRF8 mutants in murine B cell lymphomas suppressed CD4, but not CD8, activation elicited by antigen presentation and downmodulated CD74 and human leukocyte antigen (HLA) DM, intracellular regulators of antigen peptide processing/loading in the major histocompatibility complex (MHC) II. Concordantly, mutant IRF8 bound less efficiently to the promoters of these genes. Mice harboring IRF8 mutant lymphomas displayed higher tumor burden and remodeling of the tumor microenvironment, typified by depletion of CD4, CD8, and natural killer cells, increase in regulatory T cells and T follicular helper cells. Deconvolution of bulk RNA sequencing data from IRF8-mutant human diffuse large B cell lymphoma (DLBCL) recapitulated part of the immune remodeling detected in mice. We concluded that IRF8 mutations contribute to DLBCL biology by facilitating immune escape.


Subject(s)
Antigen Presentation , Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , Interferon Regulatory Factors , Mutation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Animals , Antigen Presentation/immunology , Antigen Presentation/genetics , Humans , Mice , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Antigens, Differentiation, B-Lymphocyte/genetics , Antigens, Differentiation, B-Lymphocyte/metabolism , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Tumor Microenvironment/immunology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Cell Line, Tumor , Tumor Escape/genetics , Gene Expression Regulation, Neoplastic
6.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992165

ABSTRACT

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , CD4-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class II , Intramolecular Oxidoreductases , Lymphocyte Activation , Macrophage Migration-Inhibitory Factors , SARS-CoV-2 , Humans , Antigens, Differentiation, B-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Macrophage Migration-Inhibitory Factors/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Lymphocyte Activation/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Cell Movement , Male , Female , Middle Aged , Receptors, Immunologic
8.
Immun Inflamm Dis ; 12(6): e1318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923761

ABSTRACT

BACKGROUND: Major histocompatibility complex (MHC) class II molecules expressed on B cells, monocytes and dendritic cells present processed peptides to CD4+ T cells as one of the mechanisms to combat infection and inflammation. AIM: To study MHC II expression in a variety of nonhuman primate species, including New World (NWM) squirrel monkeys (Saimiri boliviensis boliviensis), owl monkeys (Aotus nancymae), common marmosets (Callithrix spp.), and Old World (OWM) rhesus (Macaca mulatta), baboons (Papio anubis). METHODS: Two clones of cross-reactive mouse anti-human HLADR monoclonal antibodies (mAb) binding were analyzed by flow cytometry to evaluate MHC II expression on NHP immune cells, including T lymphocytes in whole blood (WB) and peripheral blood mononuclear cells (PBMC). RESULTS: MHC class II antibody reactivity is seen with CD20+ B cells, CD14+ monocytes and CD3+ T lymphocytes. Specific reactivity with both clones was demonstrated in T lymphocytes: this reactivity was not inhibited by purified CD16 antibody but was completely inhibited when pre-blocked with purified unconjugated MHC II antibody. Freshly prepared PBMC also showed reactivity with T lymphocytes without any stimulation. Interestingly, peripheral blood from rhesus macaques and olive baboons (OWM) showed no such T lymphocyte associated MHCII antibody reactivity. DISCUSSION & CONCLUSION: Our results from antibody (MHC II) reactivity clearly show the potential existence of constitutively expressed (with no stimulation) MHC II molecules on T lymphocytes in new world monkeys. These results suggest that additional study is warranted to evaluate the functional and evolutionary significance of these finding and to better understand MHC II expression on T lymphocytes in new world monkeys.


Subject(s)
HLA-DR Antigens , Histocompatibility Antigens Class II , T-Lymphocytes , Animals , Histocompatibility Antigens Class II/immunology , HLA-DR Antigens/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Humans , Macaca mulatta , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Saimiri/immunology , Callithrix/immunology , Flow Cytometry , Papio anubis/immunology , Platyrrhini/immunology
9.
Front Immunol ; 15: 1361343, 2024.
Article in English | MEDLINE | ID: mdl-38846956

ABSTRACT

Macrophages are a rich source of macrophage migration inhibitory factor (MIF). It is well established that macrophages and MIF play a pathogenic role in anti-glomerular basement membrane crescentic glomerulonephritis (anti-GBM CGN). However, whether macrophages mediate anti-GBM CGN via MIF-dependent mechanism remains unexplored, which was investigated in this study by specifically deleting MIF from macrophages in MIFf/f-lysM-cre mice. We found that compared to anti-GBM CGN induced in MIFf/f control mice, conditional ablation of MIF in macrophages significantly suppressed anti-GBM CGN by inhibiting glomerular crescent formation and reducing serum creatinine and proteinuria while improving creatine clearance. Mechanistically, selective MIF depletion in macrophages largely inhibited renal macrophage and T cell recruitment, promoted the polarization of macrophage from M1 towards M2 via the CD74/NF-κB/p38MAPK-dependent mechanism. Unexpectedly, selective depletion of macrophage MIF also significantly promoted Treg while inhibiting Th1 and Th17 immune responses. In summary, MIF produced by macrophages plays a pathogenic role in anti-GBM CGN. Targeting macrophage-derived MIF may represent a novel and promising therapeutic approach for the treatment of immune-mediated kidney diseases.


Subject(s)
Anti-Glomerular Basement Membrane Disease , Antigens, Differentiation, B-Lymphocyte , Histocompatibility Antigens Class II , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors , Macrophages , Macrophage Migration-Inhibitory Factors/metabolism , Animals , Macrophages/immunology , Macrophages/metabolism , Mice , Anti-Glomerular Basement Membrane Disease/immunology , Anti-Glomerular Basement Membrane Disease/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Antigens, Differentiation, B-Lymphocyte/metabolism , Disease Models, Animal , NF-kappa B/metabolism , Mice, Knockout , p38 Mitogen-Activated Protein Kinases/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice, Inbred C57BL , Th17 Cells/immunology , Th17 Cells/metabolism , Proteinuria/immunology , Signal Transduction
10.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920343

ABSTRACT

While significant strides have been made in predicting neoepitopes that trigger autologous CD4+ T cell responses, accurately identifying the antigen presentation by human leukocyte antigen (HLA) class II molecules remains a challenge. This identification is critical for developing vaccines and cancer immunotherapies. Current prediction methods are limited, primarily due to a lack of high-quality training epitope datasets and algorithmic constraints. To predict the exogenous HLA class II-restricted peptides across most of the human population, we utilized the mass spectrometry data to profile >223 000 eluted ligands over HLA-DR, -DQ, and -DP alleles. Here, by integrating these data with peptide processing and gene expression, we introduce HLAIImaster, an attention-based deep learning framework with adaptive domain knowledge for predicting neoepitope immunogenicity. Leveraging diverse biological characteristics and our enhanced deep learning framework, HLAIImaster is significantly improved against existing tools in terms of positive predictive value across various neoantigen studies. Robust domain knowledge learning accurately identifies neoepitope immunogenicity, bridging the gap between neoantigen biology and the clinical setting and paving the way for future neoantigen-based therapies to provide greater clinical benefit. In summary, we present a comprehensive exploitation of the immunogenic neoepitope repertoire of cancers, facilitating the effective development of "just-in-time" personalized vaccines.


Subject(s)
Deep Learning , Histocompatibility Antigens Class II , Humans , Histocompatibility Antigens Class II/immunology , Epitopes/immunology , Computational Biology/methods , Epitopes, T-Lymphocyte/immunology
11.
PLoS Pathog ; 20(6): e1012306, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843309

ABSTRACT

Staphylococcus aureus is a human-adapted pathogen that replicates by asymptomatically colonizing its host. S. aureus is also the causative agent of purulent skin and soft tissue infections as well as bloodstream infections that result in the metastatic seeding of abscess lesions in all organ tissues. Prolonged colonization, infection, disease relapse, and recurrence point to the versatile capacity of S. aureus to bypass innate and adaptive immune defenses as well as the notion that some hosts fail to generate protective immune responses. Here, we find a genetic trait that provides protection against this pathogen. Mice lacking functional H2-O, the equivalent of human HLA-DO, inoculated with a mouse-adapted strain of S. aureus, efficiently decolonize the pathogen. Further, these decolonized animals resist subsequent bloodstream challenge with methicillin-resistant S. aureus. A genetic approach demonstrates that T-cell dependent B cell responses are required to control S. aureus colonization and infection in H2-O-deficient mice. Reduced bacterial burdens in these animals correlate with increased titers and enhanced phagocytic activity of S. aureus-specific antibodies. H2-O negatively regulates the loading of high affinity peptides on major histocompatibility class II (MHC-II) molecules. Thus, we hypothesize that immune responses against S. aureus are derepressed in mice lacking H2-O because more high affinity peptides are presented by MHC-II. We speculate that loss-of-function HLA-DO alleles may similarly control S. aureus replication in humans.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Animals , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology , Mice , Staphylococcus aureus/immunology , Mice, Knockout , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Methicillin-Resistant Staphylococcus aureus/immunology , Humans
12.
Front Immunol ; 15: 1404668, 2024.
Article in English | MEDLINE | ID: mdl-38903492

ABSTRACT

Heart transplantation is associated with major hurdles, including the limited number of available organs for transplantation, the risk of rejection due to genetic discrepancies, and the burden of immunosuppression. In this study, we demonstrated the feasibility of permanent genetic engineering of the heart during ex vivo perfusion. Lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin (shß2m) and class II transactivator (shCIITA) were delivered to the graft during two hours of normothermic EVHP. Highly efficient genetic engineering was indicated by stable reporter gene expression in endothelial cells and cardiomyocytes. Remarkably, swine leucocyte antigen (SLA) class I and SLA class II expression levels were decreased by 66% and 76%, respectively, in the vascular endothelium. Evaluation of lactate, troponin T, and LDH levels in the perfusate and histological analysis showed no additional cell injury or tissue damage caused by lentiviral vectors. Moreover, cytokine secretion profiles (IL-6, IL-8, and TNF-α) of non-transduced and lentiviral vector-transduced hearts were comparable. This study demonstrated the ex vivo generation of genetically engineered hearts without compromising tissue integrity. Downregulation of SLA expression may contribute to reduce the immunogenicity of the heart and support graft survival after allogeneic or xenogeneic transplantation.


Subject(s)
Genetic Vectors , Heart Transplantation , Histocompatibility Antigens Class I , Lentivirus , Animals , Lentivirus/genetics , Heart Transplantation/methods , Genetic Vectors/genetics , Swine , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Perfusion/methods , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , beta 2-Microglobulin/genetics , Cytokines/metabolism , Genetic Engineering , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/immunology , Humans , RNA, Small Interfering/genetics , Graft Survival/immunology , Graft Survival/genetics , Endothelial Cells/metabolism , Endothelial Cells/immunology , Nuclear Proteins , Trans-Activators
13.
Xenotransplantation ; 31(3): e12872, 2024.
Article in English | MEDLINE | ID: mdl-38924560

ABSTRACT

Attack of donor tissues by pre-formed anti-pig antibodies is well known to cause graft failure in xenotransplantation. Genetic engineering of porcine donors to eliminate targets of these pre-formed antibodies coupled with advances in immunosuppressive medicines have now made it possible to achieve extended survival in the pre-clinical pig-to-non-human primate model. Despite these improvements, antibodies remain a risk over the lifetime of the transplant, and many patients continue to have pre-formed donor-specific antibodies even to highly engineered pigs. While therapeutics exist that can help mitigate the detrimental effects of antibodies, they act broadly potentially dampening beneficial immunity. Identifying additional xenoantigens may enable more targeted approaches, such as gene editing, to overcome these challenges by further eliminating antibody targets on donor tissue. Because we have found that classical class I swine leukocyte antigens are targets of human antibodies, we now examine whether related pig proteins may also be targeted by human antibodies. We show here that non-classical class I swine leukocyte proteins (SLA-6, -7, -8) can be expressed at the surface of mammalian cells and act as antibody targets.


Subject(s)
Antigens, Heterophile , Histocompatibility Antigens Class I , Transplantation, Heterologous , Animals , Swine , Transplantation, Heterologous/methods , Antigens, Heterophile/immunology , Humans , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Graft Rejection/immunology , Animals, Genetically Modified
14.
J Autoimmun ; 147: 103274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38936148

ABSTRACT

Chronic graft-versus-host disease (cGVHD) is the most common long-term complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The patients with pulmonary cGVHD in particular have a very poor prognosis. NK cells are the first reconstituted lymphocyte subset after allo-HSCT; however, the impact of reconstituted NK cells on cGVHD is unclear. Here, we found allogeneic recipients showed obvious pulmonary cGVHD. Surprisingly, deletion of reconstituted NK cells resulted in maximal relief of pulmonary cGVHD. Mechanistically, reconstituted NK cells with donor profiles modulated the pulmonary inflammatory microenvironment to trigger cGVHD. Reconstituted NK cells secreted IFN-γ and TNF-α to induce CXCL10 production by epithelial cells, which recruited macrophages and CD4+ T cells to the lungs. Then macrophages and CD4+ T cells were activated by the inflammatory microenvironment, thereby mediating lung injury. Through assessment of differences in cellular energy, we found that CD74+ NK cells with high mitochondrial potential and pro-inflammatory activity triggered pulmonary cGVHD. Furthermore, targeted elimination of CD74+ NK cells using the anti-CD74 antibody significantly alleviated pulmonary cGVHD but preserved the CD74- NK cells to exert graft-versus-leukemia (GVL) effects. Data from human samples corroborated our findings in mouse models. Collectively, our results reveal that reconstituted CD74+ NK cells trigger pulmonary cGVHD and suggest that administration of CD74 antibody was a potential therapeutic for patients with cGVHD.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease , Killer Cells, Natural , Transplantation, Homologous , Graft vs Host Disease/etiology , Graft vs Host Disease/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Mice , Humans , Bone Marrow Transplantation/adverse effects , Chronic Disease , Male , Female , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Disease Models, Animal , Hematopoietic Stem Cell Transplantation/adverse effects , Mice, Inbred C57BL , Immune Reconstitution , Bronchiolitis Obliterans Syndrome
15.
Nature ; 630(8018): 968-975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867043

ABSTRACT

Obesity is a leading risk factor for progression and metastasis of many cancers1,2, yet can in some cases enhance survival3-5 and responses to immune checkpoint blockade therapies, including anti-PD-1, which targets PD-1 (encoded by PDCD1), an inhibitory receptor expressed on immune cells6-8. Although obesity promotes chronic inflammation, the role of the immune system in the obesity-cancer connection and immunotherapy remains unclear. It has been shown that in addition to T cells, macrophages can express PD-19-12. Here we found that obesity selectively induced PD-1 expression on tumour-associated macrophages (TAMs). Type I inflammatory cytokines and molecules linked to obesity, including interferon-γ, tumour necrosis factor, leptin, insulin and palmitate, induced macrophage PD-1 expression in an mTORC1- and glycolysis-dependent manner. PD-1 then provided negative feedback to TAMs that suppressed glycolysis, phagocytosis and T cell stimulatory potential. Conversely, PD-1 blockade increased the level of macrophage glycolysis, which was essential for PD-1 inhibition to augment TAM expression of CD86 and major histocompatibility complex I and II molecules and ability to activate T cells. Myeloid-specific PD-1 deficiency slowed tumour growth, enhanced TAM glycolysis and antigen-presentation capability, and led to increased CD8+ T cell activity with a reduced level of markers of exhaustion. These findings show that obesity-associated metabolic signalling and inflammatory cues cause TAMs to induce PD-1 expression, which then drives a TAM-specific feedback mechanism that impairs tumour immune surveillance. This may contribute to increased cancer risk yet improved response to PD-1 immunotherapy in obesity.


Subject(s)
Neoplasms , Obesity , Programmed Cell Death 1 Receptor , Tumor-Associated Macrophages , Animals , Female , Humans , Male , Mice , Antigen Presentation/drug effects , B7-2 Antigen/antagonists & inhibitors , B7-2 Antigen/immunology , B7-2 Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Glycolysis/drug effects , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Obesity/immunology , Obesity/metabolism , Phagocytosis/drug effects , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/drug effects
16.
Autoimmunity ; 57(1): 2361745, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38850571

ABSTRACT

Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.


Subject(s)
Disease Models, Animal , Animals , Humans , Mice , Neuritis, Autoimmune, Experimental/immunology , Mice, Knockout , Autoimmunity , Polyneuropathies/immunology , Polyneuropathies/etiology , Adaptive Immunity , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism
17.
J Immunol ; 213(3): 328-338, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38905023

ABSTRACT

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection in both men and women. Immunity to C. trachomatis involves many cell types, but CD4+ T cells play a key role in protecting the host during natural infection. Specifically, IFN-γ production by CD4+ T cells is the main effector responsible for bacterial clearance, yet the exact mechanism by which IFN-γ confers protection is poorly defined. In our efforts to define the specific mechanisms for bacterial clearance, we now show that IFN-γ upregulates expression of MHC class II (MHCII) on nonhematopoietic cells during C. trachomatis infection in vivo. We also find that MHCII expression on epithelial cells of the upper genital tract contributes to the efficient clearance of bacteria mediated by pathogen-specific CD4+ Th1 cells. As we further cataloged the protective mechanisms of C. trachomatis-specific CD4+ T cells, we found that the T cells also express granzyme B (GzmB) when coincubated with infected cells. In addition, during C. trachomatis infection of mice, primed activated-naive CD4+ Th1 cells displayed elevated granzyme transcripts (GzmA, GzmB, GzmM, GzmK, GzmC) compared with memory CD4+ T cells in vivo. Finally, using intracellular cytokine staining and a GzmB-/- mouse strain, we show that C. trachomatis-specific CD4+ Th1 cells express GzmB upon Ag stimulation, and that this correlates with Chlamydia clearance in vivo. Together these results have led us to conclude that Chlamydia-specific CD4+ Th1 cells develop cytotoxic capacity through engagement with nonhematopoietic MHCII, and this correlates to C. trachomatis clearance.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Granzymes , Interferon-gamma , Th1 Cells , Chlamydia trachomatis/immunology , Animals , Chlamydia Infections/immunology , Mice , Interferon-gamma/immunology , Interferon-gamma/metabolism , Th1 Cells/immunology , Female , Granzymes/metabolism , Granzymes/immunology , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Humans , T-Lymphocytes, Cytotoxic/immunology , Mice, Knockout , Lymphocyte Activation/immunology , CD4-Positive T-Lymphocytes/immunology
18.
Virology ; 595: 110083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696887

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) infection inhibits swine leukocyte antigen class I (SLA-I) expression in pigs, resulting in inefficient antigen presentation and subsequent low levels of cellular PRRSV-specific immunity as well as persistent viremia. We previously observed that the non-structural protein 4 (nsp4) of PRRSV contributed to inhibition of the ß2-microglobulin (ß2M) and SLA-I expression in cells. Here, we constructed a series of nsp4 mutants with different combination of amino acid mutations to attenuate the inhibitory effect of nsp4 on ß2M and SLA-I expression. Almost all nsp4 mutants exogenously expressed in cells showed an attenuated effect on inhibition of ß2M and SLA-I expression, but the recombinant PRRSV harboring these nsp4 mutants failed to be rescued with exception of the rPRRSV-nsp4-mut10 harboring three amino acid mutations. However, infection of rPRRSV-nsp4-mut10 not only enhanced ß2M and SLA-I expression in both cells and pigs but also promoted the DCs to active the CD3+CD8+T lymphocytes more efficiently, as compared with its parental PRRSV (rPRRVS-nsp4-wt). These data suggested that the inhibition of nsp4-mediated ß2M downregulation improved ß2M/SLA-I expression in pigs.


Subject(s)
Down-Regulation , Histocompatibility Antigens Class I , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , beta 2-Microglobulin , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/physiology , Porcine respiratory and reproductive syndrome virus/immunology , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/immunology , Cell Line , CD8-Positive T-Lymphocytes/immunology , Mutation
19.
Biomed Pharmacother ; 175: 116782, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776682

ABSTRACT

LAG3 is an inhibitory immune checkpoint expressed on activated T and NK cells. Blocking the interaction of LAG3 with its ligands MHC-II and FGL1 renders T cells improved cytotoxicity to cancer cells. Current study generated a panel of LAG3 monoclonal antibodies (mAbs) through immunization of mice followed by phage display. Some of them bound to the D1-D2 domain of LAG3, which is known for the engagement of its ligands FGL1 and MHC-II. Three outperformers, M208, M226, and M234, showed stronger blocking activity than Relatlimab in the FGL1 binding. Furthermore, M234 showed dual inhibition of FGL1 (IC50 of 20.6 nM) and MHC-II binding (IC50 of 6.2 nM) to LAG3. In vitro functional tests showed that M234 significantly stimulated IFN-γ secretion from activated PBMC cells. In vivo studies in a mouse model of hepatocellular carcinoma xenografts demonstrated that combining M234 IgG with GPC3-targeted bispecific antibodies significantly improved efficacy. In addition, GPC3-targeted CAR-T cells secreting IL-21-M234 scFv fusion protein exhibited enhanced activity in inhibiting tumor growth and greatly increased the survival rate of mice. Taken together, M234 has potential in cancer immunotherapy and warrants further clinical trial.


Subject(s)
Antibodies, Neutralizing , Antigens, CD , Immunotherapy , Lymphocyte Activation Gene 3 Protein , Animals , Humans , Mice , Antigens, CD/immunology , Antigens, CD/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/immunology , Ligands , Immunotherapy/methods , Cell Line, Tumor , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Xenograft Model Antitumor Assays , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Mice, Inbred BALB C , Protein Binding , Female , Antibodies, Monoclonal/pharmacology
20.
Nat Commun ; 15(1): 4418, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806459

ABSTRACT

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Immunologic Memory , Interferon-gamma , STAT1 Transcription Factor , Animals , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , CD4-Positive T-Lymphocytes/immunology , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/deficiency , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Signal Transduction , Mice, Knockout , Memory T Cells/immunology , Memory T Cells/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Cell Proliferation , Adoptive Transfer
SELECTION OF CITATIONS
SEARCH DETAIL