Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Epigenomics ; 16(6): 419-426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38410929

ABSTRACT

Neural tube defects (NTDs) are the most common congenital anomalies of the CNS. It is widely appreciated that both genetic and environmental factors contribute to their etiology. The inability to ascribe clear genetic patterns of inheritance to various NTD phenotypes suggests it is possible that epigenetic mechanisms are involved in the etiology of NTDs. In this context, the contribution of DNA methylation as an underlying contributing factor to the etiology of NTDs has been extensively reviewed. Here, an updated accounting of the evidence linking post-translational histone modifications to these birth defects, relying heavily upon studies in humans, and the possible molecular implications inferred from reports based on cellular and animal models, are presented.


Subject(s)
Histones , Neural Tube Defects , Animals , Humans , Histones/metabolism , Histone Code , Neural Tube Defects/genetics , Epigenesis, Genetic , DNA Methylation
2.
Genes (Basel) ; 14(2)2023 01 29.
Article in English | MEDLINE | ID: mdl-36833274

ABSTRACT

Since Late-onset Alzheimer's disease (LOAD) derives from a combination of genetic variants and environmental factors, epigenetic modifications have been predicted to play a role in the etiopathology of LOAD. Along with DNA methylation, histone modifications have been proposed as the main epigenetic modifications that contribute to the pathologic mechanisms of LOAD; however, little is known about how these mechanisms contribute to the disease's onset or progression. In this review, we highlighted the main histone modifications and their functional role, including histone acetylation, histone methylation, and histone phosphorylation, as well as changes in such histone modifications that occur in the aging process and mainly in Alzheimer's disease (AD). Furthermore, we pointed out the main epigenetic drugs tested for AD treatment, such as those based on histone deacetylase (HDAC) inhibitors. Finally, we remarked on the perspectives around the use of such epigenetics drugs for treating AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Histones/genetics , Histone Code , DNA Methylation , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology
3.
Adv Exp Med Biol ; 1382: 95-107, 2022.
Article in English | MEDLINE | ID: mdl-36029406

ABSTRACT

Post-translational modifications (PTMs) have a strong impact on many proteins across all kingdoms of life, affecting multiple functional and chemical properties of their protein recipients. With increasing knowledge about their functions, targets, and biological effects, dysregulations in PTMs have been implicated in various dysfunctions and diseases. One such target are histones, which compose the majority of the protein component of chromatin and the modulation of the 30+ PTMs that are known to affect them can have profound effects on chromatin state, gene expression, and DNA repair. In this review, the histone targets of PTMs are compiled in the context of neurological disorders, highlighting their specific biological roles and any previously implicated dysregulations in several classes of brain disease. Better understanding the pathogenic dysregulations of PTMs in such disorders can help to better understand their causes, as well as open doors to new possibilities for biomarkers and therapeutic targets.


Subject(s)
Brain Diseases , Histone Code , Chromatin , Histones , Humans , Protein Processing, Post-Translational
4.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628190

ABSTRACT

Parathyroid tumors are very prevalent conditions among endocrine tumors, being the second most common behind thyroid tumors. Secondary hyperplasia can occur beyond benign and malignant neoplasia in parathyroid glands. Adenomas are the leading cause of hyperparathyroidism, while carcinomas represent less than 1% of the cases. Tumor suppressor gene mutations such as MEN1 and CDC73 were demonstrated to be involved in tumor development in both familiar and sporadic types; however, the epigenetic features of the parathyroid tumors are still a little-explored subject. We present a review of epigenetic mechanisms related to parathyroid tumors, emphasizing advances in histone modification and its perspective of becoming a promising area in parathyroid tumor research.


Subject(s)
Hyperparathyroidism , Parathyroid Neoplasms , Epigenesis, Genetic , Epigenomics , Histone Code/genetics , Humans , Hyperparathyroidism/genetics , Parathyroid Neoplasms/genetics
5.
PLoS Genet ; 18(1): e1010001, 2022 01.
Article in English | MEDLINE | ID: mdl-35007279

ABSTRACT

Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.


Subject(s)
Aspergillus fumigatus/classification , Chromosomes, Fungal/genetics , Genetic Heterogeneity , Histones/metabolism , Pulmonary Aspergillosis/microbiology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Chromatin , DNA Transposable Elements , Fungal Proteins/metabolism , Gene Expression Regulation, Plant , Genetic Fitness , Histone Code , Humans , Promoter Regions, Genetic , Secondary Metabolism , Virulence
6.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34769338

ABSTRACT

Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5'-C-phosphate-G-3' (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.


Subject(s)
Autoimmune Diseases/pathology , DNA Methylation , Epigenesis, Genetic , Genetic Predisposition to Disease , Histone Code , Animals , Autoimmune Diseases/etiology , Humans
7.
J Biophotonics ; 14(2): e202000274, 2021 02.
Article in English | MEDLINE | ID: mdl-33025746

ABSTRACT

Emerging evidence indicates the clinical benefits of photobiomodulation therapy (PBMT) in the management of skin and mucosal wounds. Here, we decided to explore the effects of different regiments of PBMT on epithelial cells and stem cells, and the potential implications over the epigenetic circuitry during healing. Scratch-wound migration, immunofluorescence (anti-acetyl-Histone H3, anti-acetyl-CBP/p300 and anti-BMI1), nuclear morphometry and western blotting (anti-Phospho-S6, anti-methyl-CpG binding domain protein 2 [MBD2]) were performed. Epithelial stem cells were identified by the aldehyde dehydrogenase enzymatic levels and sphere-forming assay. We observed that PBMT-induced accelerated epithelial migration and chromatin relaxation along with increased levels of histones acetylation, the transcription cofactors CBP/p300 and mammalian target of rapamycin. We further observed a reduction of the transcription repression-associated protein MBD2 and a reduced number of epithelial stem cells and spheres. In this study, we showed that PBMT could induce epigenetic modifications of epithelial cells and control stem cell fate, leading to an accelerated healing phenotype.


Subject(s)
Low-Level Light Therapy , Acetylation , Epigenesis, Genetic , Histone Code , Stem Cells , Wound Healing
8.
Genes (Basel) ; 11(11)2020 11 12.
Article in English | MEDLINE | ID: mdl-33198240

ABSTRACT

DNA methyltransferases (DNMTs) play an essential role in DNA methylation and transcriptional regulation in the genome. DNMTs, along with other poorly studied elements, modulate the dynamic DNA methylation patterns of embryonic and adult cells. We summarize the current knowledge on the molecular mechanism of DNMTs' functional targeting to maintain genome-wide DNA methylation patterns. We focus on DNMTs' intrinsic characteristics, transcriptional regulation, and post-transcriptional modifications. Furthermore, we focus special attention on the DNMTs' specificity for target sites, including key cis-regulatory factors such as CpG content, common motifs, transcription factors (TF) binding sites, lncRNAs, and histone marks to regulate DNA methylation. We also review how complexes of DNMTs/TFs or DNMTs/lncRNAs are involved in DNA methylation in specific genome regions. Understanding these processes is essential because the spatiotemporal regulation of DNA methylation modulates gene expression in health and disease.


Subject(s)
DNA Methylation , DNA Modification Methylases/genetics , Histone Code/genetics , RNA, Long Noncoding/genetics , Transcription Factors/genetics , 5-Methylcytosine/metabolism , Animals , CpG Islands , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Modification Methylases/metabolism , Humans , Promoter Regions, Genetic
9.
Mol Biol Rep ; 47(11): 9097-9122, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33089404

ABSTRACT

Scientific advances in recent decades have revealed an incredible degree of plasticity in gene expression in response to various environmental, nutritional, physiological, pathological, and behavioral conditions. Epigenetics emerges in this sense, as the link between the internal (genetic) and external (environmental) factors underlying the expression of the phenotype. Methylation of DNA and histone post-translationa modifications are canonical epigenetic events. Additionally, noncoding RNAs molecules (microRNAs and lncRNAs) have also been proposed as another layer of epigenetic regulation. Together, these events are responsible for regulating gene expression throughout life, controlling cellular fate in both normal and pathological development. Despite being a relatively recent science, epigenetics has been arousing the interest of researchers from different segments of the life sciences and the general public. This review highlights the recent advances in the characterization of the epigenetic events and points promising use of these brands for the diagnosis, prognosis, and therapy of diseases. We also present several classes of epigenetic modifying compounds with therapeutic applications (so-call epidrugs) and their current status in clinical trials and approved by the FDA. In summary, hopefully, we provide the reader with theoretical bases for a better understanding of the epigenetic mechanisms and of the promising application of these marks and events in the medical clinic.


Subject(s)
Biomarkers/metabolism , DNA Methylation , Drug Development/methods , Epigenesis, Genetic , Histone Code , Animals , Gene Expression Regulation , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics
10.
Clin Epigenetics ; 12(1): 127, 2020 08 24.
Article in English | MEDLINE | ID: mdl-32831131

ABSTRACT

BACKGROUND: We have previously developed a murine cellular system that models the transformation from melanocytes to metastatic melanoma cells. This model was established by cycles of anchorage impediment of melanocytes and consists of four cell lines: differentiated melanocytes (melan-a), pre-malignant melanocytes (4C), malignant (4C11-), and metastasis-prone (4C11+) melanoma cells. Here, we searched for transcriptional and epigenetic signatures associated with melanoma progression and metastasis by performing a gene co-expression analysis of transcriptome data and a mass-spectrometry-based profiling of histone modifications in this model. RESULTS: Eighteen modules of co-expressed genes were identified, and some of them were associated with melanoma progression, epithelial-to-mesenchymal transition (EMT), and metastasis. The genes in these modules participate in biological processes like focal adhesion, cell migration, extracellular matrix organization, endocytosis, cell cycle, DNA repair, protein ubiquitination, and autophagy. Modules and hub signatures related to EMT and metastasis (turquoise, green yellow, and yellow) were significantly enriched in genes associated to patient survival in two independent melanoma cohorts (TCGA and Leeds), suggesting they could be sources of novel prognostic biomarkers. Clusters of histone modifications were also linked to melanoma progression, EMT, and metastasis. Reduced levels of H4K5ac and H4K8ac marks were seen in the pre-malignant and tumorigenic cell lines, whereas the methylation patterns of H3K4, H3K56, and H4K20 were related to EMT. Moreover, the metastatic 4C11+ cell line showed higher H3K9me2 and H3K36me3 methylation, lower H3K18me1, H3K23me1, H3K79me2, and H3K36me2 marks and, in agreement, downregulation of the H3K36me2 methyltransferase Nsd1. CONCLUSIONS: We uncovered transcriptional and histone modification signatures that may be molecular events driving melanoma progression and metastasis, which can aid in the identification of novel prognostic genes and drug targets for treating the disease.


Subject(s)
Epithelial-Mesenchymal Transition/genetics , Gene Expression/genetics , Histone Code/genetics , Melanoma/genetics , Melanoma/pathology , Neoplasm Metastasis/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Epigenesis, Genetic , Humans , Mice
11.
Arch Immunol Ther Exp (Warsz) ; 68(3): 18, 2020 May 26.
Article in English | MEDLINE | ID: mdl-32458062

ABSTRACT

WNT signaling pathway regulates several processes involved in the homeostasis of normal cells. Its dysregulation is associated with pathological outcomes like cancer. We previously demonstrated that downregulation of WNT7A correlates with higher proliferation rates in acute lymphoblastic leukemia. However, the regulation of this gene in pathological and normal conditions remains unexplored. In this work, we aimed to analyze the transcriptional regulation of WNT7A in leukemic cells and in normal T lymphocytes after a proliferative stimulus. WNT7A expression was measured in blood cells and in T lymphocytes after phytohemagglutinin-L (PHA-L) treatment or T-cell receptor (TCR) activation by qPCR and Western blot. Promoter methylation was assessed using methylation-sensitive restriction enzymes, and histone modifications were determined by chromatin immunoprecipitation and qPCR. In T-cell acute lymphoblastic leukemia (T-ALL), WNT7A expression is silenced through DNA methylation of CpG island in the promoter region. In normal peripheral blood cells, WNT7A is mainly expressed by monocytes and T lymphocytes. TCR activation induces the downregulation of WNT7A in normal T lymphocytes by changes in histone methylation marks (H3K4me2/3) and histone deacetylases. A proliferative stimulus mediated by IL-2 keeps WNT7A expression at low levels but in the absence of IL-2, the expression of this gene tends to be restored. Furthermore, after TCR activation and WNT7A downregulation, target genes associated with the WNT canonical pathway were upregulated indicating an independent activity of WNT7A from the WNT canonical pathway. WNT7A expression is silenced by long-term DNA methylation in T-ALL-derived cells and downregulated by histone modifications after TCR activation in normal T lymphocytes.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , T-Lymphocytes/immunology , Wnt Proteins/metabolism , Cell Proliferation , DNA Methylation , Down-Regulation , Gene Expression Regulation, Neoplastic , Histone Code , Humans , Interleukin-2/metabolism , Jurkat Cells , Lymphocyte Activation , Receptors, Antigen, T-Cell/genetics , Wnt Proteins/genetics , Wnt Signaling Pathway
12.
Oncol Rep ; 43(4): 1199-1207, 2020 04.
Article in English | MEDLINE | ID: mdl-32323788

ABSTRACT

Ewing sarcoma (ES) is a primary bone marrow tumor that very rarely develops in extra­osseous tissues, such as lung. The hallmark of ES tumors is a translocation between chromosomes 11 and 22, resulting in a fusion protein, commonly referred to as EWS­FLI1. The epigenetic profile (histone acetylation and methylation enrichment of the promoter region) that may regulate the expression of the aberrant transcription factor EWS­FLI1, remains poorly studied and understood. Knowledge of epigenetic patterns associated with covalent histone modification and expression of enzymes associated with this process, can contribute to the understanding of the molecular basis of the disease, as well as to the identification of possible molecular targets involved in expression of the EWS­FLI1 gene, so that therapeutic strategies may be improved in the future. In the present study, the transcriptional activation and repression of the EWS­FLI1 fusion gene in ES was accompanied by selective deposition of histone markers on its promoter. The EWS­FLI1 fusion gene was evaluated in two patients with ES using conventional cytogenetic, fluorescence in situ hybridization and nested PCR assays, which revealed that the aberrant expression of the EWS­FLI1 gene is accompanied by enrichment of H3K4Me3, H3K9ac and H3K27ac at the promoter region.


Subject(s)
Biomarkers, Tumor/genetics , Bone Neoplasms/pathology , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Promoter Regions, Genetic , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/pathology , Adult , Bone Neoplasms/genetics , Female , Histone Code , Humans , In Situ Hybridization, Fluorescence/methods , Male , Middle Aged , Sarcoma, Ewing/genetics , Translocation, Genetic , Young Adult
13.
Toxicol Appl Pharmacol ; 396: 115002, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32277946

ABSTRACT

The ability of environmental pollutants to alter the epigenome with resultant development of behavioral alterations has received more attention in recent years. These alterations can be transmitted and affect later generations that have not been directly in contact with the contaminant. Arsenic (As) is a neurotoxicant and potent epigenetic disruptor that is widespread in the environment; however, the precise potential of As to produce transgenerational effects is unknown. Our study focused on the possible transgenerational effects on behavior by ancestral exposure to doses relevant to the environment of As, and the epigenetic mechanisms that could be involved. Embryos of F0 (ancestral generation) were directly exposed to 50 or 500 ppb of As for 150 days. F0 adults were raised to produce the F1 generation (intergeneration) and subsequently the F2 generation (transgeneration). We evaluated motor and cognitive behavior, neurodevelopment-related genes, and epigenetic markers on the F0 and F2 generation. As proposed in our hypothesis, ancestral arsenic exposure altered motor activity through the development and increased anxiety-like behaviors which were transmitted to the F2 generation. Additionally, we found a reduction in brain-derived neurotrophic factor expression between the F0 and F2 generation, and an increase in methylation on histone H3K4me3 in the nervous system.


Subject(s)
Arsenic/toxicity , Behavior, Animal/drug effects , Epigenesis, Genetic/drug effects , Animals , Arsenic/administration & dosage , Blotting, Western , Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , DNA Methylation/drug effects , Female , Histone Code/drug effects , Histones/metabolism , Male , Motor Activity/drug effects , Motor Activity/genetics , Zebrafish , Zebrafish Proteins/metabolism
14.
Epigenetics Chromatin ; 13(1): 6, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32070414

ABSTRACT

BACKGROUND: Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS: Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS: Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.


Subject(s)
Genomic Instability , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Protein Processing, Post-Translational , HeLa Cells , Histone Code , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Mutation
15.
Int J Mol Sci ; 21(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054074

ABSTRACT

Cardiovascular diseases are being included in the study of developmental origins of health and disease (DOHaD) and essential systemic hypertension has also been added to this field. Epigenetic modifications are one of the main mechanisms leading to early programming of disease. Different environmental factors occurring during critical windows in the early stages of life may leave epigenetic cues, which may be involved in the programming of hypertension when individuals reach adulthood. Such environmental factors include pre-term birth, low weight at birth, altered programming of different organs such as the blood vessels and the kidney, and living in disadvantageous conditions in the programming of hypertension. Mechanisms behind these factors that impact on the programming include undernutrition, oxidative stress, inflammation, emotional stress, and changes in the microbiota. These factors and their underlying causes acting at the vascular level will be discussed in this paper. We also explore the establishment of epigenetic cues that may lead to hypertension at the vascular level such as DNA methylation, histone modifications (methylation and acetylation), and the role of microRNAs in the endothelial cells and blood vessel smooth muscle which participate in hypertension. Since epigenetic changes are reversible, the knowledge of this type of markers could be useful in the field of prevention, diagnosis or epigenetic drugs as a therapeutic approach to hypertension.


Subject(s)
Essential Hypertension/etiology , Adult , Animals , DNA Methylation , Epigenesis, Genetic , Essential Hypertension/genetics , Essential Hypertension/metabolism , Essential Hypertension/pathology , Histone Code , Humans , Microbiota , Oxidative Stress
16.
J Cell Physiol ; 235(6): 5404-5412, 2020 06.
Article in English | MEDLINE | ID: mdl-31907922

ABSTRACT

Epigenetic control is critical for the regulation of gene transcription in mammalian cells. Among the most important epigenetic mechanisms are those associated with posttranslational modifications of chromosomal histone proteins, which modulate chromatin structure and increased accessibility of promoter regulatory elements for competency to support transcription. A critical histone mark is trimethylation of histone H3 at lysine residue 27 (H3K27me3), which is mediated by Ezh2, the catalytic subunit of the polycomb group complex PRC2 to repress transcription. Treatment of cells with the active vitamin D metabolite 1,25(OH)2 D3 , results in transcriptional activation of the CYP24A1 gene, which encodes a 24-hydroxylase enzyme, that is, essential for physiological control of vitamin D3 levels. We report that the Ezh2-mediated deposition of H3K27me3 at the CYP24A1 gene promoter is a requisite regulatory component during transcriptional silencing of this gene in osteoblastic cells in the absence of 1,25(OH)2 D3 . 1,25(OH)2 D3 dependent transcriptional activation of the CYP24A1 gene is accompanied by a rapid release of Ezh2 from the promoter, together with the binding of the H3K27me3-specific demethylase Utx/Kdm6a and thereby subsequent erasing of the H3K27me3 mark. Importantly, we find that these changes in H3K27me3 enrichment at the CYP24A1 gene promoter are highly dynamic, as this modification is rapidly reacquired following the withdrawal of 1,25(OH)2 D3 .


Subject(s)
Cholecalciferol/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Osteosarcoma/genetics , Vitamin D3 24-Hydroxylase/genetics , Animals , Cell Line, Tumor , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Histone Code/genetics , Humans , Osteoblasts/metabolism , Osteosarcoma/pathology , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational/genetics , Rats , Transcriptional Activation/genetics
17.
J Cell Physiol ; 235(6): 5328-5339, 2020 06.
Article in English | MEDLINE | ID: mdl-31868234

ABSTRACT

In bone cells vitamin D dependent regulation of gene expression principally occurs through modulation of gene transcription. Binding of the active vitamin D metabolite, 1,25-dihydroxy vitamin D3 (1,25(OH)2 D3 ) to the vitamin D receptor (VDR) induces conformational changes in its C-terminal domain enabling competency for interaction with physiologically relevant coactivators, including SRC-1. Consequently, regulatory complexes can be assembled that support intrinsic enzymatic activities with competency to posttranslationally modify chromatin histones at target genomic sequences to epigenetically alter transcription. Here we examine specific transitions in representation and/or enrichment of epigenetic histone marks during 1,25(OH)2 D3 mediated upregulation of CYP24A1 gene expression in osteoblastic cells. This gene encodes the 24-hydroxylase enzyme, essential for biological control of vitamin D levels. We demonstrate that as the CYP24A1 gene promoter remains transcriptionally silent, there is enrichment of H4R3me2s together with its "writing" enzyme PRMT5 and decreased abundance of the istone H3 and H4 acetylation, H3R17me2a, and H4R3me2a marks as well as of their corresponding "writers." Exposure of osteoblastic cells to 1,25(OH)2 D3 stimulates the recruitment of a VDR/SRC-1 containing complex to the CYP24A1 promoter to mediate increased H3/H4 acetylation. VDR/SRC-1 binding occurs concomitant with the release of PRMT5 and the recruitment of the arginine methyltransferases CARM1 and PRMT1 to catalyze the deposition of the H3R17me2a and H4R3me2a marks, respectively. Our results indicate that these dynamic transitions of histone marks at the CYP24A1 promoter, provide a "chromatin context" that is transcriptionally competent for activation of the CYP24A1 gene in osteoblastic cells in response to 1,25(OH)2 D3 .


Subject(s)
Protein-Arginine N-Methyltransferases/genetics , Receptors, Calcitriol/genetics , Transcription, Genetic , Vitamin D3 24-Hydroxylase/genetics , Cholecalciferol/genetics , Chromatin/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Histone Code/genetics , Histones/genetics , Humans , Osteoblasts/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Repressor Proteins/genetics , Transcriptional Activation/genetics
18.
Clin Transl Oncol ; 22(7): 963-977, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31630356

ABSTRACT

Glioma is the most common primary tumor of the nervous system, and approximately 50% of patients exhibit the most aggressive form of the cancer, glioblastoma. Currently, considerable research in glioblastoma therapeutics is aimed at developing vaccines or drugs to target key molecules for combating this disease. Studies on plant natural products from spices, vegetables, fruits, teas, and traditional medicinal herbs display that these plant-derived natural products can act as effective antioxidant and anti-tumor agents. The advancements in metabolomics and in genomics have enabled researchers to better evaluate the potential use of immunomodulatory natural plant products for treatment of different cancerous diseases. The glioblastoma protective activities of the different natural plant products lie in their effects on cellular defenses such as antioxidant enzyme systems, detoxification and the stimulation of anti-inflammatory, anti-metastasis responses and by modifying epigenetic alterations, often through targeting specific key transcription factors such as activator protein, nuclear factor kappa B, signal transducers and activators of transcription and so on. Here, we review recent knowledge on the molecular mechanisms by which different inflammatory activities are linked to progression of glioblastoma and the particular immunomodulatory plant products that may reduce inflammation and the associated progression and metastasis of glioblastoma both in vitro and in vivo. Furthermore, their impact on the epigenetic alterations will also be discussed.


Subject(s)
Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Plant Preparations/therapeutic use , Apoptosis , Biological Products , Blood-Brain Barrier , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Cycle , Cell Proliferation , DNA Methylation , Drug Resistance, Neoplasm , Drug Therapy, Combination , Epigenesis, Genetic , Glioblastoma/genetics , Glioblastoma/metabolism , Histone Code , Humans , MicroRNAs , Neovascularization, Pathologic
19.
Epigenetics ; 14(11): 1088-1101, 2019 11.
Article in English | MEDLINE | ID: mdl-31216927

ABSTRACT

There is growing evidence that histone lysine demethylases (KDMs) play critical roles in the regulation of embryo development. This study investigated if KDM7A, a lysine demethylase known to act on mono-(me1) and di-(me2) methylation of H3K9 and H3K27, participates in the regulation of early embryo development. Knockdown of KDM7A mRNA reduced blastocyst formation by 69.2% in in vitro fertilized (IVF), 48.4% in parthenogenetically activated (PA), and 48.1% in somatic cell nuclear transfer (SCNT) embryos compared to controls. Global immunofluorescence (IF) signal in KDM7A knockdown compared to control embryos was increased for H3K27me1 on D7, for H3K27me2 on D3 and D5, for H3K9me1 on D5 and D7, and for H3K9me2 on D5 embryos, but decreased for H3K9me1, me2 and me3 on D3. Moreover, KDM7A knockdown altered mRNA expression, including the downregulation of KDM3C on D3, NANOG on D5 and D7, and OCT4 on D7 embryos, and the upregulation of CDX2, KDM4B and KDM6B on D5 embryos. On D3 and D5 embryos, total cell number and mRNA expression of embryo genome activation (EGA) markers (EIF1AX and PPP1R15B) were not affected by KDM7A knockdown. However, the ratio of inner cell mass (ICM)/total number of cells in D7 blastocysts was reduced by 45.5% in KDM7A knockdown compared to control embryos. These findings support a critical role for KDM7A in the regulation of early development and cell lineage specification in porcine embryos, which is likely mediated through the modulation of H3K9me1/me2 and H3K27me1/me2 levels, and changes in the expression of other KDMs and pluripotency genes.


Subject(s)
Cell Lineage , Histone Demethylases/metabolism , Animals , Blastocyst/metabolism , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Histone Code , Histone Demethylases/genetics , Swine
20.
Clin Epigenetics ; 10(1): 139, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30409182

ABSTRACT

BACKGROUND: In the present study, we investigated the molecular mechanisms underlying the pro-apoptotic effects of quercetin (Qu) by evaluating the effect of Qu treatment on DNA methylation and posttranslational histone modifications of genes related to the apoptosis pathway. This study was performed in vivo in two human xenograft acute myeloid leukemia (AML) models and in vitro using HL60 and U937 cell lines. RESULTS: Qu treatment almost eliminates DNMT1 and DNMT3a expression, and this regulation was in part STAT-3 dependent. The treatment also downregulated class I HDACs. Furthermore, treatment of the cell lines with the proteasome inhibitor, MG132, together with Qu prevented degradation of class I HDACs compared to cells treated with Qu alone, indicating increased proteasome degradation of class I HDACS by Qu. Qu induced demethylation of the pro-apoptotic BCL2L11, DAPK1 genes, in a dose- and time-dependent manner. Moreover, Qu (50 µmol/L) treatment of cell lines for 48 h caused accumulation of acetylated histone 3 and histone 4, resulting in three- to ten fold increases in the promoter region of DAPK1, BCL2L11, BAX, APAF1, BNIP3, and BNIP3L. In addition, Qu treatment significantly increased the mRNA levels of all these genes, when compared to cells treated with vehicle only (control cells) (*p < 0.05). CONCLUSIONS: In summary, our results showed that enhanced apoptosis, induced by Qu, might be caused in part by its DNA demethylating activity, by HDAC inhibition, and by the enrichment of H3ac and H4ac in the promoter regions of genes involved in the apoptosis pathway, leading to their transcription activation.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leupeptins/administration & dosage , Quercetin/administration & dosage , Animals , DNA Methyltransferase 3A , Down-Regulation , Drug Synergism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/drug effects , HL-60 Cells , Histone Code/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leupeptins/pharmacology , Mice , Promoter Regions, Genetic/drug effects , Quercetin/pharmacology , U937 Cells , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL