Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.161
Filter
1.
Arch Dermatol Res ; 316(6): 312, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822924

ABSTRACT

Merkel cell carcinoma (MCC) is an aggressive neuroendocrine skin cancer with high rates of metastasis and mortality. In vitro studies suggest that selinexor (KPT-330), an inhibitor of exportin 1, may be a targeted therapeutic option for MCC. This selective inhibitor prevents the transport of oncogenic mRNA out of the nucleus. Of note, 80% of MCC tumors are integrated with Merkel cell polyomavirus (MCPyV), and virally encoded tumor-antigens, small T (sT) and large T (LT) mRNAs may require an exportin transporter to relocate to the cytoplasm and modulate host tumor-suppressing pathways. To explore selinexor as a targeted therapy for MCC, we examine its ability to inhibit LT and sT antigen expression in vitro and its impact on the prostaglandin synthesis pathway. Protein expression was determined through immunoblotting and quantified by densitometric analysis. Statistical significance was determined with t-test. Treatment of MCPyV-infected cell lines with selinexor resulted in a significant dose-dependent downregulation of key mediators of the prostaglandin synthesis pathway. Given the role of prostaglandin synthesis pathway in MCC, our findings suggest that selinexor, alone or in combination with immunotherapy, could be a promising treatment for MCPyV-infected MCC patients who are resistant to chemotherapy and immunotherapy.


Subject(s)
Carcinoma, Merkel Cell , Hydrazines , Skin Neoplasms , Triazoles , Hydrazines/pharmacology , Hydrazines/therapeutic use , Humans , Carcinoma, Merkel Cell/virology , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/pathology , Triazoles/pharmacology , Triazoles/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/virology , Skin Neoplasms/pathology , Cell Line, Tumor , Prostaglandins/metabolism , Merkel cell polyomavirus , Exportin 1 Protein , Karyopherins/metabolism , Karyopherins/antagonists & inhibitors , Antigens, Viral, Tumor , Receptors, Cytoplasmic and Nuclear/metabolism
2.
Platelets ; 35(1): 2359028, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832545

ABSTRACT

The purpose of this study is to investigate the molecular interactions and potential therapeutic uses of Eltrombopag (EPAG), a small molecule that activates the cMPL receptor. EPAG has been found to be effective in increasing platelet levels and alleviating thrombocytopenia. We utilized computational techniques to predict and confirm the complex formed by the ligand (EPAG) and the Thrombopoietin receptor (TPO-R) cMPL, elucidating the role of RAS, JAK-2, STAT-3, and other essential elements for downstream signaling. Molecular dynamics (MD) simulations were employed to evaluate the stability of the ligand across specific proteins, showing favorable characteristics. For the first time, we examined the presence of TPO-R in human umbilical cord mesenchymal stem cells (hUCMSC) and human gingival mesenchymal stem cells (hGMSC) proliferation. Furthermore, treatment with EPAG demonstrated angiogenesis and vasculature formation of endothelial lineage derived from both MSCs. It also indicated the activation of critical factors such as RUNX-1, GFI-1b, VEGF-A, MYB, GOF-1, and FLI-1. Additional experiments confirmed that EPAG could be an ideal molecule for protecting against UVB radiation damage, as gene expression (JAK-2, ERK-2, MCL-1, NFkB, and STAT-3) and protein CD90/cMPL analysis showed TPO-R activation in both hUCMSC and hGMSC. Overall, EPAG exhibits significant potential in treating radiation damage and mitigating the side effects of radiotherapy, warranting further clinical exploration.


What is the context?● Chemotherapy, radiation treatment, or immunological disorders can cause a decrease in platelet count (thrombocytopenia) or decrease all blood cell types (pancytopenia) in the bone marrow. This can make it challenging to choose the appropriate cancer treatment plan.● Eltrombopag (EPAG) is an oral non-peptide thrombopoietin (TPO) mimetic that activates the cMPL receptor in the body. This activation leads to cell differentiation and proliferation, stimulating platelet production and reducing thrombocytopenia. The cMPL receptor is present in liver cells, megakaryocytes, and hematopoietic cells. However, its effects on stem cell proliferation and differentiation are not entirely understood.What is the new?● This study delves into the molecular interactions and therapeutic applications of EPAG, a small molecule that activates cMPL (TPO-R).● The study offers a comprehensive analysis of the ligand-receptor complex formation, including an examination of downstream signaling elements. Furthermore, molecular dynamics simulations demonstrate the stability of the ligand when interacting with targeted proteins.● The research investigates the presence of TPO-R on stem cell-derived endothelial cells, shedding insight into the ability of EPAG TPO-mimetic to promote angiogenesis and vasculature formation.● The study revealed that EPAG has the potential to protect against UVB-induced radiation damage and stimulate stem cell growth.What is the implications?The study emphasizes the potential of EPAG as a promising option for addressing radiation injury and minimizing the adverse effects of radiotherapy. It could revolutionize treatments not only for thrombocytopenia but also for enhancing the growth of stem cells. Furthermore, the research deepens our understanding of EPAG's molecular mechanisms, providing valuable insights for developing future drugs and therapeutic approaches for cell therapy to treat radiation damage.


Subject(s)
Benzoates , Pyrazoles , Receptors, Thrombopoietin , Humans , Pyrazoles/pharmacology , Benzoates/pharmacology , Receptors, Thrombopoietin/metabolism , Hydrazones/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Molecular Dynamics Simulation , Angiogenesis
3.
Diagn Microbiol Infect Dis ; 109(3): 116349, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744093

ABSTRACT

Bacterial vaginosis (BV) is a prevalent vaginal illness resulting from a disruption in the vaginal microbial equilibrium. The vaginal microbiota has been shown to have a substantial impact on the development and continuation of BV. This work utilized 16S rRNA sequence analysis of vaginal microbiome samples (Control vs BV samples) utilizing Parallel-Meta 3 to investigate the variations in microbial composition. The unique genes identified were used to determine prospective therapeutic targets and their corresponding inhibitory ligands. Further, molecular docking was conducted and then MD simulations were carried out to confirm the docking outcomes. In the BV samples, we detected several anaerobic bacteria recognized for their ability to generate biofilms, namely Acetohalobium, Anaerolineaceae, Desulfobacteraceae, and others. Furthermore, we identified Dalfopristin, Clorgyline, and Hydrazine as potential therapeutic options for the management of BV. This research provides new insights into the causes of BV and shows the potential effectiveness of novel pharmacological treatments.


Subject(s)
Hydrazines , Microbiota , RNA, Ribosomal, 16S , Vagina , Vaginosis, Bacterial , Female , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , RNA, Ribosomal, 16S/genetics , Humans , Microbiota/drug effects , Microbiota/genetics , Vagina/microbiology , Hydrazines/pharmacology , Hydrazines/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Molecular Docking Simulation , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification
4.
J Agric Food Chem ; 72(23): 12915-12924, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807027

ABSTRACT

Plant pathogenic fungi pose a significant threat to agricultural production, necessitating the development of new and more effective fungicides. The ring replacement strategy has emerged as a highly successful approach in molecular design. In this study, we employed the ring replacement strategy to successfully design and synthesize 32 novel hydrazide derivatives containing diverse heterocycles, such as thiazole, isoxazole, pyrazole, thiadiazole, 1,3,4-oxadiazole, 1,2,4-oxadiazole, thiophene, pyridine, and pyrazine. Their antifungal activities were evaluated in vitro and in vivo. Bioassay results revealed that most of the title compounds displayed remarkable antifungal activities in vitro against four tested phytopathogenic fungi, including Fusarium graminearum, Botrytis cinerea, Sclerotinia sclerotiorum, and Rhizoctonia solani. Especially, compound 5aa displayed a broad spectrum of antifungal activity against F. graminearum, B. cinerea, S. sclerotiorum, and R. solani, with the corresponding EC50 values of 0.12, 4.48, 0.33, and 0.15 µg/mL, respectively. In the antifungal growth assay, compound 5aa displayed a protection efficacy of 75.5% against Fusarium head blight (FHB) at a concentration of 200 µg/mL. In another in vivo antifungal activity evaluation, compound 5aa exhibited a noteworthy protective efficacy of 92.0% against rape Sclerotinia rot (RSR) at a concentration of 100 µg/mL, which was comparable to the positive control tebuconazole (97.5%). The existing results suggest that compound 5aa has a broad-spectrum antifungal activity. Electron microscopy observations showed that compound 5aa might cause mycelial abnormalities and organelle damage in F. graminearum. Moreover, in the in vitro enzyme assay, we found that the target compounds 5aa, 5ab, and 5ca displayed significant inhibitory effects toward succinate dehydrogenase, with the corresponding IC50 values of 1.62, 1.74, and 1.96 µM, respectively, which were superior to that of boscalid (IC50 = 2.38 µM). Additionally, molecular docking and molecular dynamics simulation results revealed that compounds 5aa, 5ab, and 5ca have the capacity to bind in the active pocket of succinate dehydrogenase (SDH), establishing hydrogen-bonding interactions with neighboring amino acid residues.


Subject(s)
Ascomycota , Botrytis , Drug Design , Fungicides, Industrial , Fusarium , Plant Diseases , Rhizoctonia , Succinate Dehydrogenase , Succinate Dehydrogenase/antagonists & inhibitors , Fusarium/drug effects , Fusarium/growth & development , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Structure-Activity Relationship , Ascomycota/drug effects , Botrytis/drug effects , Botrytis/growth & development , Rhizoctonia/drug effects , Plant Diseases/microbiology , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microbial Sensitivity Tests , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis , Molecular Structure , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis
5.
J Steroid Biochem Mol Biol ; 242: 106545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38762058

ABSTRACT

Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor ß, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.


Subject(s)
Antineoplastic Agents , Molecular Docking Simulation , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Steroids/chemistry , Steroids/pharmacology , Semicarbazones/pharmacology , Semicarbazones/chemistry , Semicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiosemicarbazones/chemistry , Drug Screening Assays, Antitumor
6.
J Med Chem ; 67(11): 8932-8961, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38814290

ABSTRACT

This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.


Subject(s)
Antifungal Agents , Candida albicans , Microbial Sensitivity Tests , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Candida albicans/drug effects , Hemolysis/drug effects , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Naphthalenes/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacology
7.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779960

ABSTRACT

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Subject(s)
Drug Design , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Quantitative Structure-Activity Relationship , Rhizoctonia , Triazoles , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Plant Diseases/microbiology , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology
8.
Bioorg Chem ; 148: 107481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795583

ABSTRACT

Atopic dermatitis is a chronic inflammatory skin disease characterized by intense itching and frequent skin barrier dysfunctions. EGR-1 is a transcription factor that aggravates the pathogenesis of atopic dermatitis by promoting the production of various inflammatory cytokines. Three 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamides (IT21, IT23, and IT25) were identified as novel inhibitors of EGR-1 DNA-binding activity. In silico docking experiments were performed to elucidate the binding conditions of the EGR-1 zinc-finger (ZnF) DNA-binding domain. Electrophoretic mobility shift assays confirmed the targeted binding effect on the EGR-1 ZnF DNA-binding domain, leading to dose-dependent dissociation of the EGR-1-DNA complex. At the functional cellular level, IT21, IT23, and IT25 effectively reduced mRNA expression of TNFα-induced EGR-1-regulated inflammatory genes, particularly in HaCaT keratinocytes inflamed by TNFα. In the in vivo efficacy study, IT21, IT23, and IT25 demonstrated the potential to alleviate atopic dermatitis-like skin lesions in the ear skin of BALB/c mice. These findings suggest that targeting the EGR-1 ZnF DNA-binding domain with 2-(2-oxoindolin-3-ylidene)hydrazinecarbothioamide derivatives (IT21, IT23, and IT25) could serve as lead compounds for the development of potential therapeutic agents against inflammatory skin disorders, including atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Drug Design , Early Growth Response Protein 1 , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/pathology , Humans , Animals , Mice , Structure-Activity Relationship , Early Growth Response Protein 1/antagonists & inhibitors , Early Growth Response Protein 1/metabolism , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Mice, Inbred BALB C , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Hydrazines/pharmacology , Hydrazines/chemistry , Hydrazines/chemical synthesis
9.
J Agric Food Chem ; 72(21): 11938-11948, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752540

ABSTRACT

The pursuit of new succinate dehydrogenase (SDH) inhibitors is a leading edge in fungicide research and development. The use of 3D quantitative structure-activity relationship (3D-QSAR) models significantly enhances the development of compounds with potent antifungal properties. In this study, we leveraged the natural product coumarin as a molecular scaffold to synthesize 74 novel 3-coumarin hydrazide derivatives. Notably, compounds 4ap (0.28 µg/mL), 6ae (0.32 µg/mL), and 6ah (0.48 µg/mL) exhibited exceptional in vitro effectiveness against Rhizoctonia solani, outperforming the commonly used fungicide boscalid (0.52 µg/mL). Furthermore, compounds 4ak (0.88 µg/mL), 6ae (0.61 µg/mL), 6ah (0.65 µg/mL), and 6ak (1.11 µg/mL) showed significant activity against Colletotrichum orbiculare, surpassing both the SDHI fungicide boscalid (43.45 µg/mL) and the broad-spectrum fungicide carbendazim (2.15 µg/mL). Molecular docking studies and SDH enzyme assays indicate that compound 4ah may serve as a promising SDHI fungicide. Our ongoing research aims to refine this 3D-QSAR model further, enhance molecular design, and conduct additional bioactivity assays.


Subject(s)
Coumarins , Fungicides, Industrial , Quantitative Structure-Activity Relationship , Rhizoctonia , Succinate Dehydrogenase , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Rhizoctonia/drug effects , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Colletotrichum/drug effects , Molecular Structure , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Hydrazines/chemistry , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Molecular Docking Simulation , Halogenation , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis
10.
An Acad Bras Cienc ; 96(2): e20230375, 2024.
Article in English | MEDLINE | ID: mdl-38747836

ABSTRACT

In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.83 µM) and Leishmania amazonensis (IC50 9.65 µM). 4-Bromo-N'-(1,4-dioxo-1,4-dihydronaphthalen-2-yl)benzohydrazide (16) exhibited leishmanicidal activity (IC50 12.16 µM). Regarding trypanocide activity, compound 13 was low cytotoxic to LLC-MK2 cells (SI = 95.28). Furthermore, through molecular modeling studies, the cysteine proteases cruzain, rhodesain and CPB2.8 were identified as the potential biological targets.


Subject(s)
Drug Design , Hydrazines , Leishmania , Naphthoquinones , Trypanocidal Agents , Trypanosoma cruzi , Naphthoquinones/pharmacology , Naphthoquinones/chemistry , Naphthoquinones/chemical synthesis , Trypanosoma cruzi/drug effects , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Leishmania/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Parasitic Sensitivity Tests , Inhibitory Concentration 50 , Structure-Activity Relationship , Cysteine Endopeptidases
11.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773631

ABSTRACT

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Subject(s)
Exportin 1 Protein , Hodgkin Disease , Karyopherins , Receptors, Cytoplasmic and Nuclear , Humans , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Animals , Mice , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Hodgkin Disease/metabolism , Hodgkin Disease/genetics , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , Cell Line, Tumor , Mediastinal Neoplasms/drug therapy , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Mediastinal Neoplasms/genetics , Xenograft Model Antitumor Assays , Triazoles/pharmacology , Triazoles/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Female , STAT6 Transcription Factor/metabolism , Molecular Targeted Therapy
12.
Int Immunopharmacol ; 134: 112212, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728882

ABSTRACT

Chronic myeloid leukemia (CML) is a type of hematologic malignancies caused by BCR-ABL chimeric oncogene. Resistance to tyrosine kinase inhibitors (TKIs) leads to the progression of CML into advanced stages. Selinexor is a small molecule inhibitor that targets a nuclear transporter called Exportin 1. Combined with imatinib, selinexor has been shown to disrupt nuclear-cytoplasmic transport signal of leukemia stem cells, resulting in cell death. The objective of this study was to investigate the mechanism of drug resistance to selinexor in CML. We established K562 cell line resistant to selinexor and conducted single cell dynamic transcriptome sequencing to analyze the heterogeneity within the parental and selinexor resistant cell populations. We identified specific gene expression changes associated with resistance to selinexor. Our results revealed differential expression patterns in genes such as MT2A, TFPI, MTND3, and HMGCS1 in the total RNA, as well as MT-TW, DNAJB1, and HSPB1 in the newly synthesized RNA, between the parental and drug-resistant groups. By applying pseudo-time analysis, we discovered that a specific cluster of cells exhibited characteristics of tumor stem cells. Furthermore, we observed a gradual decrease in the expression of ferroptosis-related molecules as drug resistance developed. In vitro experiments confirmed that the combination of a ferroptosis inducer called RSL3 effectively overcame drug resistance. In conclusion, this study revealed the resistance mechanism of selinexor in CML. In conclusion, we identified a subgroup of CML cells with tumor stem cell properties and demonstrated that ferroptosis inducer improved the efficacy of selinexor in overcoming drug resistance.


Subject(s)
Drug Resistance, Neoplasm , Hydrazines , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Triazoles , Humans , Hydrazines/pharmacology , Hydrazines/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Drug Resistance, Neoplasm/genetics , Triazoles/pharmacology , K562 Cells , Single-Cell Analysis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , RNA-Seq , Single-Cell Gene Expression Analysis
13.
Exp Parasitol ; 261: 108749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593864

ABSTRACT

Trypanosoma cruzi (T. cruzi) causes Chagas, which is a neglected tropical disease (NTD). WHO estimates that 6 to 7 million people are infected worldwide. Current treatment is done with benznidazole (BZN), which is very toxic and effective only in the acute phase of the disease. In this work, we designed, synthesized, and characterized thirteen new phenoxyhydrazine-thiazole compounds and applied molecular docking and in vitro methods to investigate cell cytotoxicity, trypanocide activity, nitric oxide (NO) production, cell death, and immunomodulation. We observed a higher predicted affinity of the compounds for the squalene synthase and 14-alpha demethylase enzymes of T. cruzi. Moreover, the compounds displayed a higher predicted affinity for human TLR2 and TLR4, were mildly toxic in vitro for most mammalian cell types tested, and LIZ531 (IC50 2.8 µM) was highly toxic for epimastigotes, LIZ311 (IC50 8.6 µM) for trypomastigotes, and LIZ331 (IC50 1.9 µM) for amastigotes. We observed that LIZ311 (IC50 2.5 µM), LIZ431 (IC50 4.1 µM) and LIZ531 (IC50 5 µM) induced 200 µg/mL of NO and JM14 induced NO production in three different concentrations tested. The compound LIZ331 induced the production of TNF and IL-6. LIZ311 induced the secretion of TNF, IFNγ, IL-2, IL-4, IL-10, and IL-17, cell death by apoptosis, decreased acidic compartment formation, and induced changes in the mitochondrial membrane potential. Taken together, LIZ311 is a promising anti-T. cruzi compound is not toxic to mammalian cells and has increased antiparasitic activity and immunomodulatory properties.


Subject(s)
Chagas Disease , Molecular Docking Simulation , Nitric Oxide , Thiazoles , Trypanocidal Agents , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Thiazoles/pharmacology , Thiazoles/chemistry , Chagas Disease/drug therapy , Chagas Disease/immunology , Humans , Animals , Mice , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Inhibitory Concentration 50 , Membrane Potential, Mitochondrial/drug effects , Hydrazines/pharmacology , Hydrazines/chemistry , Cytokines/metabolism , Mice, Inbred BALB C
14.
Dalton Trans ; 53(19): 8315-8327, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666341

ABSTRACT

The development of coordination compounds with antineoplastic therapeutic properties is currently focused on non-covalent interactions with deoxyribonucleic acid (DNA). Additionally, the interaction profiles of these compounds with globular plasma proteins, particularly serum albumin, warrant thorough evaluation. In this study, we report on the interactions between biomolecules and complexes featuring hydrazone-type imine ligands coordinated with vanadium. The potential to enhance the therapeutic efficiency of these compounds through mitochondrial targeting is explored. This targeting is facilitated by the derivatization of ligands with triphenylphosphonium groups. Thus, this work presents the synthesis, characterization, interactions, and cytotoxicity of dioxidovanadium(V) complexes (C1-C5) with a triphenylphosphonium moiety. These VV-species are coordinated to hydrazone-type iminic ligands derived from (3-formyl-4-hydroxybenzyl)triphenylphosphonium chloride ([AH]Cl) and aromatic hydrazides ([H2L1]Cl-[H2L5]Cl). The structures of the five complexes were elucidated through single-crystal X-ray diffraction and vibrational spectroscopies, confirming the presence of dioxidovanadium(V) species in various geometries with degrees of distortion (τ = 0.03-0.50) and highlighting their zwitterionic characteristics. The molecular structural stability of C1-C5 in solution was ascertained using 1H, 19F, 31P, and 51V-nuclear magnetic resonance. Moreover, their interactions with biomolecules were evaluated using diverse spectroscopic methodologies and molecular docking, indicating moderate interactions (Kb ≈ 104 M-1) with calf thymus DNA in the minor groove and with human serum albumin, predominantly in the superficial IB subdomain. Lastly, the cytotoxic potentials of these complexes were assessed in keratinocytes of the HaCaT lineage, revealing that C1-C5 induce a reduction in metabolic activity and cell viability through apoptotic pathways.


Subject(s)
Antineoplastic Agents , Coordination Complexes , DNA , Organophosphorus Compounds , Vanadium , Humans , Vanadium/chemistry , Vanadium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , DNA/metabolism , DNA/chemistry , Cell Survival/drug effects , Hydrazines/chemistry , Hydrazines/pharmacology , Animals , Molecular Docking Simulation , Serum Albumin, Human/chemistry , Serum Albumin, Human/metabolism , Molecular Structure , Ligands , Cell Line, Tumor , Drug Screening Assays, Antitumor
15.
Sci Rep ; 14(1): 9305, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38653804

ABSTRACT

Dysregulated nuclear-cytoplasmic trafficking has been shown to play a role in oncogenesis in several types of solid tumors and hematological malignancies. Exportin 1 (XPO1) is responsible for the nuclear export of several proteins and RNA species, mainly tumor suppressors. KPT-330, a small molecule inhibitor of XPO1, is approved for treating relapsed multiple myeloma and diffuse large B-cell lymphoma. Cutaneous T-cell lymphoma (CTCL) is an extranodal non-Hodgkin lymphoma with an adverse prognosis and limited treatment options in advanced stages. The effect of therapeutically targeting XPO1 with KPT-330 in CTCL has not been established. We report that XPO1 expression is upregulated in CTCL cells. KPT-330 reduces cell proliferation, induces G1 cell cycle arrest and apoptosis. RNA-sequencing was used to explore the underlying mechanisms. Genes associated with the cell cycle and the p53 pathway were significantly enriched with KPT-330 treatment. KPT-330 suppressed XPO1 expression, upregulated p53, p21WAF1/Cip1, and p27Kip1 and their nuclear localization, and downregulated anti-apoptotic protein (Survivin). The in vivo efficacy of KPT-330 was investigated using a bioluminescent xenograft mouse model of CTCL. KPT-330 blocked tumor growth and prolonged survival (p < 0.0002) compared to controls. These findings support investigating the use of KPT-330 and next-generation XPO1 inhibitors in CTCL.


Subject(s)
Apoptosis , Cyclin-Dependent Kinase Inhibitor p21 , Cyclin-Dependent Kinase Inhibitor p27 , Exportin 1 Protein , Karyopherins , Lymphoma, T-Cell, Cutaneous , Receptors, Cytoplasmic and Nuclear , Triazoles , Tumor Suppressor Protein p53 , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Cutaneous/metabolism , Lymphoma, T-Cell, Cutaneous/genetics , Apoptosis/drug effects , Animals , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Karyopherins/metabolism , Karyopherins/antagonists & inhibitors , Mice , Cell Line, Tumor , Triazoles/pharmacology , Cell Proliferation/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Xenograft Model Antitumor Assays , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects
16.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593611

ABSTRACT

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper , DNA , Copper/chemistry , DNA/chemistry , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Hydrazines/chemistry , Hydrazines/pharmacology , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Molecular Docking Simulation , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis
17.
Ann Hematol ; 103(7): 2311-2322, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519605

ABSTRACT

Acute myeloid leukemia (AML) patients with DNA methyltransferase 3A (DNMT3A) mutation display poor prognosis, and targeted therapy is not available currently. Our previous study identified increased expression of Exportin1 (XPO1) in DNMT3AR882H AML patients. Therefore, we further investigated the therapeutic effect of XPO1 inhibition on DNMT3AR882H AML. Three types of DNMT3AR882H AML cell lines were generated, and XPO1 was significantly upregulated in all DNMT3AR882H cells compared with the wild-type (WT) cells. The XPO1 inhibitor selinexor displayed higher potential in the inhibition of proliferation, promotion of apoptosis, and blockage of the cell cycle in DNMT3AR882H cells than WT cells. Selinexor also significantly inhibited the proliferation of subcutaneous tumors in DNMT3AR882H AML model mice. Primary cells with DNMT3A mutations were more sensitive to selinexor in chemotherapy-naive AML patients. RNA sequencing of selinexor treated AML cells revealed that the majority of metabolic pathways were downregulated after selinexor treatment, with the most significant change in the glutathione metabolic pathway. Glutathione inhibitor L-Buthionine-(S, R)-sulfoximine (BSO) significantly enhanced the apoptosis-inducing effect of selinexor in DNMT3AWT/DNMT3AR882H AML cells. In conclusion, our work reveals that selinexor displays anti-leukemia efficacy against DNMT3AR882H AML via downregulating glutathione pathway. Combination of selinexor and BSO provides novel therapeutic strategy for AML treatment.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Exportin 1 Protein , Glutathione , Hydrazines , Karyopherins , Leukemia, Myeloid, Acute , Mutation , Receptors, Cytoplasmic and Nuclear , Triazoles , Humans , Animals , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Karyopherins/antagonists & inhibitors , Karyopherins/genetics , Mice , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , Glutathione/metabolism , Hydrazines/pharmacology , Hydrazines/therapeutic use , Triazoles/pharmacology , Triazoles/therapeutic use , Xenograft Model Antitumor Assays , Down-Regulation/drug effects , Cell Line, Tumor , Female , Male , Apoptosis/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Proliferation/drug effects
18.
Ann Hematol ; 103(5): 1697-1704, 2024 May.
Article in English | MEDLINE | ID: mdl-38536476

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) stands as a pivotal treatment for hematologic malignancies, often considered the sole effective treatment option. A frequent complication following allo-HSCT is poor graft function (PGF), with one of its primary manifestations being persistent thrombocytopenia (PT), comprising prolonged isolated thrombocytopenia (PIT) and secondary failure of platelet recovery (SFPR). Conventional treatment methods have had poor efficacy and a high transplantation-associated mortality rate. In recent years, the efficacy of eltrombopag has been reported in the treatment of post-transplantation PT, and additional thrombopoietin receptor agonists (TPO-RA) have been developed. Herombopag is a next-generation TPO-RA which has strong proliferation-promoting effects on human TPO-R-expressing cells (32D-MPL) and hematopoietic progenitor cells in vitro. We reviewed eighteen patients with transplantation-associated thrombocytopenia who received herombopag when eltrombopag was ineffective or poorly tolerated and evaluated its efficacy including effects on survival. Herombopag was administered at a median time of 197 days post-transplantation. Six patients achieved complete response (CR), with a median time to CR of 56 days. Five patients achieved partial response (PR), and the median time to PR was 43 days. Seven patients were considered to have no response (NR). The overall response (OR) rate was 61.1%, and the cumulative incidence (CI) of OR was 90.2%. No patients developed herombopag-associated grade 3-4 toxicity. The median follow-up period was 6.5 months. Twelve patients survived and six patients died, with an overall survival rate of 66.7%. This is the first study to demonstrate the efficacy and safety of herombopag in transplantation-associated thrombocytopenia after failing eltrombopag, introducing a new approach in the treatment of PT following allo-HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Pyrazoles , Thrombocytopenia , Humans , Thrombocytopenia/drug therapy , Thrombocytopenia/etiology , Benzoates/therapeutic use , Benzoates/pharmacology , Hydrazines/therapeutic use , Hydrazines/pharmacology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Pathologic Complete Response , Retrospective Studies
19.
Arch Pharm (Weinheim) ; 357(7): e2400064, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38498883

ABSTRACT

With the rise of multidrug-resistant tuberculosis, the imperative for an alternative and superior treatment regimen, incorporating novel mechanisms of action, has become crucial. In pursuit of this goal, we have developed and synthesized a new series of rhodanine-linked enamine-carbohydrazide derivatives, exploring their potential as inhibitors of mycobacterial carbonic anhydrase. The findings reveal their efficacy, displaying notable selectivity toward the mycobacterial carbonic anhydrase 2 (mtCA 2) enzyme. While exhibiting moderate activity against human carbonic anhydrase isoforms, this series demonstrates promising selectivity, positioning these compounds as potential antitubercular agents. Compound 6d was the best one from the series with a Ki value of 9.5 µM toward mtCA 2. Most of the compounds displayed moderate to good inhibition against the Mtb H37Rv strain; compound 11k showed a minimum inhibitory concentration of 1 µg/mL. Molecular docking studies revealed that compounds 6d and 11k show metal coordination with the zinc ion, like classical CA inhibitors.


Subject(s)
Antitubercular Agents , Carbonic Anhydrase Inhibitors , Drug Design , Hydrazines , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis , Rhodanine , Rhodanine/pharmacology , Rhodanine/chemical synthesis , Rhodanine/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/chemistry , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Humans , Hydrazines/pharmacology , Hydrazines/chemical synthesis , Hydrazines/chemistry , Molecular Structure , Dose-Response Relationship, Drug , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase II/metabolism
20.
Bioorg Med Chem ; 100: 117610, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38306882

ABSTRACT

Clinically available antifungal drugs have therapeutic limitations due to toxicity, narrow spectrum of activity, and intrinsic or acquired drug resistance. Thus, there is an urgent need for new broad-spectrum antifungal agents with low toxicity and a novel mechanism of action. In this context, we have successfully identified several highly promising lead compounds, i.e., aromatic N'-(salicylidene)carbohydrazides, exhibiting excellent antifungal activities against Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus and several other fungi both in vitro and in vivo. Building upon these highly promising results, 71 novel N'-(salicylidene)heteroarenecarbohydrazides 5 were designed, synthesized and their antifungal activities examined against fungi. Based on the SAR study, four highly promising lead compounds, i.e., 5.6a, 5.6b, 5.7b and 5.13a were identified, which exhibited excellent potency against C. neoformans, C. albicans and A. fumigatus, and displayed impressive time-kill profiles against C. neoformans with exceptionally high selectivity indices (SI ≥ 500). These four lead compounds also showed synergy with clinical antifungal drugs, fluconazole, caspofungin (CS) and amphotericin B against C. neoformans. For the SAR study, we also employed quantitative structure-activity relationship (QSAR) analysis by taking advantage of the accumulated data on a large number of aromatic and heteroaromatic N'-(salicylidene)carbohydrazides, which successfully led to rational design and selection of promising compounds for chemical synthesis and biological evaluation.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Hydrazines , Amphotericin B , Antifungal Agents/chemistry , Candida albicans , Fluconazole , Microbial Sensitivity Tests , Hydrazines/chemistry , Hydrazines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...