Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.536
1.
Platelets ; 35(1): 2359028, 2024 Dec.
Article En | MEDLINE | ID: mdl-38832545

The purpose of this study is to investigate the molecular interactions and potential therapeutic uses of Eltrombopag (EPAG), a small molecule that activates the cMPL receptor. EPAG has been found to be effective in increasing platelet levels and alleviating thrombocytopenia. We utilized computational techniques to predict and confirm the complex formed by the ligand (EPAG) and the Thrombopoietin receptor (TPO-R) cMPL, elucidating the role of RAS, JAK-2, STAT-3, and other essential elements for downstream signaling. Molecular dynamics (MD) simulations were employed to evaluate the stability of the ligand across specific proteins, showing favorable characteristics. For the first time, we examined the presence of TPO-R in human umbilical cord mesenchymal stem cells (hUCMSC) and human gingival mesenchymal stem cells (hGMSC) proliferation. Furthermore, treatment with EPAG demonstrated angiogenesis and vasculature formation of endothelial lineage derived from both MSCs. It also indicated the activation of critical factors such as RUNX-1, GFI-1b, VEGF-A, MYB, GOF-1, and FLI-1. Additional experiments confirmed that EPAG could be an ideal molecule for protecting against UVB radiation damage, as gene expression (JAK-2, ERK-2, MCL-1, NFkB, and STAT-3) and protein CD90/cMPL analysis showed TPO-R activation in both hUCMSC and hGMSC. Overall, EPAG exhibits significant potential in treating radiation damage and mitigating the side effects of radiotherapy, warranting further clinical exploration.


What is the context?● Chemotherapy, radiation treatment, or immunological disorders can cause a decrease in platelet count (thrombocytopenia) or decrease all blood cell types (pancytopenia) in the bone marrow. This can make it challenging to choose the appropriate cancer treatment plan.● Eltrombopag (EPAG) is an oral non-peptide thrombopoietin (TPO) mimetic that activates the cMPL receptor in the body. This activation leads to cell differentiation and proliferation, stimulating platelet production and reducing thrombocytopenia. The cMPL receptor is present in liver cells, megakaryocytes, and hematopoietic cells. However, its effects on stem cell proliferation and differentiation are not entirely understood.What is the new?● This study delves into the molecular interactions and therapeutic applications of EPAG, a small molecule that activates cMPL (TPO-R).● The study offers a comprehensive analysis of the ligand-receptor complex formation, including an examination of downstream signaling elements. Furthermore, molecular dynamics simulations demonstrate the stability of the ligand when interacting with targeted proteins.● The research investigates the presence of TPO-R on stem cell-derived endothelial cells, shedding insight into the ability of EPAG TPO-mimetic to promote angiogenesis and vasculature formation.● The study revealed that EPAG has the potential to protect against UVB-induced radiation damage and stimulate stem cell growth.What is the implications?The study emphasizes the potential of EPAG as a promising option for addressing radiation injury and minimizing the adverse effects of radiotherapy. It could revolutionize treatments not only for thrombocytopenia but also for enhancing the growth of stem cells. Furthermore, the research deepens our understanding of EPAG's molecular mechanisms, providing valuable insights for developing future drugs and therapeutic approaches for cell therapy to treat radiation damage.


Benzoates , Pyrazoles , Receptors, Thrombopoietin , Humans , Pyrazoles/pharmacology , Benzoates/pharmacology , Receptors, Thrombopoietin/metabolism , Hydrazones/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Hydrazines/pharmacology , Hydrazines/therapeutic use , Molecular Dynamics Simulation , Angiogenesis
2.
Molecules ; 29(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38792074

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
3.
Molecules ; 29(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38792153

Breast cancer is associated with high mortality and morbidity rates. As about 20-30% of patients exhibiting ER-positive phenotype are resistant to hormonal treatment with the standard drug tamoxifen, finding new therapies is a necessity. Postbiotics, metabolites, and macromolecules isolated from probiotic bacteria cultures have been proven to have sufficient bioactivity to exert prohealth and anticancer effects, making them viable adjunctive agents for the treatment of various neoplasms, including breast cancer. In the current study, postbiotics derived from L. plantarum and L. rhamnosus cultures were assessed on an in vitro breast cancer model as potential adjunctive agents to therapy utilizing tamoxifen and a candidate aziridine-hydrazide hydrazone derivative drug. Cell viability and cell death processes, including apoptosis, were analyzed for neoplastic MCF-7 cells treated with postbiotics and synthetic compounds. Cell cycle progression and proliferation were analyzed by PI-based flow cytometry and Ki-67 immunostaining. Postbiotics decreased viability and triggered apoptosis in MCF-7, modestly affecting the cell cycle and showing a lack of negative impact on normal cell viability. Moreover, they enhanced the cytotoxic effect of tamoxifen and the new candidate drug toward MCF-7, accelerating apoptosis and the inhibition of proliferation. This illustrates postbiotics' potential as natural adjunctive agents supporting anticancer therapy based on synthetic drugs.


Apoptosis , Aziridines , Breast Neoplasms , Cell Proliferation , Tamoxifen , Humans , Tamoxifen/pharmacology , Tamoxifen/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , MCF-7 Cells , Female , Aziridines/pharmacology , Aziridines/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Probiotics/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects
4.
Int J Biol Macromol ; 272(Pt 1): 132684, 2024 Jun.
Article En | MEDLINE | ID: mdl-38810845

The emergence of cathepsins as a potential target for anticancer drugs has led to extensive research in the development of their inhibitors. In the present study, we designed, synthesized, and characterized several cinnamaldehyde schiff bases employing diverse hydrazines, as potential cathepsin B inhibitors. The parallel studies on cathepsin B isolated from liver and cerebrospinal fluid unveiled the significance of the synthesized compounds as cathepsin B inhibitors at nanomolar concentrations. The compound, 7 exhibited the highest inhibition of 83.48 % and 82.96 % with an IC50 value of 0.06 nM and 0.09 nM for liver and cerebrospinal fluid respectively. The inhibitory potential of synthesized compounds has been extremely effective in comparison to previous reports. With the help of molecular docking studies using iGEMDOCK software, we found that the active site -CH2SH group is involved in the case of α-N-benzoyl-D, l-arginine-b-naphthylamide (BANA), curcumin 2, 3, 6, and 7. For toxicity prediction, ADMET studies were conducted and the synthesized compounds emerged to be non-toxic. The results obtained from the in vitro studies were supported with in silico studies. The synthesized cinnamaldehyde schiff bases can be considered promising drug candidates in conditions with elevated cathepsin B levels.


Acrolein , Cathepsin B , Hydrazones , Liver , Molecular Docking Simulation , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Acrolein/analogs & derivatives , Acrolein/chemistry , Acrolein/pharmacology , Liver/drug effects , Liver/metabolism , Humans , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Catalytic Domain , Animals
5.
Chem Biol Drug Des ; 103(5): e14535, 2024 May.
Article En | MEDLINE | ID: mdl-38772877

Despite efforts, available alternatives for the treatment of leishmaniasis are still scarce. In this work we tested a class of 15 quinolinylhydrazone analogues and presented data that support the use of the most active compound in cutaneous leishmaniasis caused by Leishmania amazonensis. In general, the compounds showed activity at low concentrations for both parasitic forms (5.33-37.04 µM to promastigotes, and 14.31-61.98 µM to amastigotes). In addition, the best compound (MHZ15) is highly selective for the parasite. Biochemical studies indicate that the treatment of promastigotes with MHZ15 leads the loss of mitochondrial potential and increase in ROS levels as the primary effects, which triggers accumulation of lipid droplets, loss of plasma membrane integrity and apoptosis hallmarks, including DNA fragmentation and phosphatidylserine exposure. These effects were similar in the intracellular form of the parasite. However, in this parasitic form there is no change in plasma membrane integrity in the observed treatment time, which can be attributed to metabolic differences and the resilience of the amastigote. Also, ultrastructural changes such as vacuolization suggesting autophagy were observed. The in vivo effectiveness of MHZ15 in the experimental model of cutaneous leishmaniasis was carried out in mice of the BALB/c strain infected with L. amazonensis. The treatment by intralesional route showed that MHZ15 acted with great efficiency with significantly reduction in the parasite load in the injured paws and draining lymph nodes, without clinical signs of distress or compromise of animal welfare. In vivo toxicity was also evaluated and null alterations in the levels of hepatic enzymes aspartate aminotransferase, and alanine aminotransferase was observed. The data presented herein demonstrates that MHZ15 exhibits a range of favorable characteristics conducive to the development of an antileishmanial agent.


Apoptosis , Hydrazones , Leishmaniasis, Cutaneous , Mice, Inbred BALB C , Mitochondria , Animals , Apoptosis/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Hydrazones/pharmacology , Hydrazones/chemistry , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Reactive Oxygen Species/metabolism , Female , Leishmania mexicana/drug effects , Membrane Potential, Mitochondrial/drug effects
6.
Molecules ; 29(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38792260

(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC50 varying from 40 to 60 µM after 48 h and between 13 and 20 µM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound 5d prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative 5d containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity.


Antineoplastic Agents , Apoptosis , Benzimidazoles , Breast Neoplasms , Cell Proliferation , Tubulin , Humans , Tubulin/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Female , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Molecular Docking Simulation , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Structure-Activity Relationship , Polymerization , Molecular Structure
7.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731815

The development of novel natural product-derived nano-pesticide systems with loading capacity and sustained releasing performance of bioactive compounds is considered an effective and promising plant protection strategy. In this work, 25 L-carvone-based thiazolinone-hydrazone compounds 4a~4y were synthesized by the multi-step modification of L-carvone and structurally confirmed. Compound 4h was found to show favorable and broad-spectrum antifungal activity through the in vitro antifungal activity evaluation of compounds 4a~4y against eight phytopathogenic fungi. Thus, it could serve as a leading compound for new antifungal agents in agriculture. Moreover, the L-carvone-based nanochitosan carrier 7 bearing the 1,3,4-thiadiazole-amide group was rationally designed for the loading and sustained releasing applications of compound 4h, synthesized, and characterized. It was proven that carrier 7 had good thermal stability below 200 °C, dispersed well in the aqueous phase to form numerous nanoparticles with a size of~20 nm, and exhibited an unconsolidated and multi-aperture micro-structure. Finally, L-carvone-based thiazolinone-hydrazone/nanochitosan complexes were fabricated and investigated for their sustained releasing behaviors. Among them, complex 7/4h-2 with a well-distributed, compact, and columnar micro-structure displayed the highest encapsulation efficiency and desirable sustained releasing property for compound 4h and thus showed great potential as an antifungal nano-pesticide for further studies.


Antifungal Agents , Chitosan , Cyclohexane Monoterpenes , Hydrazones , Nanoparticles , Chitosan/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Nanoparticles/chemistry , Cyclohexane Monoterpenes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Delayed-Action Preparations , Microbial Sensitivity Tests , Drug Carriers/chemistry
8.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731825

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Amides , Antineoplastic Agents , Antioxidants , Cell Proliferation , Hydrazones , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Amides/chemistry , Amides/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , MCF-7 Cells , HeLa Cells
9.
Sci Rep ; 14(1): 11410, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762658

A series of novel Schiff base derivatives (1-28) of 3,4-dihydroxyphenylacetic acid were synthesized in a multi-step reaction. All the synthesized Schiff bases were obtained in high yields and their structures were determined by 1HNMR, 13CNMR, and HR-ESI-MS spectroscopy. Except for compounds 22, 26, 27, and 28, all derivatives show excellent to moderate α-glucosidase inhibition. Compounds 5 (IC50 = 12.84 ± 0.52 µM), 4 (IC50 = 13.64 ± 0.58 µM), 12 (IC50 = 15.73 ± 0.71 µM), 13 (IC50 = 16.62 ± 0.47 µM), 15 (IC50 = 17.40 ± 0.74 µM), 3 (IC50 = 18.45 ± 1.21 µM), 7 (IC50 = 19.68 ± 0.82 µM), and 2 (IC50 = 20.35 ± 1.27 µM) shows outstanding inhibition as compared to standard acarbose (IC50 = 873.34 ± 1.67 µM). Furthermore, a docking study was performed to find out the interaction between the enzyme and the most active compounds. With this research work, 3,4-dihydroxyphenylacetic acid Schiff base derivatives have been introduced as a potential class of α-glucosidase inhibitors that have remained elusive till now.


3,4-Dihydroxyphenylacetic Acid , Drug Design , Glycoside Hydrolase Inhibitors , Molecular Docking Simulation , Schiff Bases , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemical synthesis , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/chemistry , 3,4-Dihydroxyphenylacetic Acid/metabolism , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Schiff Bases/chemistry , Schiff Bases/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Structure-Activity Relationship
10.
Bioorg Chem ; 147: 107422, 2024 Jun.
Article En | MEDLINE | ID: mdl-38705106

Two acylhydrazone based zinc(II) complexes [Zn(HL)2Cl2(CH3OH)2] (Zn1) and [ZnL(AC)]2 (Zn2) were synthesized from 3-(1-(salicyloylhydrazono)ethyl) pyridine (HL). Single crystal X-ray structure analyses showed that complexes Zn1 and Zn2 have a zero-dimensional monomer or dimer structure. Antiproliferative activity studies revealed that Zn1 and Zn2 are both more effective against A549 cells than cisplatin. The results of the reactive oxygen species (ROS) generation assay on A549 cells showed that both Zn1 and Zn2 induced apoptosis through ROS accumulation. The apoptosis-inducing and cell cycle arrest effects of Zn1 and Zn2 on A549 cells indicated that the antitumor effect was achieved through apoptosis induction and inhibition of DNA synthesis by blocking the G0/G1 phase of the cell cycle. What's more, the results of wound-healing assay showed that Zn1 and Zn2 could inhibit the migration of A549 cells. Western blot analysis further demonstrated that Zn1 and Zn2 induced cell apoptosis through the mitochondrial pathway, in which process, the expression level of cytochrome C, cleaved-PARP, cleaved-caspase 3 and cleaved-caspase 9 proteins increased while pro-caspase 3 and pro-caspase 9 expression decreased. In vivo anticancer evaluation demonstrated that both Zn1 and Zn2 complexes effectively inhibited tumor growth without causing significant toxicity in systemic organs.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Coordination Complexes , Drug Screening Assays, Antitumor , Hydrazones , Lung Neoplasms , Zinc , Animals , Mice , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Dose-Response Relationship, Drug , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Zinc/chemistry , Zinc/pharmacology
11.
J Agric Food Chem ; 72(20): 11351-11359, 2024 May 22.
Article En | MEDLINE | ID: mdl-38720167

Tobacco mosaic virus (TMV), as one of the most traditional and extensive biological stresses, poses a serious threat to plant growth and development. In this work, a series of 1-phenyl/tertbutyl-5-amino-4-pyrazole oxadiazole and arylhydrazone derivatives was synthesized. Bioassay evaluation demonstrated that the title compounds (P1-P18) without a "thioether bond" lost their anti-TMV activity, while some of the ring-opening arylhydrazone compounds exhibited superior in vivo activity against TMV in tobacco. The EC50 value of title compound T8 for curative activity was 139 µg/mL, similar to that of ningnanmycin (NNM) (EC50 = 152 µg/mL). Safety analysis revealed that compound T8 had no adverse effects on plant growth or seed germination at a concentration of 250 µg/mL. Morphological observation revealed that compound T8 could restore the leaf tissue of a TMV-stressed host and the leaf stomatal aperture to normal. A mechanism study further revealed that compound T8 not only restored the photosynthetic and growth ability of the damaged host to normal levels but also enhanced catalase (CAT) activity and reduced the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in the damaged host, thereby reducing the oxidation damage to the host. TMV-green fluorescent protein (GFP) experiments further demonstrated that compound T8 not only slowed the transmission speed of TMV in the host but also inhibited its reproduction. All of the experimental results demonstrated that compound T8 could reduce the oxidative damage caused by TMV stress and regulate the photosynthetic ability of the host, achieving the ability to repair damage, to make the plant grow normally.


Antiviral Agents , Hydrazones , Nicotiana , Oxadiazoles , Plant Diseases , Tobacco Mosaic Virus , Tobacco Mosaic Virus/drug effects , Tobacco Mosaic Virus/physiology , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Nicotiana/virology , Nicotiana/drug effects , Plant Diseases/virology , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Drug Design , Structure-Activity Relationship , Plant Leaves/chemistry , Plant Leaves/drug effects , Molecular Structure
12.
J Inorg Biochem ; 257: 112586, 2024 Aug.
Article En | MEDLINE | ID: mdl-38728860

Ferrocene, ruthenium(II) and iridium(III) organometallic complexes, potential substitutes for platinum-based drugs, have shown good application prospects in the field of cancer therapy. Therefore, in this paper, six ferrocene-modified half-sandwich ruthenium(II) and iridium(III) propionylhydrazone complexes were prepared, and the anticancer potential was evaluated and compared with cisplatin. These complexes showed potential in-vitro anti-proliferative activity against A549 cancer cells, especially for Ir-based complexes, and showing favorable synergistic anticancer effect. Meanwhile, these complexes showed little cytotoxicity and effective anti-migration activity. Ir3, the most active complex (ferrocene-appended iridium(III) complex), could accumulate in the intracellular mitochondria, disturb the cell cycle (S-phase), induce the accumulation of reactive oxygen species, and eventually cause the apoptosis of A549 cells. Then, the design of these complexes provides a good structural basis for the multi-active non­platinum organometallic anticancer complexes.


Antineoplastic Agents , Apoptosis , Coordination Complexes , Ferrous Compounds , Hydrazones , Iridium , Metallocenes , Ruthenium , Humans , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Iridium/chemistry , Iridium/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Metallocenes/chemistry , Metallocenes/pharmacology , Ruthenium/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , A549 Cells , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Proliferation/drug effects
13.
Eur J Med Chem ; 273: 116524, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38795517

GSPT1 plays crucial physiological functions, such as terminating protein translation, overexpressed in various tumors. It is a promising anti-tumor target, but is also considered as an "undruggable" protein. Recent studies have found that a class of small molecules can degrade GSPT1 through the "molecular glue" mechanism with strong antitumor activity, which is expected to become a new therapy for hematological malignancies. Currently available GSPT1 degraders are mostly derived from the scaffold of immunomodulatory imide drug (IMiD), thus more active compounds with novel structure remain to be found. In this work, using computer-assisted multi-round virtual screening and bioassay, we identified a non-IMiD acylhydrazone compound, AN5782, which can reduce the protein level of GPST1 and obviously inhibit the proliferation of tumor cells. Some analogs were obtained by a substructure search of AN5782. The structure-activity relationship analysis revealed possible interactions between these compounds and CRBN-GSPT1. Further biological mechanistic studies showed that AN5777 decreased GSPT1 remarkably through the ubiquitin-proteasome system, and its effective cytotoxicity was CRBN- and GSPT1-dependent. Furthermore, AN5777 displayed good antiproliferative activities against U937 and OCI-AML-2 cells, and dose-dependently induced G1 phase arrest and apoptosis. The structure found in this work could be good start for antitumor drug development.


Antineoplastic Agents , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Evaluation, Preclinical , Biological Assay , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Apoptosis/drug effects
14.
Braz J Microbiol ; 55(2): 1811-1816, 2024 Jun.
Article En | MEDLINE | ID: mdl-38739216

As the prevalence of drug-resistant Candida isolates continues to rise, the imperative for identifying novel compounds to enhance the arsenal of antifungal drugs becomes increasingly critical. Consequently, exploring new treatment strategies, including synthesizing molecular hybrids and applying combination therapy, is essential. For this reason, this study evaluated the efficacy of ten molecular hybrids of aza-bicyclic 2-isoxazoline-acylhydrazone belonging to two series 90 and 91 as possible anti-Candida agents. In addition, we also investigated the interaction between the hybrids and fluconazole, a commonly used antifungal drug. We evaluated the antifungal effect of aza-bicyclic 2-isoxazoline-acylhydrazone hybrid compounds against six Candida spp. strains that target planktonic cells. However, none of these new molecules were inhibitory active at the tested concentrations (2 to 1,024 µg/mL). Moreover, we analyzed the interaction between the ten new hybrid molecules and fluconazole using the checkerboard assay, employing two different methodologies for reading the plate. For this, one isolate fluconazole-resistant was selected. We observed that only one combination, 6-(4-tert-butylbenzoil)-4,5,6,6a-tetrahydro-3a-H-pirrole[3,2-d]isoxazole-3-carboxylic(furan-2-metilidene)-hydrazide (91e) and fluconazole, exhibited a synergistic interaction (FICI range 0.0781 to 0.4739). The combination successfully inhibited the growth of C. albicans CA2 fluconazole-resistant, and no interaction was observed in an isolate susceptible to fluconazole. Additionally, these results emphasize the continued need for research into new compounds and the importance of using combined approaches to increase their activity.


Antifungal Agents , Candida albicans , Drug Resistance, Fungal , Drug Synergism , Fluconazole , Hydrazones , Isoxazoles , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fluconazole/pharmacology , Candida albicans/drug effects , Hydrazones/pharmacology , Hydrazones/chemistry , Isoxazoles/pharmacology , Isoxazoles/chemistry , Humans
15.
Bioorg Chem ; 149: 107502, 2024 Aug.
Article En | MEDLINE | ID: mdl-38805912

Many diorganotin complexes with various alkyl groups exhibit excellent in vitro anticancer activity. However, most diorganotin is the same alkyl group, and the asymmetric alkyl R group has been rarely reported. Hence, in this paper, twenty butylphenyl mixed dialkyltin arylformylhydrazone complexes have been synthesized by microwave "one-pot" reaction with arylformylhydrazine, substituted α-keto acid or its sodium salt and butylphenyltin dichloride. The crystal structures of nine complexes were determined, indicating that the complexes C1, C2, C11, C12, and C16 âˆ¼ C19 possessed a central symmetric structure of a dinuclear Sn2O2 tetrahedral ring; while the complex C9 is a trinuclear tin-oxygen cluster with a 6-membered ring encased in a 12-membered macrocyclic structure. The inhibiting activity of complexes was tested against the human cell lines NCI-H460, MCF-7, HepG2, Huh-7 and HL-7702. Complex C2 demonstrated the optimal inhibitory effect on HepG2 cells, with an IC50 value of 0.82 ± 0.03 µM. Cellular biology experiments revealed that complex C2 could induce apoptosis and G2/M phase cell cycle arrest in HepG2 and Huh-7 cells. The complex also caused the collapse of the mitochondrial membrane potential and increased intracellular reactive oxygen species in HepG2 and Huh-7 cells. Western blot analysis further clarified that complex C2 could induce cell apoptosis through the mitochondrial pathway along with the release of reactive oxygen species.


Antineoplastic Agents , Apoptosis , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Hydrazones , Organotin Compounds , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Organotin Compounds/pharmacology , Organotin Compounds/chemistry , Organotin Compounds/chemical synthesis , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
16.
Chem Biodivers ; 21(6): e202400583, 2024 Jun.
Article En | MEDLINE | ID: mdl-38590217

Plant disease control mainly relies on pesticides. In this study, a series of coumarin derivatives containing hydrazone moiety were designed and synthesized. The synthesized compounds were characterized and used to evaluate the antifungal activity against four pathogens, Botrytis cinerea, Alternaria solani, Fusarium oxysporum, and Alternaria alternata. The results showed that the inhibition rate of some compounds at 100 µg/mL in 96 hours reached around 70 % against A. alternata, higher than that of the positive control. The corresponding EC50 values were found at around 30 µg/mL. Finally, the compound 3 b was screened out with the lowest EC50 value (19.49 µg/mL). The analysis of SEM and TEM confirmed that the compound 3 b can obviously damage the morphological structure of hyphae, resulting in the depletion of the cells by the destruction of morphological matrix and leakage of contents. RNA sequencing showed that compounds 3 b mainly affected the pentose phosphate pathway, which caused to destroy the layer of mitochondrial structure. Molecular docking showed that compounds 3 b fitted the binding pocket of yeast transketolase and interacted with lysine at the hydrazone structure. Our results suggested that the introduction of hydrazone was an effective strategy for the design of novel bioactive compounds.


Alternaria , Antifungal Agents , Botrytis , Coumarins , Fusarium , Hydrazones , Microbial Sensitivity Tests , Molecular Docking Simulation , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Alternaria/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Structure-Activity Relationship , Botrytis/drug effects , Molecular Structure , Dose-Response Relationship, Drug
17.
Bioorg Med Chem Lett ; 105: 129743, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38608962

Neuraminidase (NA) serves as a promising target for the exploration and development of anti-influenza drugs. In this work, lead compound 5 was discovered through pharmacophore-based virtual screening and molecular dynamics simulation, and 14 new compounds were obtained by modifying the lead compound 5 based on pharmacophore features. The biological activity test shows that 5n (IC50 = 0.13 µM) has a better inhibitory effect on wild-type NA (H5N1), while 5i (IC50 = 0.44 µM) has a prominent inhibitory effect on mutant NA (H5N1-H274Y), both of them are better than the positive control oseltamivir carboxylate (OSC). The analysis of docking results indicate that the good activities of compounds 5n and 5i may be attributed to the thiophene ring in 5n can stretch into the 150-cavity of NA, whereas the thiophene moiety in 5i can extend to the 430-cavity of NA. The findings of this study may be helpful for the discovery of new NA inhibitors.


Antiviral Agents , Enzyme Inhibitors , Neuraminidase , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Structure-Activity Relationship , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/enzymology , Drug Discovery , Molecular Docking Simulation , Molecular Structure , Humans , Molecular Dynamics Simulation , Dose-Response Relationship, Drug
18.
J Mater Chem B ; 12(18): 4389-4397, 2024 May 08.
Article En | MEDLINE | ID: mdl-38623831

A robust and easily manufactured high-strength and long-term release hydrazone-based isoniazid acrylic (HIA) bone cement is reported. The mechanical strength of HIA bone cement is similar to that of normal polymethyl methacrylate (PMMA) bone cement, far surpassing that of traditional isoniazid-containing antibiotic-loaded bone cement (INH bone cement). Isoniazid is connected to the bone cement through bioorthogonal hydrazone chemistry, and it possesses release properties superior to those of INH bone cement, allowing for the sustained release of isoniazid for up to 12 weeks. In vivo and in vitro studies also indicate that HIA cement exhibits better biocompatibility than INH bone cement. The results of this study not only signify progress in the realm of antimicrobial bone cement for addressing bone tuberculosis but also enhance our capacity to create and comprehend high-performing antimicrobial bone cement.


Bone Cements , Hydrazones , Isoniazid , Isoniazid/chemistry , Isoniazid/pharmacology , Bone Cements/chemistry , Animals , Hydrazones/chemistry , Hydrazones/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/administration & dosage , Mice , Drug Liberation , Polymethyl Methacrylate/chemistry , Materials Testing , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology
19.
J Inorg Biochem ; 256: 112546, 2024 Jul.
Article En | MEDLINE | ID: mdl-38593611

Two copper(II) complexes [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(peoh)(N3)]2 (2) were designed and synthesized by reaction of Cu(NO3)2·3H2O with hydrazone Schiff base ligands,abbreviated with Hpmoh and Hpeoh. Hpmoh and Hpeoh were prepared by condensation reaction of octanoic hydrazide with pyridine-2-carboxyaldehyde and 2-acetylpyridine, respectively. Complexes 1 and 2 were characterized using different analytical techniques such as FT-IR, UV-Vis, IR, EPR and single X-ray diffraction (XRD) analyses as well as computational methods (DFT). The XRD of 1 and 2 shows a mononuclear or a dinuclear structure with the copper(II) centre adopting a slightly distorted square pyramidal geometry. In water-containing solution and in DMSO, 1 and 2 undergo a partial transformation with formation of [Cu(Hpmoh)(NO3)(NCS)] (1) and [Cu(Hpmoh)(NO3)(H2O/DMSO)] (1a) in one system and [Cu(peoh)(N3)] (2a) in the other one, as supported by DFT calculations. Docking simulations confirmed that the intercalation is the preferred binding mode with DNA for 1, 1a and 2a, but suggested that the minor groove binding is also possible. A significant fluorescence quenching of the DNA-ethidium bromide conjugate was observed upon the addition of complexes 1 and 2 with a quenching constant around 104 M-1 s-1. Finally, both 1 and 2 were examined for anti-cancer activity using MDA-MB-231 (human breast adenocarcinoma) and A375 (malignant melanoma) cell lines through in vitro MTT assay which suggest comparable cancer cell killing efficacy, with the higher effectiveness of 2 due to the dissociation into two [Cu(peoh)(N3)] units.


Antineoplastic Agents , Coordination Complexes , Copper , DNA , Copper/chemistry , DNA/chemistry , Humans , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Ligands , Hydrazines/chemistry , Hydrazines/pharmacology , Cell Line, Tumor , Pyridines/chemistry , Pyridines/pharmacology , Molecular Docking Simulation , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis
20.
J Inorg Biochem ; 256: 112550, 2024 Jul.
Article En | MEDLINE | ID: mdl-38599004

Cisplatin remains the most widely used chemotherapeutic agent in cancer treatment; however, its inherent drawbacks have fueled the development of novel metalloanticancer drugs. In this study, two novel Cu(II) complexes (Cu1 and Cu2) were designed and synthesized. Notably, these Cu(II) complexes showed higher cytotoxicity against HL-7402 cells than cisplatin. Moreover, Cu(II) complexes significantly inhibited liver cancer growth in a xenograft model. A mechanism study revealed that the Cu(II) complexes reduced the mitochondrial membrane potential of cancer cells, produced excessive reactive oxygen species (ROS), induced mitochondrial DNA (mtDNA) damage, and ultimately facilitated cancer cell apoptosis.


Antineoplastic Agents , Apoptosis , Coordination Complexes , Copper , DNA Damage , DNA, Mitochondrial , Liver Neoplasms , Mitochondria , Reactive Oxygen Species , Humans , Copper/chemistry , Copper/pharmacology , Apoptosis/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , DNA Damage/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mice , Mitochondria/drug effects , Mitochondria/metabolism , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Cell Line, Tumor , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Xenograft Model Antitumor Assays , Mice, Nude , Mice, Inbred BALB C
...