Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.500
1.
Biomacromolecules ; 25(6): 3542-3553, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38780531

Lignocellulosic biomass is a highly sustainable and largely carbon dioxide neutral feedstock for the production of biofuels and advanced biomaterials. Although thermochemical pretreatment is typically used to increase the efficiency of cell wall deconstruction, genetic engineering of the major plant cell wall polymers, especially lignin, has shown promise as an alternative approach to reduce biomass recalcitrance. Poplar trees with reduced lignin content and altered composition were previously developed by overexpressing bacterial 3-dehydroshikimate dehydratase (QsuB) enzyme to divert carbon flux from the shikimate pathway. In this work, three transgenic poplar lines with increasing QsuB expression levels and different lignin contents were studied using small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS). SANS showed that although the cellulose microfibril cross-sectional dimension remained unchanged, the ordered organization of the microfibrils progressively decreased with increased QsuB expression. This was correlated with decreasing total lignin content in the QsuB lines. WAXS showed that the crystallite dimensions of cellulose microfibrils transverse to the growth direction were not affected by the QsuB expression, but the crystallite dimensions parallel to the growth direction were decreased by ∼20%. Cellulose crystallinity was also decreased with increased QsuB expression, which could be related to high levels of 3,4-dihydroxybenzoate, the product of QsuB expression, disrupting microfibril crystallization. In addition, the cellulose microfibril orientation angle showed a bimodal distribution at higher QsuB expression levels. Overall, this study provides new structural insights into the impact of ectopic synthesis of small-molecule metabolites on cellulose organization and structure that can be used for future efforts aimed at reducing biomass recalcitrance.


Cellulose , Populus , Cellulose/chemistry , Populus/genetics , Populus/metabolism , Populus/chemistry , Hydroxybenzoates/chemistry , Hydroxybenzoates/metabolism , Lignin/chemistry , Plants, Genetically Modified , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Biomass , Cell Wall/metabolism , Cell Wall/chemistry , Resorcinols
2.
Int J Biol Macromol ; 271(Pt 1): 132587, 2024 Jun.
Article En | MEDLINE | ID: mdl-38788880

Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC50) of Phe for AktADTs ranged from 49.81 to 331.17 µM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.


Hydro-Lyases , Phenylalanine , Phenylalanine/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence
3.
J Microbiol Biotechnol ; 34(5): 1178-1187, 2024 May 28.
Article En | MEDLINE | ID: mdl-38563100

Cordyceps militaris is a significant edible fungus that produces a variety of bioactive compounds. We have previously established a uridine/uracil auxotrophic mutant and a corresponding Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic characterization in C. militaris using pyrG as a screening marker. In this study, we constructed an ATMT system based on a dual pyrG and hisB auxotrophic mutant of C. militaris. Using the uridine/uracil auxotrophic mutant as the background and pyrG as a selection marker, the hisB gene encoding imidazole glycerophosphate dehydratase, required for histidine biosynthesis, was knocked out by homologous recombination to construct a histidine auxotrophic C. militaris mutant. Then, pyrG in the histidine auxotrophic mutant was deleted to construct a ΔpyrG ΔhisB dual auxotrophic mutant. Further, we established an ATMT transformation system based on the dual auxotrophic C. militaris by using GFP and DsRed as reporter genes. Finally, to demonstrate the application of this dual transformation system for studies of gene function, knock out and complementation of the photoreceptor gene CmWC-1 in the dual auxotrophic C. militaris were performed. The newly constructed ATMT system with histidine and uridine/uracil auxotrophic markers provides a promising tool for genetic modifications in the medicinal fungus C. militaris.


Agrobacterium tumefaciens , Cordyceps , Transformation, Genetic , Uracil , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Cordyceps/genetics , Cordyceps/metabolism , Cordyceps/growth & development , Uracil/metabolism , Histidine/metabolism , Uridine/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Knockout Techniques , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Genes, Reporter , Mutation , Homologous Recombination
4.
J Inorg Biochem ; 256: 112565, 2024 Jul.
Article En | MEDLINE | ID: mdl-38677005

Two conserved second-sphere ßArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase ßR52A, ßR52K, ßR157A, ßR157K and ReNHase ßR61A) were successfully expressed and purified. Apart from the PtNHase ßR52A mutant that exhibited no detectable activity, the kcat values obtained for the PtNHase and ReNHase ßR mutant enzymes were between 1.8 and 12.4 s-1 amounting to <1% of the kcat values observed for WT enzymes. The metal content of each mutant was also significantly decreased with occupancies ranging from ∼10 to ∼40%. UV-Vis spectra coupled with EPR data obtained on the ReNHase mutant enzyme, suggest a decrease in the Lewis acidity of the active site metal ion. X-ray crystal structures of the four PtNHase ßR mutant enzymes confirmed the mutation and the low active site metal content, while also providing insight into the active site hydrogen bonding network. Finally, DFT calculations suggest that the equatorial sulfenic acid ligand, which has been shown to be the catalytic nucleophile, is protonated in the mutant enzyme. Taken together, these data confirm the necessity of the conserved second-sphere ßR residues in the proposed subunit swapping process and post-translational modification of the α-subunit in the α activator complex, along with stabilizing the catalytic sulfenic acid in its anionic form.


Arginine , Hydro-Lyases , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Arginine/chemistry , Rhodococcus equi/enzymology , Rhodococcus equi/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Actinomycetales/enzymology , Actinomycetales/genetics , Catalytic Domain
5.
Nature ; 629(8010): 184-192, 2024 May.
Article En | MEDLINE | ID: mdl-38600378

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Anti-Inflammatory Agents , Glucocorticoids , Inflammation , Macrophages , Mitochondria , Succinates , Animals , Female , Humans , Male , Mice , Anti-Inflammatory Agents/pharmacology , Carboxy-Lyases/metabolism , Carboxy-Lyases/antagonists & inhibitors , Citric Acid Cycle/drug effects , Citric Acid Cycle/genetics , Cytokines/immunology , Cytokines/metabolism , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Inflammation/drug therapy , Inflammation/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Pyruvate Dehydrogenase Complex/metabolism , Receptors, Glucocorticoid/metabolism , Succinates/metabolism , Enzyme Activation/drug effects
6.
FEBS Lett ; 598(11): 1387-1401, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575551

Itaconyl-CoA hydratase in Pseudomonas aeruginosa (PaIch) converts itaconyl-CoA to (S)-citramalyl-CoA upon addition of a water molecule, a part of an itaconate catabolic pathway in virulent organisms required for their survival in humans host cells. Crystal structure analysis of PaIch showed that a unique N-terminal hotdog fold containing a 4-residue short helical segment α3-, named as an "eaten sausage", followed by a flexible loop region slipped away from the conserved ß-sheet scaffold, whereas the C-terminal hotdog fold is similar to all MaoC. A conserved hydratase motif with catalytic residues provides mechanistic insights into catalysis, and existence of a longer substrate binding tunnel may suggest the binding of longer CoA derivatives.


Hydro-Lyases , Models, Molecular , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Crystallography, X-Ray , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Amino Acid Sequence , Succinates/metabolism , Succinates/chemistry , Catalytic Domain , Protein Folding
7.
Plant Physiol ; 195(2): 1642-1659, 2024 May 31.
Article En | MEDLINE | ID: mdl-38431524

Maize (Zea mays) smut is a common biotrophic fungal disease caused by Ustilago maydis and leads to low maize yield. Maize resistance to U. maydis is a quantitative trait. However, the molecular mechanism underlying the resistance of maize to U. maydis is poorly understood. Here, we reported that a maize mutant caused by a single gene mutation exhibited defects in both fungal resistance and plant development. maize mutant highly susceptible to U. maydis (mmsu) with a dwarf phenotype forms tumors in the ear. A map-based cloning and allelism test demonstrated that 1 gene encoding a putative arogenate dehydratase/prephenate dehydratase (ADT/PDT) is responsible for the phenotypes of the mmsu and was designated as ZmADT2. Combined transcriptomic and metabolomic analyses revealed that mmsu had substantial differences in multiple metabolic pathways in response to U. maydis infection compared with the wild type. Disruption of ZmADT2 caused damage to the chloroplast ultrastructure and function, metabolic flux redirection, and reduced the amounts of salicylic acid (SA) and lignin, leading to susceptibility to U. maydis and dwarf phenotype. These results suggested that ZmADT2 is required for maintaining metabolic flux, as well as resistance to U. maydis and plant development in maize. Meanwhile, our findings provided insights into the maize response mechanism to U. maydis infection.


Disease Resistance , Plant Diseases , Zea mays , Zea mays/microbiology , Zea mays/genetics , Zea mays/growth & development , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Basidiomycota/physiology , Gene Expression Regulation, Plant , Phenotype , Mutation/genetics , Salicylic Acid/metabolism , Ustilago/genetics
8.
EBioMedicine ; 101: 104993, 2024 Mar.
Article En | MEDLINE | ID: mdl-38324982

BACKGROUND: Macrophages are innate immune cells whose phagocytosis function is critical to the prognosis of stroke and peritonitis. cis-aconitic decarboxylase immune-responsive gene 1 (Irg1) and its metabolic product itaconate inhibit bacterial infection, intracellular viral replication, and inflammation in macrophages. Here we explore whether itaconate regulates phagocytosis. METHODS: Phagocytosis of macrophages was investigated by time-lapse video recording, flow cytometry, and immunofluorescence staining in macrophage/microglia cultures isolated from mouse tissue. Unbiased RNA-sequencing and ChIP-sequencing assays were used to explore the underlying mechanisms. The effects of Irg1/itaconate axis on the prognosis of intracerebral hemorrhagic stroke (ICH) and peritonitis was observed in transgenic (Irg1flox/flox; Cx3cr1creERT/+, cKO) mice or control mice in vivo. FINDINGS: In a mouse model of ICH, depletion of Irg1 in macrophage/microglia decreased its phagocytosis of erythrocytes, thereby exacerbating outcomes (n = 10 animals/group, p < 0.05). Administration of sodium itaconate/4-octyl itaconate (4-OI) promoted macrophage phagocytosis (n = 7 animals/group, p < 0.05). In addition, in a mouse model of peritonitis, Irg1 deficiency in macrophages also inhibited phagocytosis of Staphylococcus aureus (n = 5 animals/group, p < 0.05) and aggravated outcomes (n = 9 animals/group, p < 0.05). Mechanistically, 4-OI alkylated cysteine 155 on the Kelch-like ECH-associated protein 1 (Keap1), consequent in nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and transcriptional activation of Cd36 gene. Blocking the function of CD36 completely abolished the phagocytosis-promoting effects of Irg1/itaconate axis in vitro and in vivo. INTERPRETATION: Our findings provide a potential therapeutic target for phagocytosis-deficiency disorders, supporting further development towards clinical application for the benefit of stroke and peritonitis patients. FUNDING: The National Natural Science Foundation of China (32070735, 82371321 to Q. Li, 82271240 to F. Yang) and the Beijing Natural Science Foundation Program and Scientific Research Key Program of Beijing Municipal Commission of Education (KZ202010025033 to Q. Li).


Hemorrhagic Stroke , Peritonitis , Succinates , Humans , Mice , Animals , Kelch-Like ECH-Associated Protein 1 , Hemorrhagic Stroke/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Macrophages/metabolism , Peritonitis/drug therapy , Phagocytosis , Prognosis , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Hydro-Lyases/pharmacology
9.
Am J Med Genet A ; 194(5): e63519, 2024 May.
Article En | MEDLINE | ID: mdl-38214124

Metabolic pathways are known to generate byproducts-some of which have no clear metabolic function and some of which are toxic. Nicotinamide adenine dinucleotide phosphate hydrate (NAD(P)HX) is a toxic metabolite that is produced by stressors such as a fever, infection, or physical stress. Nicotinamide adenine dinucleotide phosphate hydrate dehydratase (NAXD) and nicotinamide adenine dinucleotide phosphate hydrate epimerase (NAXE) are part of the nicotinamide repair system that function to break down this toxic metabolite. Deficiency of NAXD and NAXE interrupts the critical intracellular repair of NAD(P)HX and allows for its accumulation. Clinically, deficiency of NAXE manifests as progressive, early onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL) 1, while deficiency of NAXD manifests as PEBEL2. In this report, we describe a case of probable PEBEL2 in a patient with a variant of unknown significance (c.362C>T, p.121L) in the NAXD gene who presented after routine immunizations with significant skin findings and in the absence of fevers.


Brain Diseases , Immunization , Humans , Immunization/adverse effects , Leukoencephalopathies/etiology , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Brain Diseases/etiology
10.
Biosci Biotechnol Biochem ; 88(2): 177-180, 2024 Jan 24.
Article En | MEDLINE | ID: mdl-38017627

A sugar acid dehydratase from Paraburkholderia mimosarum, potentially involved in the non-phosphorylated L-fucose pathway, was functionally characterized. A biochemical analysis revealed its unique heterodimeric structure and higher specificity toward L-fuconate than D-arabinonate, D-altronate, and L-xylonate, which differed from homomeric homologs. This unique L-fuconate dehydratase has a poor phylogenetic relationship with other functional members of the D-altronate dehydratase/galactarate dehydratase protein family.


Fucose , Hydro-Lyases , Fucose/metabolism , Phylogeny , Hydro-Lyases/genetics , Bacteria/metabolism
11.
FEBS J ; 291(2): 308-322, 2024 01.
Article En | MEDLINE | ID: mdl-37700610

d-Serine plays vital physiological roles in the functional regulation of the mammalian brain, where it is produced from l-serine by serine racemase and degraded by d-amino acid oxidase. In the present study, we identified a new d-serine metabolizing activity of serine hydroxymethyltransferase (SHMT) in bacteria as well as mammals. SHMT is known to catalyze the conversion of l-serine and tetrahydrofolate (THF) to glycine and 5,10-methylenetetrahydrofolate, respectively. In addition, we found that human and Escherichia coli SHMTs have d-serine dehydratase activity, which degrades d-serine to pyruvate and ammonia. We characterized this enzymatic activity along with canonical SHMT activity. Intriguingly, SHMT required THF to catalyze d-serine dehydration and did not exhibit dehydratase activity toward l-serine. Furthermore, SHMT did not use d-serine as a substrate in the canonical hydroxymethyltransferase reaction. The d-serine dehydratase activities of two isozymes of human SHMT were inhibited in the presence of a high concentration of THF, whereas that of E. coli SHMT was increased. The pH and temperature profiles of d-serine dehydratase and serine hydroxymethyltransferase activities of these three SHMTs were partially distinct. The catalytic efficiency (kcat /Km ) of dehydratase activity was lower than that of hydroxymethyltransferase activity. Nevertheless, the d-serine dehydratase activity of SHMT was physiologically important because d-serine inhibited the growth of an SHMT deletion mutant of E. coli, ∆glyA, more than that of the wild-type strain. Collectively, these results suggest that SHMT is involved not only in l- but also in d-serine metabolism through the degradation of d-serine.


Escherichia coli , Glycine Hydroxymethyltransferase , Animals , Humans , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Tetrahydrofolates , Methyltransferases , Serine , Hydro-Lyases/genetics , Mammals/metabolism
12.
J Microbiol Biotechnol ; 33(12): 1595-1605, 2023 Dec 28.
Article En | MEDLINE | ID: mdl-38151830

Dehydroquinate dehydratase (DHQD) catalyzes the conversion of 3-dehydroquinic acid (DHQ) into 3-dehydroshikimic acid in the mid stage of the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids and folates. Here, we report two the crystal structures of type II DHQD (CgDHQD) derived from Corynebacterium glutamicum, which is a widely used industrial platform organism. We determined the structures for CgDHQDWT with the citrate at a resolution of 1.80Å and CgDHQDR19A with DHQ complexed forms at a resolution of 2.00 Å, respectively. The enzyme forms a homododecamer consisting of four trimers with three interfacial active sites. We identified the DHQ-binding site of CgDHQD and observed an unusual binding mode of citrate inhibitor in the site with a half-opened lid loop. A structural comparison of CgDHQD with a homolog derived from Streptomyces coelicolor revealed differences in the terminal regions, lid loop, and active site. Particularly, CgDHQD, including some Corynebacterium species, possesses a distinctive residue P105, which is not conserved in other DHQDs at the position near the 5-hydroxyl group of DHQ. Replacements of P105 with isoleucine and valine, conserved in other DHQDs, caused an approximately 70% decrease in the activity, but replacement of S103 with threonine (CgDHQDS103T) caused a 10% increase in the activity. Our biochemical studies revealed the importance of key residues and enzyme kinetics for wild type and CgDHQDS103T, explaining the effect of the variation. This structural and biochemical study provides valuable information for understanding the reaction efficiency that varies due to structural differences caused by the unique sequences of CgDHQD.


Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Binding Sites , Citrates
13.
J Chem Inf Model ; 63(23): 7499-7507, 2023 Dec 11.
Article En | MEDLINE | ID: mdl-37970731

MqnA is the first enzyme on the futalosine pathway to menaquinone, which catalyzes the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB). MqnA is also the only chorismate dehydratase known so far. In this work, based on the recently determined crystal structures, we constructed the enzyme-substrate complex models and conducted quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the reaction details of MqnA and the critical roles of pocket residues. The calculation results confirm that the MqnA-catalyzed dehydration of chorismate follows the substrate-assisted E1cb mechanism, in which the enol carboxylate in the side chain of the substrate is responsible for deprotonating the C3 of chorismate. This proton transfer process is much slower than C4-OH departure. Calculations on different mutants reveal that S86 and N17 are important for anchoring the enol carboxylate of the substrate in a favorable conformation to extract the C3-proton. The strong H-bonds formed between the enol carboxylate of chorismate and S86/N17 play a key role in stabilizing the reaction intermediate. Consistent with the experimental observations, our calculations demonstrate that the MqnA N17D mutant also shows hydrolase activity and the typical enzyme-catalyzed hydrolysis mechanism is elucidated. The protonated D17 is responsible for saturating the methylene group of chorismate to start the hydrolysis reaction. The orientation of the carboxyl group of D17 is key in determining MqnA to be a dehydratase or hydrolase.


Dehydration , Protons , Humans , Hydrolysis , Hydrolases , Catalysis , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism
14.
Cancer Lett ; 578: 216442, 2023 12 01.
Article En | MEDLINE | ID: mdl-37852428

Hepatocellular carcinoma (HCC) is often associated with poor outcomes due to lung metastasis. ICAM-1+ circulating tumor cells, termed circulating cancer stem cells (CCSCs), possess stem cell-like characteristics. However, it is still unexplored how their presence indicates lung metastasis tendency, and particularly, what mechanism drives their lung metastasis. Here, we demonstrated that a preoperative CCSC count in 5 mL of blood (CCSC5) of >3 was a risk factor for lung metastasis in clinical HCC patients. The CSCs overexpressed with circ-CDYL entered the bloodstream and developed lung metastases in mice. Mechanistically, circ-CDYL promoted COL14A1 expression and thus ERK signaling to facilitate epithelial-mesenchymal transition. Furthermore, we uncovered that an RNA-binding protein, EEF1A2, acted as a novel transcriptional (co-) factor to cooperate with circ-CDYL and initiate COL14A1 transcription. A high circ-CDYL level is caused by HIF-1⍺-mediated transcriptional upregulation of its parental gene CDYL and splicing factor EIF4A3 under a hypoxia microenvironment. Hence, the hypoxia microenvironment enables the high-tendency lung metastasis of ICAM-1+ CCSCs through the HIF-1⍺/circ-CDYL-EEF1A2/COL14A1 axis, potentially allowing clinicians to preoperatively detect ICAM-1+ CCSCs as a real-time biomarker for precisely deciding HCC treatment strategies.


Carcinoma, Hepatocellular , Liver Neoplasms , Lung Neoplasms , MicroRNAs , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Cell Line, Tumor , Lung Neoplasms/metabolism , Hypoxia/genetics , Neoplastic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Proliferation , Tumor Microenvironment , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Co-Repressor Proteins/genetics
15.
Protein Sci ; 32(10): e4779, 2023 10.
Article En | MEDLINE | ID: mdl-37695939

Malate (2-hydroxysuccinic acid) and tartrate (2,3-dihydroxysuccinic acid) are chiral substrates; the former existing in two enantiomeric forms (R and S) while the latter exists as three stereoisomers (R,R; S,S; and R,S). Dehydration by stereospecific hydrogen abstraction and antielimination of the hydroxyl group yield the achiral products fumarate and oxaloacetate, respectively. Class-I fumarate hydratase (FH) and L-tartrate dehydratase (L-TTD) are two highly conserved enzymes belonging to the iron-sulfur cluster hydrolyase family of enzymes that catalyze reactions on specific stereoisomers of malate and tartrate. FH from Methanocaldococcus jannaschii accepts only (S)-malate and (S,S)-tartrate as substrates while the structurally similar L-TTD from Escherichia coli accepts only (R)-malate and (R,R)-tartrate as substrates. Phylogenetic analysis reveals a common evolutionary origin of L-TTDs and two-subunit archaeal FHs suggesting a divergence during evolution that may have led to the switch in substrate stereospecificity preference. Due to the high conservation of their sequences, a molecular basis for switch in stereospecificity is not evident from analysis of crystal structures of FH and predicted structure of L-TTD. The switch in enantiomer preference may be rationalized by invoking conformational plasticity of the amino acids interacting with the substrate, together with substrate reorientation and conformer selection about the C2C3 bond of the dicarboxylic acid substrates. Although classical models of enzyme-substrate binding are insufficient to explain such a phenomenon, the enantiomer superposition model suggests that a minor reorientation in the active site residues could lead to the switch in substrate stereospecificity.


Malates , Tartrates , Humans , Tartrates/metabolism , Malates/metabolism , Phylogeny , Dehydration , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Fumarate Hydratase/chemistry , Fumarate Hydratase/genetics , Fumarate Hydratase/metabolism , Escherichia coli/metabolism , Catalytic Domain , Substrate Specificity , Kinetics
16.
J Biotechnol ; 371-372: 33-40, 2023 Jul 20.
Article En | MEDLINE | ID: mdl-37285942

Microbial synthesis of plant-based myrcene is of great interest because of its high demand, however, achieving high biosynthetic titers remains a great challenge. Previous strategies adopted for microbial myrcene production have relied on the recruitment of a multi-step biosynthetic pathway which requires complex metabolic regulation or high activity of myrcene synthase, hindering its application. Here, we present an effective one-step biotransformation system for myrcene biosynthesis from geraniol, using a linalool dehydratase isomerase (LDI) to overcome these limitations. The truncated LDI possesses nominal activity that catalyzes the isomerization of geraniol to linalool and the subsequent dehydration to myrcene in anaerobic environment. In order to improve the robustness of engineered strains for the efficient conversion of geraniol to myrcene, rational enzyme modification and a series of biochemical process engineering were employed to maintain and improve the anaerobic catalytic activity of LDI. Finally, by introducing the optimized myrcene biosynthetic capability in the existing geraniol-production strain, we achieve de novo biosynthesis of myrcene at 1.25 g/L from glycerol during 84 h aerobic-anaerobic two-stage fermentation, which is much higher than previously reported myrcene levels. This work highlights the value of dehydratase isomerase-based biocatalytic in establishing novel biosynthetic pathways and lays a reliable foundation for the microbial synthesis of myrcene.


Escherichia coli , Monoterpenes , Monoterpenes/chemistry , Monoterpenes/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Biosynthetic Pathways , Isomerases/genetics , Isomerases/metabolism , Metabolic Engineering
17.
ACS Chem Biol ; 18(5): 1218-1227, 2023 05 19.
Article En | MEDLINE | ID: mdl-37162177

Lanthipeptides are a representative class of RiPPs that possess characteristic lanthionine and/or methyllanthionine thioether cross-links. The biosynthetic potentials of marine-derived lanthipeptides remain largely unexplored. In this study, we characterized three novel lanthipeptides pseudorosin A-C by heterologous expression of a class I lanthipeptide biosynthetic gene cluster from marine Pseudoalteromonas flavipulchra S16. Interestingly, pseudorosin C contains a large loop spanning 18 amino acid residues, which is rare in lanthipeptides. Unexpectedly, the dehydratase PsfB could catalyze the dethiolation of specific Cys residues in all three core peptides, thereby generating dehydroalanines in the absence of LanC cyclase. To the best of our knowledge, we identified the first member of the LanB dehydratase family to perform glutamylation and subsequent elimination on Cys thiol groups, which likely represents a new bypass for class I lanthipeptide biosynthesis. Furthermore, we employed mutagenesis to determine the important motif of the core peptide for dethiolation activity. Moreover, sequence analysis revealed that PsfB exhibited a distinct phylogenetic distance from the characterized LanBs from Gram-positive bacteria. Our findings, therefore, pave the way for further genome mining of lanthipeptides, novel post-translational modification enzymes from marine Gram-negative bacteria, and bioengineering applications.


Bacteriocins , Pseudoalteromonas , Bacteriocins/metabolism , Phylogeny , Pseudoalteromonas/genetics , Peptides/chemistry , Hydro-Lyases/genetics
18.
Sci Adv ; 9(17): eadg0654, 2023 04 28.
Article En | MEDLINE | ID: mdl-37115931

Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8+ T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti-PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1-deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell-based immunotherapy.


Neoplasms , Tumor-Associated Macrophages , Humans , Animals , Mice , Tumor-Associated Macrophages/metabolism , CD8-Positive T-Lymphocytes/metabolism , Macrophages/metabolism , Immunotherapy , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/metabolism , Hydro-Lyases/genetics
19.
J Biotechnol ; 367: 81-88, 2023 Apr 10.
Article En | MEDLINE | ID: mdl-36907356

Aldoxime dehydratases (Oxds) are a unique class of enzymes, which catalyzes the dehydration of aldoximes to nitriles in an aqueous environment. Recently, they gained attention as a catalyst for a green and cyanide-free alternative to established nitrile syntheses, which often require the use of toxic cyanides and harsh reaction conditions. Up to now only thirteen aldoxime dehydratases have been discovered and biochemically characterized. This raised the interest for identifying further Oxds with, e.g., complementary properties in terms of substrate scope. In this study, 16 novel genes, presumably encoding aldoxime dehydratases, were selected by using a commercially available 3DM database based on OxdB, an Oxd from Bacillus sp. OxB-1. Out of 16 proteins, six enzymes with aldoxime dehydratases activity were identified, which differ in their substrate scope and activity. While some novel Oxds showed better performance for aliphatic substrate such as n-octanaloxime compared to the well characterized OxdRE from Rhodococcus sp. N-771, some showed activity for aromatic aldoximes, leading to an overall high usability of these enzymes in organic chemistry. The applicability for organic synthesis was underlined by converting 100 mM n-octanaloxime at a 10 mL scale within 5 h with the novel aldoxime dehydratase OxdHR as whole-cell catalyst (33 mgbww/mL).


Bacillus , Hydro-Lyases , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Oximes/metabolism , Bacillus/metabolism , Nitriles/metabolism
20.
Mitochondrion ; 69: 104-115, 2023 03.
Article En | MEDLINE | ID: mdl-36773733

Iron-sulfur (Fe-S) cluster assembly in mitochondria and cytoplasm is essential for cell viability. In the yeast S. cerevisiae, Leu1 [4Fe-4S] is the cytoplasmic isopropylmalate isomerase involved in leucine biosynthesis. Using permeabilized Δleu1 cells and recombinant apo-Leu1R, here we show that the [4Fe-4S] cluster assembly on Leu1R can be reconstituted in a physiologic manner requiring both mitochondria and cytoplasm, as judged by conversion of the inactive enzyme to an active form. The mitochondrial contribution to this reconstitution assay is abrogated by inactivating mutations in the mitochondrial ISC (iron-sulfur cluster assembly) machinery components (such as Nfs1 cysteine desulfurase and Ssq1 chaperone) or the mitochondrial exporter Atm1. Likewise, depletion of a CIA (cytoplasmic iron-sulfur protein assembly) component Dre2 leads to impaired Leu1R reconstitution. Mitochondria likely make and export an intermediate, called X-S or (Fe-S)int, that is needed for cytoplasmic Fe-S cluster biosynthesis. Here we show that once exported, the same intermediate can be used for both [2Fe-2S] and [4Fe-4S] cluster biogenesis in the cytoplasm, with no further requirement of mitochondria. Our data also suggest that the exported intermediate can activate defective/latent CIA components in cytoplasm isolated from nfs1 or Δatm1 mutant cells. These findings may provide a way to isolate X-S or (Fe-S)int.


Hydro-Lyases , Iron-Sulfur Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cytoplasm/metabolism , Iron/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sulfur/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/metabolism
...