Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.217
Filter
1.
Nat Commun ; 15(1): 7743, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39231962

ABSTRACT

Autophagy is a finely orchestrated process required for the lysosomal degradation of cytosolic components. The final degradation step is essential for clearing autophagic cargo and recycling macromolecules. Using a CRISPR/Cas9-based screen, we identify RNAseK, a highly conserved transmembrane protein, as a regulator of autophagosome degradation. Analyses of RNAseK knockout cells reveal that, while autophagosome maturation is intact, cargo degradation is severely disrupted. Importantly, lysosomal protease activity and acidification remain intact in the absence of RNAseK suggesting a specificity to autolysosome degradation. Analyses of lysosome fractions show reduced levels of a subset of hydrolases in the absence of RNAseK. Of these, the knockdown of PLD3 leads to a defect in autophagosome clearance. Furthermore, the lysosomal fraction of RNAseK-depleted cells exhibits an accumulation of the ESCRT-III complex component, VPS4a, which is required for the lysosomal targeting of PLD3. Altogether, here we identify a lysosomal hydrolase delivery pathway required for efficient autolysosome degradation.


Subject(s)
Autophagosomes , Autophagy , Endosomal Sorting Complexes Required for Transport , Lysosomes , Lysosomes/metabolism , Humans , Autophagosomes/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , CRISPR-Cas Systems , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Hydrolases/metabolism , Hydrolases/genetics , HeLa Cells , HEK293 Cells
2.
Arch Microbiol ; 206(9): 380, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143366

ABSTRACT

Haloalkane dehalogenase, LinB, is a member of the α/ß hydrolase family of enzymes. It has a wide range of halogenated substrates, but, has been mostly studied in context of degradation of hexachlorocyclohexane (HCH) isomers, especially ß-HCH (5-12% of total HCH isomers), which is the most recalcitrant and persistent among all the HCH isomers. LinB was identified to directly act on ß-HCH in a one or two step transformation which decreases its toxicity manifold. Thereafter, many studies focused on LinB including its structure determination using X-ray crystallographic studies, structure comparison with other haloalkane dehalogenases, substrate specificity and kinetic studies, protein engineering and site-directed mutagenesis studies in search of better catalytic activity of the enzyme. LinB was mainly identified and characterized in bacteria belonging to sphingomonads. Detailed sequence comparison of LinB from different sphingomonads further revealed the residues critical for its activity and ability to catalyze either one or two step transformation of ß-HCH. Association of LinB with IS6100 elements is also being discussed in detail in sphingomonads. In this review, we summarized vigorous efforts done by different research groups on LinB for developing better bioremediation strategies against HCH contamination. Also, kinetic studies, protein engineering and site directed mutagenesis studies discussed here forms the basis of further exploration of LinB's role as an efficient enzyme in bioremediation projects.


Subject(s)
Hexachlorocyclohexane , Hydrolases , Hydrolases/metabolism , Hydrolases/genetics , Hydrolases/chemistry , Hexachlorocyclohexane/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Kinetics , Biodegradation, Environmental , Crystallography, X-Ray , Mutagenesis, Site-Directed , Sphingomonas/enzymology , Sphingomonas/genetics , Sphingomonas/metabolism
3.
Nat Commun ; 15(1): 7068, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152129

ABSTRACT

Laboratory evolution studies have demonstrated that parallel evolutionary trajectories can lead to genetically distinct enzymes with high activity towards a non-preferred substrate. However, it is unknown whether such enzymes have convergent conformational dynamics and mechanistic features. To address this question, we use as a model the wild-type Homo sapiens kynureninase (HsKYNase), which is of great interest for cancer immunotherapy. Earlier, we isolated HsKYNase_66 through an unusual evolutionary trajectory, having a 410-fold increase in the kcat/KM for kynurenine (KYN) and reverse substrate selectivity relative to HsKYNase. Here, by following a different evolutionary trajectory we generate a genetically distinct variant, HsKYNase_93D9, that exhibits KYN catalytic activity comparable to that of HsKYNase_66, but instead it is a "generalist" that accepts 3'-hydroxykynurenine (OH-KYN) with the same proficiency. Pre-steady-state kinetic analysis reveals that while the evolution of HsKYNase_66 is accompanied by a change in the rate-determining step of the reactions, HsKYNase_93D9 retains the same catalytic mechanism as HsKYNase. HDX-MS shows that the conformational dynamics of the two enzymes are markedly different and distinct from ortholog prokaryotic enzymes with high KYN activity. Our work provides a mechanistic framework for understanding the relationship between evolutionary mechanisms and phenotypic traits of evolved generalist and specialist enzyme species.


Subject(s)
Evolution, Molecular , Hydrolases , Kynurenine , Substrate Specificity , Hydrolases/chemistry , Hydrolases/metabolism , Hydrolases/genetics , Humans , Kynurenine/metabolism , Kynurenine/chemistry , Kinetics , Protein Conformation
4.
CNS Neurosci Ther ; 30(8): e14919, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39123298

ABSTRACT

BACKGROUND: Sanfilippo syndrome (mucopolysaccharidosis type IIIA; MPS IIIA) is a childhood dementia caused by inherited mutations in the sulfamidase gene. At present, there is no treatment and children with classical disease generally die in their late teens. Intravenous or intra-cerebrospinal fluid (CSF) injection of AAV9-gene replacement is being examined in human clinical trials; evaluation of the impact on brain disease is an intense focus; however, MPS IIIA patients also experience profound, progressive photoreceptor loss, leading to night blindness. AIM: To compare the relative efficacy of the two therapeutic approaches on retinal degeneration in MPS IIIA mice. METHODS: Neonatal mice received i.v. or intra-CSF AAV9-sulfamidase or vehicle and after 20 weeks, biochemical and histological evaluation of neuroretina integrity was carried out. RESULTS: Both treatments improved central retinal thickness; however, in peripheral retina, outer nuclear layer thickness and photoreceptor cell length were only significantly improved by i.v. gene replacement. Further, normalization of endo-lysosomal compartment size and microglial morphology was only observed following intravenous gene delivery. CONCLUSIONS: Confirmatory studies are needed in adult mice; however, these data indicate that i.v. AAV9-sulfamidase infusion leads to superior outcomes in neuroretina, and cerebrospinal fluid-delivered AAV9 may need to be supplemented with another therapeutic approach for optimal patient quality of life.


Subject(s)
Dependovirus , Genetic Therapy , Mucopolysaccharidosis III , Retina , Animals , Mucopolysaccharidosis III/therapy , Mucopolysaccharidosis III/genetics , Genetic Therapy/methods , Dependovirus/genetics , Retina/pathology , Mice , Disease Models, Animal , Hydrolases/genetics , Animals, Newborn , Mice, Inbred C57BL , Dementia/genetics , Dementia/therapy , Genetic Vectors/administration & dosage , Injections, Intravenous
5.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125019

ABSTRACT

Identifying the catalytic regioselectivity of enzymes remains a challenge. Compared to experimental trial-and-error approaches, computational methods like molecular dynamics simulations provide valuable insights into enzyme characteristics. However, the massive data generated by these simulations hinder the extraction of knowledge about enzyme catalytic mechanisms without adequate modeling techniques. Here, we propose a computational framework utilizing graph-based active learning from molecular dynamics to identify the regioselectivity of ginsenoside hydrolases (GHs), which selectively catalyze C6 or C20 positions to obtain rare deglycosylated bioactive compounds from Panax plants. Experimental results reveal that the dynamic-aware graph model can excellently distinguish GH regioselectivity with accuracy as high as 96-98% even when different enzyme-substrate systems exhibit similar dynamic behaviors. The active learning strategy equips our model to work robustly while reducing the reliance on dynamic data, indicating its capacity to mine sufficient knowledge from short multi-replica simulations. Moreover, the model's interpretability identified crucial residues and features associated with regioselectivity. Our findings contribute to the understanding of GH catalytic mechanisms and provide direct assistance for rational design to improve regioselectivity. We presented a general computational framework for modeling enzyme catalytic specificity from simulation data, paving the way for further integration of experimental and computational approaches in enzyme optimization and design.


Subject(s)
Ginsenosides , Molecular Dynamics Simulation , Ginsenosides/chemistry , Ginsenosides/metabolism , Substrate Specificity , Hydrolases/chemistry , Hydrolases/metabolism , Panax/chemistry , Panax/enzymology
6.
J Hazard Mater ; 477: 135380, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39088944

ABSTRACT

The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase. A customized self-assembled synergistic biocatalyst (MC@CaZn-MOF) was further developed to promote the two-step depolymerization process. The tailored catalysts showed better adhesion to the PET surface and desirable durability, retaining over 70% relative activity after incubation at pH 8.0 and 60 °C for 120 h. Importantly, MC@CaZn-MOF could directly decompose untreated AGf-PET to generate 9.5 mM TPA with weight loss over 90%. The successful implementation of a bifunctional customized catalyst makes the large-scale biocatalytic degradation of PET feasible, contributing to polymer upcycling and environmental sustainability.


Subject(s)
Biocatalysis , Polymerization , Plastics/chemistry , Hydrolases/metabolism , Hydrolases/chemistry , Biodegradation, Environmental , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Metal-Organic Frameworks/chemistry
7.
Int J Mol Sci ; 25(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125688

ABSTRACT

Polyethylene terephthalate (PET) degradation by enzymatic hydrolysis is significant for addressing plastic pollution and fostering sustainable waste management practices. Identifying thermophilic and thermostable PET hydrolases is particularly crucial for industrial bioprocesses, where elevated temperatures may enhance enzymatic efficiency and process kinetics. In this study, we present the discovery of a novel thermophilic and thermostable PETase enzyme named Sis, obtained through metagenomic sequence-based analysis. Sis exhibits robust activity on nanoPET substrates, demonstrating effectiveness at temperatures up to 70 °C and displaying exceptional thermal stability with a melting temperature (Tm) of 82 °C. Phylogenetically distinct from previously characterised PET hydrolases, Sis represents a valuable addition to the repertoire of enzymes suitable for PET degradation.


Subject(s)
Enzyme Stability , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Hydrolysis , Phylogeny , Temperature , Substrate Specificity , Kinetics , Hydrolases/chemistry , Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
8.
J Am Chem Soc ; 146(33): 23449-23456, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39133525

ABSTRACT

Natural products are important precursors for antibiotic drug design. These chemical scaffolds serve as synthetic inspiration for chemists who leverage their structures to develop novel antibacterials and chemical probes. We have previously studied carolacton, a natural product macrolactone fromSorangium cellulosum, and discovered a simplified derivative, A2, that maintained apparent biofilm inhibitory activity, although the biological target was unknown. Herein, we utilize affinity-based protein profiling (AfBPP) in situ during biofilm formation to identify the protein target using a photoexcitable cross-linking derivative of A2. From these studies, we identified glucan binding protein B (GbpB), a peptidoglycan hydrolase, as the primary target of A2. Further characterization of the interaction between A2 and GbpB, as well as PcsB, a closely related homologue from the more pathogenic S. pneumoniae, revealed binding to the catalytic CHAP (cysteine, histidine, aminopeptidase) domain. To the best of our knowledge, this is the first report of a small-molecule binder of a conserved and essential bacterial CHAP hydrolase, revealing its potential as an antibiotic target. This work also highlights A2 as a useful tool compound for streptococci and as an initial scaffold for the design of more potent CHAP binders.


Subject(s)
Biofilms , Biofilms/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Probes/chemistry , Molecular Probes/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Lactones/chemistry , Lactones/metabolism , Lactones/pharmacology , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/antagonists & inhibitors
9.
J Chem Inf Model ; 64(16): 6623-6635, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39143923

ABSTRACT

Tunnels are structural conduits in biomolecules responsible for transporting chemical compounds and solvent molecules from the active site. They have been shown to be present in a wide variety of enzymes across all functional and structural classes. However, the study of such pathways is experimentally challenging, because they are typically transient. Computational methods, such as molecular dynamics (MD) simulations, have been successfully proposed to explore tunnels. Conventional MD (cMD) provides structural details to characterize tunnels but suffers from sampling limitations to capture rare tunnel openings on longer time scales. Therefore, in this study, we explored the potential of Gaussian accelerated MD (GaMD) simulations to improve the exploration of complex tunnel networks in enzymes. We used the haloalkane dehalogenase LinB and its two variants with engineered transport pathways, which are not only well-known for their application potential but have also been extensively studied experimentally and computationally regarding their tunnel networks and their importance in multistep catalytic reactions. Our study demonstrates that GaMD efficiently improves tunnel sampling and allows the identification of all known tunnels for LinB and its two mutants. Furthermore, the improved sampling provided insight into a previously unknown transient side tunnel (ST). The extensive conformational landscape explored by GaMD simulations allowed us to investigate in detail the mechanism of ST opening. We determined variant-specific dynamic properties of ST opening, which were previously inaccessible due to limited sampling of cMD. Our comprehensive analysis supports multiple indicators of the functional relevance of the ST, emphasizing its potential significance beyond structural considerations. In conclusion, our research proves that the GaMD method can overcome the sampling limitations of cMD for the effective study of tunnels in enzymes, providing further means for identifying rare tunnels in enzymes with the potential for drug development, precision medicine, and rational protein engineering.


Subject(s)
Hydrolases , Molecular Dynamics Simulation , Hydrolases/chemistry , Hydrolases/metabolism , Protein Conformation , Normal Distribution , Catalytic Domain , Proteins/chemistry , Proteins/metabolism
10.
Front Immunol ; 15: 1400574, 2024.
Article in English | MEDLINE | ID: mdl-39176089

ABSTRACT

Background: Arginine is a conditionally essential amino acid that is depleted in critically ill or surgical patients. In pediatric and adult patients, sepsis results in an arginine-deficient state, and the depletion of plasma arginine is associated with greater mortality. However, direct supplementation of arginine can result in the excessive production of nitric oxide (NO), which can contribute to the hypotension and macrovascular hypo-reactivity observed in septic shock. Pegylated arginine deiminase (ADI-PEG20, pegargiminase) reduces plasma arginine and generates citrulline that can be transported intracellularly to generate local arginine and NO, without resulting in hypotension, while maintaining microvascular patency. The objective of this study was to assess the efficacy of ADI-PEG20 with and without supplemental intravenous citrulline in mitigating hypovolemic shock, maintaining tissue levels of arginine, and reducing systemic inflammation in an endotoxemic pediatric pig model. Methods: Twenty 3-week-old crossbred piglets were implanted with jugular and carotid catheters as well as telemetry devices in the femoral artery to measure blood pressure, body temperature, heart rate, and respiration rate. The piglets were assigned to one of three treatments before undergoing a 5 h lipopolysaccharide (LPS) infusion protocol. Twenty-four hours before LPS infusion, control pigs (LPS; n=6) received saline, ADI-PEG20 pigs (n=7) received an injection of ADI-PEG20, and seven pigs (ADI-PEG20 + CIT pigs [n=7]) received ADI-PEG20 and 250 mg/kg citrulline intravenously. Pigs were monitored throughout LPS infusion and tissue was harvested at the end of the protocol. Results: Plasma arginine levels decreased and remained low in ADI-PEG20 + CIT and ADI-PEG20 pigs compared with LPS pigs but tissue arginine levels in the liver and kidney were similar across all treatments. Mean arterial pressure in all groups decreased from 90 mmHg to 60 mmHg within 1 h of LPS infusion but there were no significant differences between treatment groups. ADI-PEG20 and ADI-PEG20 + CIT pigs had less CD45+ infiltrate in the liver and lung and lower levels of pro-inflammatory cytokines in the plasma. Conclusion: ADI-PEG20 and citrulline supplementation failed to ameliorate the hypotension associated with acute endotoxic sepsis in pigs but reduced systemic and local inflammation in the lung and liver.


Subject(s)
Citrulline , Disease Models, Animal , Endotoxemia , Polyethylene Glycols , Animals , Endotoxemia/metabolism , Endotoxemia/drug therapy , Citrulline/administration & dosage , Citrulline/therapeutic use , Swine , Polyethylene Glycols/pharmacology , Inflammation , Lipopolysaccharides , Arginine/administration & dosage , Cytokines/metabolism , Male , Female , Hydrolases
11.
Nat Commun ; 15(1): 6734, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112491

ABSTRACT

Staphylococcus aureus is responsible for a substantial number of invasive infections globally each year. These infections are problematic because they are frequently recalcitrant to antibiotic treatment. Antibiotic tolerance, the ability of bacteria to persist despite normally lethal doses of antibiotics, contributes to antibiotic treatment failure in S. aureus infections. To understand how antibiotic tolerance is induced, S. aureus biofilms exposed to multiple anti-staphylococcal antibiotics are examined using both quantitative proteomics and transposon sequencing. These screens indicate that arginine metabolism is involved in antibiotic tolerance within a biofilm and support the hypothesis that depletion of arginine within S. aureus communities can induce antibiotic tolerance. Consistent with this hypothesis, inactivation of argH, the final gene in the arginine synthesis pathway, induces antibiotic tolerance. Arginine restriction induces antibiotic tolerance via inhibition of protein synthesis. In murine skin and bone infection models, an argH mutant has enhanced ability to survive antibiotic treatment with vancomycin, highlighting the relationship between arginine metabolism and antibiotic tolerance during S. aureus infection. Uncovering this link between arginine metabolism and antibiotic tolerance has the potential to open new therapeutic avenues targeting previously recalcitrant S. aureus infections.


Subject(s)
Anti-Bacterial Agents , Arginine , Biofilms , Staphylococcal Infections , Staphylococcus aureus , Arginine/metabolism , Anti-Bacterial Agents/pharmacology , Animals , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Biofilms/drug effects , Biofilms/growth & development , Mice , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Vancomycin/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Female , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Hydrolases/metabolism , Hydrolases/genetics , Proteomics
12.
J Cancer Res Ther ; 20(4): 1323-1333, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39206995

ABSTRACT

BACKGROUND: Protein arginine deiminase 3 (PADI3) is involved in various biological processes of human disease. PADI3 has recently received increasing attention due to its role in tumorigenesis. In a previous study, we found that PADI3 plays a tumor suppressor role in colon cancer by inducing cell cycle arrest, but its critical role and mechanism in cancer metastasis remain obscure. In this study, we fully studied the role of PADI3 in colon cancer cell metastasis. METHODS: The expression levels of related proteins were detected by Western blotting, and Transwell and wound healing assays were used to examine the cell migration ability. Flow cytometry was used to measure and exclude cell apoptosis-affected cell migration. Both overexpression and rescue experiments were employed to elucidate the molecular mechanism of CKS1 in colon cancer cells. RESULTS: The expression levels of PADI3 and CKS1 are negatively related, and PADI3 can promote CKS1 degradation in a ubiquitin-dependent manner. PADI3 can suppress colon cancer cell migration and reduce the wound healing speed by inhibiting CKS1 expression. The molecular mechanism showed that CKS1 can promote EMT by increasing Snail and N-cadherin expression and suppressing E-cadherin expression. PADI3, as a suppressor of CKS1, can block the process of EMT by impairing CKS1-induced Snail upregulation and E-cadherin downregulation; however, the expression of N-cadherin cannot be rescued. CONCLUSIONS: CKS1 promotes EMT in colon cancer by regulating Snail/E-cadherin expression, and this effect can be reversed by PADI3 via the promotion of CKS1 degradation in a ubiquitylation-dependent manner.


Subject(s)
CDC2-CDC28 Kinases , Cell Movement , Colonic Neoplasms , Epithelial-Mesenchymal Transition , Signal Transduction , Humans , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/genetics , CDC2-CDC28 Kinases/metabolism , CDC2-CDC28 Kinases/genetics , Hydrolases/metabolism , Hydrolases/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Apoptosis , Cadherins/metabolism , Cadherins/genetics , Cell Proliferation , Antigens, CD
13.
Nature ; 633(8028): 182-188, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112712

ABSTRACT

Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in the biosynthesis of taurine from cysteine and in the downstream metabolism of secondary taurine metabolites4,5. One taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by stimuli that alter taurine or acetate flux, including endurance exercise7, dietary taurine supplementation8 and alcohol consumption6,9. So far, the identities of the enzymes involved in N-acetyltaurine metabolism, and the potential functions of N-acetyltaurine itself, have remained unknown. Here we show that the body mass index associated orphan enzyme phosphotriesterase-related (PTER)10 is a physiological N-acetyltaurine hydrolase. In vitro, PTER catalyses the hydrolysis of N-acetyltaurine to taurine and acetate. In mice, PTER is expressed in the kidney, liver and brainstem. Genetic ablation of Pter in mice results in complete loss of tissue N-acetyltaurine hydrolysis activity and a systemic increase in N-acetyltaurine levels. After stimuli that increase taurine levels, Pter knockout mice exhibit reduced food intake, resistance to diet-induced obesity and improved glucose homeostasis. Administration of N-acetyltaurine to obese wild-type mice also reduces food intake and body weight in a GFRAL-dependent manner. These data place PTER into a central enzymatic node of secondary taurine metabolism and uncover a role for PTER and N-acetyltaurine in body weight control and energy balance.


Subject(s)
Mice, Knockout , Obesity , Taurine , Animals , Mice , Taurine/metabolism , Taurine/analogs & derivatives , Obesity/metabolism , Obesity/enzymology , Male , Female , Glucose/metabolism , Eating , Humans , Hydrolysis , Hydrolases/metabolism , Homeostasis , Liver/metabolism , Liver/enzymology , Acetates/metabolism , Mice, Inbred C57BL , Kidney/metabolism
14.
MAbs ; 16(1): 2375798, 2024.
Article in English | MEDLINE | ID: mdl-38984665

ABSTRACT

Monoclonal antibodies (mAb) and other biological drugs are affected by enzymatic polysorbate (PS) degradation that reduces product stability and jeopardizes the supply of innovative medicines. PS represents a critical surfactant stabilizing the active pharmaceutical ingredients, which are produced by recombinant Chinese hamster ovary (CHO) cell lines. While the list of potential PS-degrading CHO host cell proteins (HCPs) has grown over the years, tangible data on industrially relevant HCPs are still scarce. By means of a highly sensitive liquid chromatography-tandem mass spectrometry method, we investigated seven different mAb products, resulting in the identification of 12 potentially PS-degrading hydrolases, including the strongly PS-degrading lipoprotein lipase (LPL). Using an LPL knockout CHO host cell line, we were able to stably overexpress and purify the remaining candidate hydrolases through orthogonal affinity chromatography methods, enabling their detailed functional characterization. Applying a PS degradation assay, we found nine mostly secreted, PS-active hydrolases with varying hydrolytic activity. All active hydrolases showed a serine-histidine-aspartate/glutamate catalytical triad. Further, we subjected the active hydrolases to pH-screenings and revealed a diverse range of activity optima, which can facilitate the identification of residual hydrolases during bioprocess development. Ultimately, we compiled our dataset in a risk matrix identifying PAF-AH, LIPA, PPT1, and LPLA2 as highly critical hydrolases based on their cellular expression, detection in purified antibodies, active secretion, and PS degradation activity. With this work, we pave the way toward a comprehensive functional characterization of PS-degrading hydrolases and provide a basis for a future reduction of PS degradation in biopharmaceutical drug products.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Hydrolases , CHO Cells , Animals , Antibodies, Monoclonal/chemistry , Hydrolases/metabolism , Polysorbates/chemistry , Biological Products/metabolism , Humans
15.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064965

ABSTRACT

The ability of Mycobacterium tuberculosis to derive lipids from the host, store them intracellularly, and then break them down into energy requires a battery of serine hydrolases. Serine hydrolases are a large, diverse enzyme family with functional roles in dormant, active, and reactivating mycobacterial cultures. To rapidly measure substrate-dependent shifts in mycobacterial serine hydrolase activity, we combined a robust mycobacterial growth system of nitrogen limitation and variable carbon availability with nimble in-gel fluorogenic enzyme measurements. Using this methodology, we rapidly analyzed a range of ester substrates, identified multiple hydrolases concurrently, observed functional enzyme shifts, and measured global substrate preferences. Within every growth condition, mycobacterial hydrolases displayed the full, dynamic range of upregulated, downregulated, and constitutively active hydrolases independent of the ester substrate. Increasing the alkyl chain length of the ester substrate also allowed visualization of distinct hydrolase activity likely corresponding with lipases most responsible for lipid breakdown. The most robust expression of hydrolase activity was observed under the highest stress growth conditions, reflecting the induction of multiple metabolic pathways scavenging for energy to survive under this high stress. The unique hydrolases present under these high-stress conditions could represent novel drug targets for combination treatment with current front-line therapeutics. Combining diverse fluorogenic esters with in-gel activity measurements provides a rapid, customizable, and sensitive detection method for mycobacterial serine hydrolase activity.


Subject(s)
Hydrolases , Mycobacterium tuberculosis , Mycobacterium tuberculosis/enzymology , Hydrolases/metabolism , Substrate Specificity , Bacterial Proteins/metabolism , Serine/metabolism , Enzyme Assays/methods
16.
Sensors (Basel) ; 24(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066069

ABSTRACT

The present study reports on the development, adaptation, and optimization of a novel monoenzyme conductometric biosensor based on a recombinant arginine deiminase (ADI) for the determination of arginine in dietary supplements with a high accuracy of results. Aiming for the highly sensitive determination of arginine in real samples, we studied the effect of parameters of the working buffer solution (its pH, buffer capacity, ionic strength, temperature, and protein concentration) on the sensitivity of the biosensor to arginine. Thus, it was determined that the optimal buffer is a 5 mM phosphate buffer solution with pH 6.2, and the optimal temperature is 39.5 °C. The linear functioning range is 2.5-750 µM of L-arginine with a minimal limit of detection of 2 µM. The concentration of arginine in food additive samples was determined using the developed ADI-based biosensor. Based on the obtained results, the most effective method of biosensor analysis using the method of standard additions was chosen. It was also checked how the reproducibility of the biosensor changes during the analysis of pharmaceutical samples. The results of the determination of arginine in real samples using a conductometric biosensor based on ADI clearly correlated with the data obtained using the method of ion-exchange chromatography and enzymatic spectrophotometric analysis. We concluded that the developed biosensor would be effective for the accurate and selective determination of arginine in dietary supplements intended for the prevention and/or elimination of arginine deficiency.


Subject(s)
Arginine , Biosensing Techniques , Dietary Supplements , Hydrolases , Arginine/chemistry , Arginine/analysis , Biosensing Techniques/methods , Dietary Supplements/analysis , Hydrolases/chemistry , Hydrogen-Ion Concentration , Temperature , Osmolar Concentration , Reproducibility of Results , Limit of Detection
17.
J Chem Theory Comput ; 20(14): 5807-5819, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38978395

ABSTRACT

Because most proteins have buried active sites, protein tunnels or channels play a crucial role in the transport of small molecules into buried cavities for enzymatic catalysis. Tunnels can critically modulate the biological process of protein-ligand recognition. Various molecular dynamics methods have been developed for exploring and exploiting the protein-ligand conformational space to extract high-resolution details of the binding processes, a recent example being energetically unbiased high-throughput adaptive sampling simulations. The current study systematically contrasted the role of integrating prior knowledge while generating useful initial protein-ligand configurations, called seeds, for these simulations. Using a nontrivial system of a haloalkane dehalogenase mutant with multiple transport tunnels leading to a deeply buried active site, simulations were employed to derive kinetic models describing the process of association and dissociation of the substrate molecule. The most knowledge-based seed generation enabled high-throughput simulations that could more consistently capture the entire transport process, explore the complex network of transport tunnels, and predict equilibrium dissociation constants, koff/kon, on the same order of magnitude as experimental measurements. Overall, the infusion of more knowledge into the initial seeds of adaptive sampling simulations could render analyses of transport mechanisms in enzymes more consistent even for very complex biomolecular systems, thereby promoting drug development efforts and the rational design of enzymes with buried active sites.


Subject(s)
Catalytic Domain , Hydrolases , Molecular Dynamics Simulation , Ligands , Hydrolases/chemistry , Hydrolases/metabolism , Kinetics
18.
J Agric Food Chem ; 72(32): 18146-18154, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39075026

ABSTRACT

Zearalenone (ZEN) is an estrogenic mycotoxin causing reproductive toxicity in livestock. Currently, lactone hydrolases are used in the enzymatic degradation of ZEN. However, most lactone hydrolases suffer from low degradation efficiency and poor thermal stability. ZHD518, as a documented neutral enzyme for ZEN degradation, exhibits high enzymatic activity under neutral conditions. In this study, a multifunctional peptide S1v1-(AEAEAHAH)2 was fused to the N-terminus of ZHD518. Compared with the wild-type enzyme, the peptide fusion significantly enhanced protein expression by 1.28 times, enzyme activity by 9.27 times, thermal stability by 37.08 times after incubation at 45 °C for 10 min and enzyme stability during long-term storage. Moreover, ZEN concentrations in corn bran, corn germ meal, and corn gluten powder decreased from 5.29 ± 0.04, 5.31 ± 0.03, and 5.30 ± 0.01 µg/g to 0.48 ± 0.05, 0.48 ± 0.06, and 0.21 ± 0.04 µg/g, respectively, following a 60 min treatment with S1v1-GS-ZHD518, resulting in degradation rates of 90.98, 91.00, and 95.32%, respectively. In conclusion, the properties of S1v1-GS-ZHD518, such as its efficient degradability, high temperature resistance and storage resistance, offer the possibility of its application in food or feed.


Subject(s)
Enzyme Stability , Peptides , Zea mays , Zearalenone , Zearalenone/chemistry , Zearalenone/metabolism , Zea mays/chemistry , Zea mays/metabolism , Zea mays/genetics , Peptides/chemistry , Peptides/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/chemistry , Lactones/chemistry , Lactones/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics
19.
Biochemistry ; 63(15): 1901-1912, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38995238

ABSTRACT

Significant attention has been shifted toward the use and development of biodegradable polymeric materials to mitigate environmental accumulation and potential health impacts. One such material, poly(aspartic acid) (PAA), is a biodegradable alternative to superabsorbent poly(carboxylates), like poly(acrylate). Three enzymes are known to hydrolyze PAA: PahZ1KT-1 and PahZ2KT-1 from Sphingomonas sp. KT-1 and PahZ1KP-2 from Pedobacter sp. KP-2. We previously reported the X-ray crystal structure for PahZ1KT-1, which revealed a homodimer complex with a strongly cationic surface spanning one side of each monomer. Here, we report the first characterization of any polymer hydrolase binding to DNA, where modeling data predict binding of the polyanionic DNA near the cationic substrate binding surface. Our data reveal that PahZ1 homologues from Sphingomonas sp. KT-1 and Pedobacter sp. KP-2 bind ssDNA and dsDNA with nanomolar binding affinities. PahZ1KT-1 binds ssDNA and dsDNA with an apparent dissociation constant, KD,app = 81 ± 14 and 19 ± 1 nM, respectively, and these estimates are similar to the same behaviors exhibited by PahZ1KP-2. Gel permeation chromatography data reveal that dsDNA binding promotes inhibition of PahZ1-catalyzed PAA biodegradation for each homologue. We propose a working model wherein binding of PahZ1 to extracellular biofilm DNA aids in the localization of the hydrolase to the environment in which PAA would first be encountered, thereby providing a mechanism to degrade extracellular PAA and potentially harvest aspartic acid for nutritional uptake.


Subject(s)
Sphingomonas , Sphingomonas/enzymology , Pedobacter/enzymology , DNA/metabolism , Hydrolases/metabolism , Hydrolases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Peptides/metabolism , Peptides/chemistry , DNA, Single-Stranded/metabolism , Models, Molecular , Protein Binding , Aspartic Acid/metabolism , Aspartic Acid/chemistry
20.
Protein Sci ; 33(8): e5122, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39031458

ABSTRACT

Enterobactin is a high-affinity iron chelator produced and secreted by Escherichia coli and Salmonella typhimurium to scavenge scarce extracellular Fe3+ as a micronutrient. EntC and EntB are the first two enzymes in the enterobactin biosynthetic pathway. Isochorismate, produced by EntC, is a substrate for EntB isochorismatase. By using a competing isochorismate-consuming enzyme (the E. coli SEPHCHC synthase MenD), we found in a coupled assay that residual EntB isochorismatase activity decreased as a function of increasing MenD concentration. In the presence of excess MenD, EntB isochorismatase activity was observed to decrease by 84%, indicative of partial EntC-EntB channeling (16%) of isochorismate. Furthermore, addition of glycerol to the assay resulted in an increase of residual EntB isochorismatase activity to approximately 25% while in the presence of excess MenD. These experimental outcomes supported the existence of a substrate channeling surface identified in a previously reported protein-docking model of the EntC-EntB complex. Two positively charged EntB residues (K21 and R196) that were predicted to electrostatically guide negatively charged isochorismate between the EntC and EntB active sites were mutagenized to determine their effects on substrate channeling. The EntB variants K21D and R196D exhibited a near complete loss of isochorismatase activity, likely due to electrostatic repulsion of the negatively charged isochorismate substrate. Variants K21A, R196A, and K21A/R196A retained partial EntB isochorismatase activity in the absence of EntC; in the presence of EntC, isochorismatase activity in all variants increased to near wild-type levels. The MenD competition assay of the variants revealed that while K21A channeled isochorismate as efficiently as wild-type EntB (~ 15%), the variants K21A/R196A and R196A exhibited an approximately 5-fold loss in observed channeling efficiency (~3%). Taken together, these results demonstrate that partial substrate channeling occurs between EntC and EntB via a leaky electrostatic tunnel formed upon dynamic EntC-EntB complex formation and that EntB R196 plays an essential role in isochorismate channeling.


Subject(s)
Enterobactin , Escherichia coli Proteins , Escherichia coli , Enterobactin/biosynthesis , Enterobactin/metabolism , Enterobactin/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Chorismic Acid/metabolism , Chorismic Acid/chemistry , Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL