Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.243
Filter
1.
J Pharm Pharm Sci ; 27: 13074, 2024.
Article in English | MEDLINE | ID: mdl-38919469

ABSTRACT

Purpose: This study evaluated the safety and efficacy of two insulin regimens for inpatient hyperglycemia management: combination short-plus long-acting insulin (basal-bolus insulin regimen, BBIR) vs. short-acting insulin only (correctional insulin only regimen, CIOR). Methods: Chart reviews identified noncritically ill patients with pre-existing type 2 diabetes mellitus receiving insulin injections. Study participants (N = 138) were divided into BBIR (N = 104) and CIOR (N = 34) groups. Data for the entire duration of each patient's stay were analyzed. Results: The primary outcome of percent hyperglycemic days was higher in BBIR vs. CIOR (3.97 ± 0.33% vs. 1.22 ± 0.38%). The safety outcome of percent hypoglycemic events was not different between BBIR and CIOR (0.78 ± 0.22% vs. 0.53 ± 0.37%). Regarding secondary outcomes, the percentage of euglycemic days was lower in BBIR vs. CIOR (26.74 ± 2.97% vs. 40.98 ± 5.91%). Overall blood glucose (BG) and daily insulin dose were higher in BBIR vs. CIOR (231.43 ± 5.37 vs. 195.55 ± 6.25 mg/dL and 41.36 ± 3.07 vs. 5.02 ± 0.68 units, respectively). Insulin regimen-associated differences in hyperglycemia and daily insulin dose persisted after adjusting for covariates. Conclusion: Our observations linking BBIR to worse glycemic outcomes differ from those reported in the randomized controlled Rabbit 2 and Rabbit 2 Surgery trials. This discrepancy can be partly explained by the fact that BBIR patients displayed worse glycemic baselines. Also, there was no diabetes stewardship team to monitor BG and modify insulin therapy, which is relevant since achieving euglycemia in BBIR patients requires more dose adjustments. This study highlights challenges with standard inpatient glycemic management and calls for further research assessing the benefits of pharmacist-led diabetes stewardship.


Subject(s)
Diabetes Mellitus, Type 2 , Hospitals, Community , Hyperglycemia , Hypoglycemic Agents , Insulin , Humans , Diabetes Mellitus, Type 2/drug therapy , Male , Female , Hyperglycemia/drug therapy , Middle Aged , Insulin/administration & dosage , Insulin/therapeutic use , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Aged , Retrospective Studies , Blood Glucose/drug effects
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928001

ABSTRACT

We examined whether the administration of growth hormone (GH) improves insulin resistance in females of a non-obese hyperglycemic mouse model after birth with low birth weight (LBW), given that GH is known to increase muscle mass. The intrauterine Ischemia group underwent uterine artery occlusion for 15 min on day 16.5 of gestation. At 4 weeks of age, female mice in the Ischemia group were divided into the GH-treated (Ischemia-GH) and non-GH-treated (Ischemia) groups. At 8 weeks of age, the glucose metabolism, muscle pathology, and metabolome of liver were assessed. The insulin resistance index improved in the Ischemia-GH group compared with the Ischemia group (p = 0.034). The percentage of type 1 muscle fibers was higher in the Ischemia-GH group than the Ischemia group (p < 0.001); the muscle fiber type was altered by GH. In the liver, oxidative stress factors were reduced, and ATP production was increased in the Ischemia-GH group compared to the Ischemia group (p = 0.014), indicating the improved mitochondrial function of liver. GH administration is effective in improving insulin resistance by increasing the content of type 1 muscle fibers and improving mitochondrial function of liver in our non-obese hyperglycemic mouse model after birth with LBW.


Subject(s)
Disease Models, Animal , Hyperglycemia , Insulin Resistance , Liver , Animals , Female , Mice , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Liver/metabolism , Liver/drug effects , Human Growth Hormone/pharmacology , Human Growth Hormone/administration & dosage , Humans , Pregnancy , Recombinant Proteins/pharmacology , Oxidative Stress/drug effects , Infant, Low Birth Weight
3.
Tissue Cell ; 88: 102426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833941

ABSTRACT

Diabetes mellitus (DM) is a well-known hyperglycemic metabolic condition identified by oxidative stress and biological function disruption. Kiwifruit is a valuable source of polyphenols and vitamin C with great antioxidant, nutritional, and health-promoting effects. Therefore, this study was initiated to explore the antioxidant and anti-hyperglycemic effects of kiwifruit aqueous extract (KFE) against oxidative injury and testis dysfunction in rats with diabetes. Twenty-four male Wistar Albino rats (160-170 g) were divided into four groups: Group 1 served as the control, Group 2 supplemented orally with kiwifruit extract (KFE; 1 g/kg/day) for one month, Group 3 was treated with a single streptozotocin dose (STZ; 50 mg/kg ip), and Group 4 where the diabetic rats were administered with KFE, respectively. According to the results, the GC-MS analysis of KFE revealed several main components with strong antioxidant properties. In diabetic rats, lipid peroxidation and hyperglycemia were accompanied by perturbations in hormone levels and sperm characteristics. Antioxidant enzymes, glutathione content, aminotransferase, phosphatase activities, and protein content were decreased. Furthermore, histology, immunohistochemical PCNA expression, and histochemical analysis of collagen, DNA, RNA, and total protein. were altered in rat testis sections, supporting the changes in biochemistry. Furthermore, diabetic rats supplemented with KFE manifested considerable amendment in all the tested parameters besides improved tissue structure and gene expressions (NF-kB, p53, IL-1ß, Bax, IL-10, and Bcl2) relative to the diabetic group. In conclusion, KFE has beneficial effects as it can improve glucose levels and testis function, so it might be used as a complementary therapy in DM.


Subject(s)
Actinidia , Apoptosis , Diabetes Mellitus, Experimental , Hyperglycemia , Inflammation , Oxidative Stress , Plant Extracts , Rats, Wistar , Testis , Animals , Male , Actinidia/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Testis/drug effects , Testis/metabolism , Testis/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Apoptosis/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/drug therapy , Inflammation/pathology , Streptozocin , Antioxidants/pharmacology
4.
J Appl Biomed ; 22(2): 74-80, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38912862

ABSTRACT

Myo-inositol (MI), present in a variety of foods, is essential in several important processes of cell physiology. In this study, we explored the protective effects of MI against hyperglycemia and dyslipidemia in db/db mice, a typical animal model of type 2 diabetes mellitus (T2DM). MI supplement effectively suppressed the high plasma glucose and insulin levels and markedly relieved the insulin resistance (IR) in the db/db mice, comparable to metformin's effects. In MIN6 pancreatic ß cells, MI also restrained the upsurge of insulin secretion stimulated by high-concentration glucose but had no impact on the promoted cell proliferation. Moreover, MI abated the enhanced plasma triglyceride and total cholesterol levels in the db/db mice. Notably, the lipid droplet formation of mesenchymal stem cells (MSCs) from db/db mice was significantly diminished after the treatment of MI, indicating that MI could effectively inhibit the differentiation of db/db mouse MSCs into adipocytes. However, MI regretfully failed to control obesity in db/db mice. This work proved that MI significantly helped db/db mice's metabolic disorders, indicating that MI has potential as an effective adjunctive treatment for hyperglycemia and dyslipidemia in T2DM patients.


Subject(s)
Diabetes Mellitus, Type 2 , Dyslipidemias , Inositol , Insulin Resistance , Animals , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Inositol/pharmacology , Inositol/therapeutic use , Mice , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Male , Insulin/metabolism , Insulin/blood , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Blood Glucose/metabolism , Blood Glucose/drug effects , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Adipocytes/metabolism , Adipocytes/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism
5.
PLoS One ; 19(6): e0305636, 2024.
Article in English | MEDLINE | ID: mdl-38885232

ABSTRACT

Empagliflozin (EMPA) showed antiapoptotic, oxidative and anti-inflammatory potential effect. EMPA attenuates the inflammation and oxidative stress biomarkers in patients with heart failure while significantly decreases the malondialdehyde (a lipid peroxidation marker) levels in the plasma of diabetic patients. The present study examined the effects of moderate hyperglycemia on reproductive function. Sixty male Wister rats were divided and randomly allocated into four groups of 15 animals each . Diabetes was induced by a single intraperitoneal injection of a prepared solution containing STZ diluted in 0.1 M sodium citrate buffer (pH 4.5) at a dosage of 40 mg/kg body weight in selected in groups II and III for seven days before starting the treatment with EMPA. The current study revealed that EMPA for eight weeks prevented testicular high glucose-induced oxidative stress markers such as penile nitric oxide (NO), glutathione peroxidase (GPX) and total anti-oxidant capacity (TAC) in STZ-induced hyperglycemia in a rat model. In addition, EMPA ameliorated the high levels of endogenous Interleukin-6 (IL-6) present in gonads in response to an acute inflammatory found in the hyperglycemic STZ-induced rats. The present study further suggested the protective effects of EMPA and how it has a beneficial role and can effectively attenuate hyperglycemia-induced testicular oxidative damage and inflammatory markers as well as androgen dependent testicular enzymes activity as a protective role against the consequences of hyperglycemia and male sub-infertility.


Subject(s)
Benzhydryl Compounds , Glucosides , Hyperglycemia , Oxidative Stress , Rats, Wistar , Testis , Animals , Male , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Testis/drug effects , Testis/metabolism , Rats , Oxidative Stress/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Nitric Oxide/metabolism , Interleukin-6/metabolism , Blood Glucose/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Glutathione Peroxidase/metabolism
6.
J Mol Med (Berl) ; 102(7): 927-945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38758435

ABSTRACT

The development and progression of hyperglycemia (HG) and HG-associated atherosclerosis are exacerbated by mitochondrial dysfunction due to dysregulated mitochondria-derived ROS generation. We recently synthesized a novel mitochondria-targeted esculetin (Mito-Esc) and tested its dose-response therapeutic efficacy in mitigating HG-induced atherosclerosis in db/db mice. In comparison to simvastatin and pioglitazone, Mito-Esc administration resulted in a considerable reduction in body weights and improved glucose homeostasis, possibly by reducing hepatic gluconeogenesis, as indicated by a reduction in glycogen content, non-esterified free fatty acids (NEFA) levels, and fructose 1,6-bisphosphatase (FBPase) activity. Interestingly, Mito-Esc treatment, by regulating phospho-IRS and phospho-AKT levels, greatly improved palmitate-induced insulin resistance, resulting in enhanced glucose uptake in adipocytes and HepG2 cells. Also, and importantly, Mito-Esc administration prevented HG-induced atheromatous plaque formation and lipid accumulation in the descending aorta. In addition, Mito-Esc administration inhibited the HG-mediated increase in VACM, ICAM, and MAC3 levels in the aortic tissue, as well as reduced the serum pro-inflammatory cytokines and markers of senescence. In line with this, Mito-Esc significantly inhibited monocyte adherence to human aortic endothelial cells (HAECs) treated with high glucose and reduced high glucose-induced premature senescence in HAECs by activating the AMPK-SIRT1 pathway. In contrast, Mito-Esc failed to regulate high glucose-induced endothelial cell senescence under AMPK/SIRT1-depleted conditions. Together, the therapeutic efficacy of Mito-Esc in the mitigation of hyperglycemia-induced insulin resistance and the associated atherosclerosis is in part mediated by potentiating the AMPK-SIRT1 axis. KEY MESSAGES: Mito-Esc administration significantly mitigates diabetes-induced atherosclerosis. Mito-Esc improves hyperglycemia (HG)-associated insulin resistance. Mito-Esc inhibits HG-induced vascular senescence and inflammation in the aorta. Mito-Esc-mediated activation of the AMPK-SIRT1 axis regulates HG-induced endothelial cell senescence.


Subject(s)
Atherosclerosis , Hyperglycemia , Insulin Resistance , Mitochondria , Umbelliferones , Animals , Hyperglycemia/drug therapy , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/etiology , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , Humans , Mice , Mitochondria/metabolism , Mitochondria/drug effects , Male , Hep G2 Cells , Sirtuin 1/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Glucose/metabolism
7.
J Med Life ; 17(2): 217-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38813352

ABSTRACT

Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes. We used biodegradable D-α-tocopherol polyethylene glycol succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose of 20 IU/kg body weight, and examined the physical characteristics of NPs in vivo and in vitro. Serum glucose levels were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a potential carrier for oral insulin delivery.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Insulin , Nanoparticles , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Insulin/blood , Insulin/administration & dosage , Rats , Administration, Oral , Male , Hyperglycemia/drug therapy , Chitosan/chemistry , Blood Glucose , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Disease Models, Animal , Rats, Sprague-Dawley
8.
Cancer Med ; 13(9): e7170, 2024 May.
Article in English | MEDLINE | ID: mdl-38693813

ABSTRACT

BACKGROUND: Anamorelin was approved in Japan in 2021 to treat cancer cachexia associated with non-small cell lung, gastric, pancreatic, or colorectal cancers. Post-marketing surveillance is being conducted to evaluate the real-world safety and effectiveness of anamorelin. METHODS: This prospective, observational surveillance registered all patients who started treatment with anamorelin after April 21, 2021. Hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were defined as main safety specifications. Body weight (BW) and appetite were assessed as effectiveness specifications. RESULTS: This analysis was based on data as of January 21, 2023. The safety and effectiveness analysis sets included 6016 and 4511 patients, respectively. Treatment-related adverse events in ≥1% of patients were hyperglycemia (3.9%) and nausea (2.6%). The incidences of hyperglycemia, hepatic impairment, conduction disorders, and their associated adverse events related to treatment were 4.8%, 1.2%, and 1.1%, respectively. The mean changes (standard error [SE]) in BW from baseline to weeks 3, 12, 24, and 52 were 0.64 (0.05) kg, 1.19 (0.12) kg, 1.40 (0.21) kg, and 1.42 (0.39) kg, respectively. The mean changes (SE) in Functional Assessment of Anorexia/Cachexia Treatment 5-item Anorexia Symptom Scale total scores from baseline to weeks 3, 12, 24, and 52 were 3.2 (0.09), 4.8 (0.18), 5.2 (0.30), and 5.3 (0.47), respectively, exceeding the clinically meaningful improvement score (2.0 points). CONCLUSION: The overall safety of anamorelin raised no new safety concerns, although continued caution may be required for hyperglycemia and nausea. Improvements in BW and appetite were also observed in real-world clinical settings.


Subject(s)
Cachexia , Hydrazines , Neoplasms , Product Surveillance, Postmarketing , Humans , Cachexia/drug therapy , Cachexia/etiology , Male , Female , Aged , Prospective Studies , Neoplasms/complications , Neoplasms/drug therapy , Japan , Middle Aged , Hyperglycemia/drug therapy , Oligopeptides/therapeutic use , Oligopeptides/adverse effects , Treatment Outcome , Adult , Appetite/drug effects
9.
Eur J Pharmacol ; 976: 176680, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38810716

ABSTRACT

The escalating focus on ageing-associated disease has generated substantial interest in the phenomenon of cognitive impairment linked to diabetes. Hyperglycemia exacerbates oxidative stress, contributes to ß-amyloid accumulation, disrupts mitochondrial function, and impairs cognitive function. Existing therapies have certain limitations, and apigenin (AG), a natural plant flavonoid, has piqued interest due to its antioxidant, anti-inflammatory, and anti-hyperglycemic properties. So, we anticipate that AG might be a preventive medicine for hyperglycemia-associated amnesia. To test our hypothesis, naïve zebrafish were trained to acquire memory and pretreated with AG. Streptozotocin (STZ) was administered to mimic hyperglycemia-induced memory dysfunction. Spatial memory was assessed by T-maze and object recognition through visual stimuli. Acetylcholinesterase (AChE) activity, antioxidant enzyme status, and neuroinflammatory genes were measured, and histopathology was performed in the brain to elucidate the neuroprotective mechanism. AG exhibits a prophylactic effect and improves spatial learning and discriminative memory of STZ-induced amnesia in zebrafish under hyperglycemic conditions. AG also reduces blood glucose levels, brain oxidative stress, and AChE activity, enhancing cholinergic neurotransmission. AG prevented neuronal damage by regulating brain antioxidant response elements (ARE), collectively contributing to neuroprotective properties. AG demonstrates a promising effect in alleviating memory dysfunction and mitigating pathological changes via activation of the Nrf2/ARE mechanism. These findings underscore the therapeutic potential of AG in addressing memory dysfunction and neurodegenerative changes associated with hyperglycemia.


Subject(s)
Amnesia , Apigenin , Hyperglycemia , NF-E2-Related Factor 2 , Neuroprotective Agents , Oxidative Stress , Zebrafish , Animals , NF-E2-Related Factor 2/metabolism , Hyperglycemia/complications , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Amnesia/drug therapy , Amnesia/metabolism , Oxidative Stress/drug effects , Apigenin/pharmacology , Apigenin/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Acetylcholinesterase/metabolism , Signal Transduction/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Zebrafish Proteins/metabolism , Blood Glucose/metabolism , Blood Glucose/drug effects , Male , Streptozocin , Maze Learning/drug effects , Spatial Memory/drug effects , Disease Models, Animal
10.
Nature ; 629(8014): 1133-1141, 2024 May.
Article in English | MEDLINE | ID: mdl-38750368

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Subject(s)
Dizocilpine Maleate , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Obesity , Receptors, N-Methyl-D-Aspartate , Animals , Humans , Male , Mice , Rats , Brain Stem/metabolism , Brain Stem/drug effects , Disease Models, Animal , Dizocilpine Maleate/adverse effects , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/therapeutic use , Dyslipidemias/drug therapy , Dyslipidemias/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Mice, Inbred C57BL , Neuronal Plasticity/drug effects , Obesity/drug therapy , Obesity/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
11.
Biomed Pharmacother ; 176: 116837, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815290

ABSTRACT

Hyperglycemic stress can directly lead to neuronal damage. The mechanosensitive ion channel PIEZO1 can be activated in response to hyperglycemia, but its role in hyperglycemic neurotoxicity is unclear. The role of PIEZO1 in hyperglycemic neurotoxicity was explored by constructing a hyperglycemic mouse model and a high-glucose HT22 cell model. The results showed that PIEZO1 was significantly upregulated in response to high glucose stress. In vitro experiments have shown that high glucose stress induces changes in neuronal cell morphology and membrane tension, a key mechanism for PIEZO1 activation. In addition, high glucose stress upregulates serum/glucocorticoid-regulated kinase-1 (SGK1) and activates PIEZO1 through the Ca2+ pool and store-operated calcium entry (SOCE). PIEZO1-mediated Ca2+ influx further enhances SGK1 and SOCE, inducing intracellular Ca2+ peaks in neurons. PIEZO1 mediated intracellular Ca2+ elevation leads to calcium/calmodulin-dependent protein kinase 2α (CaMK2α) overactivation, which promotes oxidative stress and apoptosis signalling through p-CaMK2α/ERK/CREB and ox-CaMK2α/MAPK p38/NFκB p65 pathways, subsequently inducing synaptic damage and cognitive impairment in mice. The intron miR-107 of pantothenic kinase 1 (PANK1) is highly expressed in the brain and has been found to target PIEZO1 and SGK1. The PANK1 receptor is activated by peroxisome proliferator-activated receptor α (PPARα), an activator known to upregulate miR-107 levels in the brain. The clinically used lipid-lowering drug bezafibrate, a known PPARα activator, may upregulate miR-107 through the PPARɑ/PANK1 pathway, thereby inhibiting PIEZO1 and improving hyperglycemia-induced neuronal cell damage. This study provides a new idea for the pathogenesis and drug treatment of hyperglycemic neurotoxicity and diabetes-related cognitive dysfunction.


Subject(s)
Bezafibrate , Hyperglycemia , Ion Channels , Animals , Ion Channels/metabolism , Mice , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Male , Bezafibrate/pharmacology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Protein Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Oxidative Stress/drug effects , Calcium/metabolism , Cell Line , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Glucose/metabolism , Apoptosis/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Up-Regulation/drug effects
12.
Pak J Pharm Sci ; 37(1(Special)): 199-203, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38747270

ABSTRACT

This study investigates the combined effect of vitamin C and chromium on BMI, lipid profile, LFTs and HbA1c of Diabetes Mellitus type 2 patients. This is randomized controlled trial study. For this study a total of 60 patients (n=28 female, n=32 male) Diabetes Mellitus type 2 patients were selected. They were divided into treatment group (vitamin C (500mg) Chromium (200µg) and control group (placebo) comprising thirty patients per group. Mean age in control group and treatment group is 33± 5.729 and 33±7.017 respectively. Statistical analysis showed significant results of lipid profile; total cholesterol (mg/dl) 198±66.1 P=0.008, High-Density Lipoprotein 38±7.5, P<0.001, Low Density Lipoprotein (LDL) (mg/dl) 105.1±22.4, P=0.002 and Triglycerides 191±64.3, P=0.02 are respectively. Levels of serum ALT (u/l) (34.7±9.1, P<0.001) and AST (u/l) (31.6 ±8.6, P<0.001) were significantly lower as compared to control group. HbA1c percentages were also normalized (5.45±0.2, P<.001) as compared to group 2. BMI values were also improved (P=0.01) after treatment. Combined supplementation of vitamin C and chromium reduce the plasma lipid percentage, blood glucose levels and also improve the ALT and AST functions.


Subject(s)
Ascorbic Acid , Body Mass Index , Chromium , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Humans , Female , Male , Ascorbic Acid/therapeutic use , Chromium/therapeutic use , Adult , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/blood , Hyperlipidemias/drug therapy , Hyperlipidemias/blood , Lipids/blood , Liver/drug effects , Liver/enzymology , Liver/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Alanine Transaminase/blood , Aspartate Aminotransferases/blood , Middle Aged
13.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38718889

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Subject(s)
Alkanes , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Insulin Resistance , Plant Extracts , Rats, Sprague-Dawley , Schisandra , Animals , Schisandra/chemistry , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Rats , Alkanes/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Receptors, G-Protein-Coupled/metabolism , Lignans/pharmacology , Lignans/isolation & purification
14.
Phytomedicine ; 129: 155698, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728919

ABSTRACT

BACKGROUND: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb. PURPOSE: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG). STUDY DESIGN AND METHODS: First, systematic review search results revealed associations between gestational diabetes mellitus (GDM) and cardiovascular malformations. Subsequently, a second systematic review indicated that heart malformations were consistently associated with oxidative stress and cell apoptosis. We assessed the cytotoxic impacts of Atractylenolide compounds (AT-I, AT-II, and AT-III) on H9c2 cells and chick embryos, determining an optimal concentration of AT-I for further investigation. Second, immunofluorescence, western blot, Polymerase Chain Reaction (PCR), and flow cytometry were utilized to delve into the mechanisms through which AT-I mitigates oxidative stress and apoptosis in cardiac cells. Molecular docking was employed to investigate whether AT-I exerts cardioprotective effects via the STAT3 pathway. Then, we developed a streptozotocin-induced diabetes mellitus (PGDM) mouse model to evaluate AT-I's protective efficacy in mammals. Finally, we explored how AT-I protects hyperglycemia-induced abnormal fetal heart development through microbiota analysis and untargeted metabolomics analysis. RESULTS: The study showed the protective effect of AT-I on embryonic development using a chick embryo model which rescued the increase in the reactive oxygen species (ROS) and decrease in cell survival induced by HG. We also provided evidence suggesting that AT-I might directly interact with STAT3, inhibiting its phosphorylation. Further, in the PGDM mouse model, we observed that AT-I not only partially alleviated PGDM-related blood glucose issues and complications but also mitigated hyperglycemia-induced abnormal fetal heart development in pregnant mice. This effect is hypothesized to be mediated through alterations in gut microbiota composition. We proposed that dysregulation in microbiota metabolism could influence the downstream STAT3 signaling pathway via EGFR, consequently impacting cardiac development and formation. CONCLUSIONS: This study marks the first documented instance of AT-I's effectiveness in reducing the risk of early cardiac developmental anomalies in fetuses affected by gestational diabetes. AT-I achieves this by inhibiting the STAT3 pathway activated by ROS during gestational diabetes, significantly reducing the risk of fetal cardiac abnormalities. Notably, AT-I also indirectly safeguards normal fetal cardiac development by influencing the maternal gut microbiota and suppressing the EGFR/STAT3 pathway.


Subject(s)
Apoptosis , Diabetes, Gestational , Heart Defects, Congenital , Hyperglycemia , Lactones , Oxidative Stress , STAT3 Transcription Factor , Sesquiterpenes , Animals , STAT3 Transcription Factor/metabolism , Lactones/pharmacology , Sesquiterpenes/pharmacology , Hyperglycemia/drug therapy , Female , Chick Embryo , Pregnancy , Apoptosis/drug effects , Mice , Oxidative Stress/drug effects , Diabetes, Gestational/drug therapy , Signal Transduction/drug effects , Diabetes Mellitus, Experimental/drug therapy , Rats , Cell Line , Atractylodes/chemistry , Molecular Docking Simulation , Humans
15.
PLoS One ; 19(5): e0303060, 2024.
Article in English | MEDLINE | ID: mdl-38723008

ABSTRACT

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Subject(s)
Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
16.
Sci Rep ; 14(1): 10128, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698018

ABSTRACT

Glycemic variability (GV) has been associated with an increased mortality rate among critically ill patients. The clinical outcomes of having less GV even with slight hyperglycemia are better than those having tight glycemic control but higher GV. Insulin infusion remains the preferred method to control stress hyperglycemia in critically ill patients. However, its impacts on GV and clinical outcomes in critically ill patients still need further investigation. This study intended to evaluate the impact of insulin infusion therapy (IIT) compared to the insulin sliding scale (ISS) on the extent of GV and explore its impact on the clinical outcomes for critically ill patients. A prospective, single-center observational cohort study was conducted at a tertiary academic hospital in Saudi Arabia between March 2021 and November 2021. The study included adult patients admitted to ICUs who received insulin for stress hyperglycemia management. Patients were categorized into two groups based on the regimen of insulin therapy during ICU stay (IIT versus ISS). The primary outcome was the GV between the two groups. Secondary outcomes were ICU mortality, the incidence of hypoglycemia, and ICU length of stay (LOS). A total of 381 patients were screened; out of them, eighty patients met the eligibility criteria. The distribution of patients having diabetes and a history of insulin use was similar between the two groups. The GV was lower in the IIT group compared to the ISS group using CONGA (- 0.65, 95% CI [- 1.16, - 0.14], p-value = 0.01). Compared with ISS, patients who received IIT had a lower incidence of hypoglycemia that required correction (6.8% vs 2.77%; p-value = 0.38). In contrast, there were no significant differences in ICU LOS and ICU mortality between the two groups. Our study demonstrated that the IIT is associated with decreased GV significantly in critically ill patients without increasing the incidence of severe hypoglycemia. There is no survival benefit with the use of the IIT. Further studies with larger sample size are required to confirm our findings and elaborate on IIT's potential effect in reducing ICU complications in critically ill patients.


Subject(s)
Blood Glucose , Critical Illness , Hyperglycemia , Insulin , Intensive Care Units , Humans , Insulin/administration & dosage , Insulin/therapeutic use , Male , Female , Middle Aged , Prospective Studies , Blood Glucose/drug effects , Hyperglycemia/drug therapy , Aged , Length of Stay , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Saudi Arabia/epidemiology , Hypoglycemia/drug therapy , Adult , Glycemic Control/methods
17.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727927

ABSTRACT

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Subject(s)
Apoptosis , Ascorbic Acid , Cell Survival , Glucose , Hyperglycemia , Oxidative Stress , Reactive Oxygen Species , Retinal Pigment Epithelium , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/drug effects , Hyperglycemia/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/complications , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Glucose/metabolism , Humans , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Mitochondria/metabolism , Mitochondria/drug effects
18.
Redox Biol ; 73: 103217, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820984

ABSTRACT

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.


Subject(s)
Glucose Oxidase , Hyperglycemia , Nitric Oxide , Reactive Oxygen Species , Wound Healing , Wound Healing/drug effects , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Animals , Glucose Oxidase/metabolism , Humans , Mice , Glucose/metabolism , Rats , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
19.
Diabetologia ; 67(7): 1192-1205, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38625582

ABSTRACT

Diabetes mellitus is a significant risk factor for both ischaemic and haemorrhagic stroke, affecting up to a third of individuals with cerebrovascular diseases. Beyond being a risk factor for stroke, diabetes and hyperglycaemia have a negative impact on outcomes after ischaemic and haemorrhagic stroke. Hyperglycaemia during the acute ischaemic stroke phase is associated with a higher risk of haemorrhagic transformation and poor functional outcome, with evidence in favour of early intervention to limit and manage severe hyperglycaemia. Similarly, intensive glucose control nested in a broader bundle of care, including blood pressure, coagulation and temperature control, can provide substantial benefit for clinical outcomes after haemorrhagic stroke. As micro- and macrovascular complications are frequent in people with diabetes, cardiovascular prevention strategies also need to consider tailored treatment. In this regard, the broader availability of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide 1 receptor agonists can allow tailored treatments, particularly for those with heart failure and chronic kidney disease as comorbidities. Here, we review the main concepts of hyperacute stroke management and CVD prevention among people with diabetes, capitalising on results from large studies and RCTs to inform clinicians on preferred treatments.


Subject(s)
Hemorrhagic Stroke , Ischemic Stroke , Humans , Ischemic Stroke/prevention & control , Ischemic Stroke/complications , Hemorrhagic Stroke/epidemiology , Hemorrhagic Stroke/prevention & control , Blood Glucose/metabolism , Blood Glucose/drug effects , Comorbidity , Risk Factors , Hyperglycemia/complications , Hyperglycemia/drug therapy , Glycemic Control , Diabetes Mellitus, Type 2/complications , Stroke/prevention & control , Stroke/complications , Diabetes Mellitus , Hypoglycemic Agents/therapeutic use
20.
Front Endocrinol (Lausanne) ; 15: 1250822, 2024.
Article in English | MEDLINE | ID: mdl-38577574

ABSTRACT

Introduction: Pasireotide, a somatostatin receptor ligand, is approved for treating acromegaly and Cushing's disease (CD). Hyperglycemia during treatment can occur because of the drug's mechanism of action, although treatment discontinuation is rarely required. The prospective, randomized, Phase IV SOM230B2219 (NCT02060383) trial was designed to assess optimal management of pasireotide-associated hyperglycemia. Here, we investigated predictive factors for requiring antihyperglycemic medication during pasireotide treatment. Methods: Participants with acromegaly or CD initiated long-acting pasireotide 40 mg/28 days intramuscularly (acromegaly) or pasireotide 600 µg subcutaneously twice daily during pre-randomization (≤16 weeks). Those who did not need antihyperglycemic medication, were managed with metformin, or received insulin from baseline entered an observational arm ending at 16 weeks. Those who required additional/alternative antihyperglycemic medication to metformin were randomized to incretin-based therapy or insulin for an additional 16 weeks. Logistic-regression analyses evaluated quantitative and qualitative factors for requiring antihyperglycemic medication during pre-randomization. Results: Of 190 participants with acromegaly and 59 with CD, 88 and 15, respectively, did not need antihyperglycemic medication; most were aged <40 years (acromegaly 62.5%, CD 86.7%), with baseline glycated hemoglobin (HbA1c) <6.5% (<48 mmol/mol; acromegaly 98.9%, CD 100%) and fasting plasma glucose (FPG) <100 mg/dL (<5.6 mmol/L; acromegaly 76.1%, CD 100%). By logistic regression, increasing baseline HbA1c (odds ratio [OR] 3.6; P=0.0162) and FPG (OR 1.0; P=0.0472) and history of diabetes/pre-diabetes (OR 3.0; P=0.0221) predicted receipt of antihyperglycemic medication in acromegaly participants; increasing baseline HbA1c (OR 12.6; P=0.0276) was also predictive in CD participants. Investigator-reported hyperglycemia-related adverse events were recorded in 47.9% and 54.2% of acromegaly and CD participants, respectively, mainly those with diabetes/pre-diabetes. Conclusion: Increasing age, HbA1c, and FPG and pre-diabetes/diabetes were associated with increased likelihood of requiring antihyperglycemic medication during pasireotide treatment. These risk factors may be used to identify those who need more vigilant monitoring to optimize outcomes during pasireotide treatment.


Subject(s)
Acromegaly , Diabetes Mellitus , Hyperglycemia , Metformin , Pituitary ACTH Hypersecretion , Prediabetic State , Somatostatin , Humans , Acromegaly/complications , Acromegaly/drug therapy , Blood Glucose , Diabetes Mellitus/drug therapy , Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Metformin/therapeutic use , Pituitary ACTH Hypersecretion/complications , Pituitary ACTH Hypersecretion/drug therapy , Prediabetic State/drug therapy , Prospective Studies , Somatostatin/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...