Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.167
1.
Sci Rep ; 14(1): 10479, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714793

Enterochromaffin (EC) cells located within the intestinal mucosal epithelium release serotonin (5-HT) to regulate motility tones, barrier function and the immune system. Electroanalytical methodologies have been able to monitor steady state basal extracellular 5-HT levels but are unable to provide insight into how these levels are influenced by key regulatory processes such as release and uptake. We established a new measurement approach, amperometry approach curve profiling, which monitors the extracellular 5-HT level at different electrode-tissue (E-T) distances. Analysis of the current profile can provide information on contributions of regulatory components on the observed extracellular 5-HT level. Measurements were conducted from ex vivo murine ileum and colon using a boron-doped diamond (BDD) microelectrode. Amperometry approach curve profiling coupled with classical pharmacology demonstrated that extracellular 5-HT levels were significantly lower in the colon when compared to the ileum. This difference was due to a greater degree of activity of the 5-HT transporter (SERT) and a reduced amount of 5-HT released from colonic EC cells. The presence of an inhibitory 5-HT4 autoreceptor was observed in the colon, where a 40% increase in extracellular 5-HT was the half maximal inhibitory concentration for activation of the autoreceptor. This novel electroanalytical approach allows estimates of release and re-uptake and their contribution to 5-HT extracellular concentration from intestinal tissue be obtained from a single series of measurements.


Colon , Ileum , Intestinal Mucosa , Serotonin , Serotonin/metabolism , Animals , Mice , Ileum/metabolism , Intestinal Mucosa/metabolism , Colon/metabolism , Enterochromaffin Cells/metabolism , Microelectrodes , Serotonin Plasma Membrane Transport Proteins/metabolism , Male , Electrochemical Techniques/methods , Mice, Inbred C57BL
2.
Nat Commun ; 15(1): 3764, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704361

Crohn disease (CD) burden has increased with globalization/urbanization, and the rapid rise is attributed to environmental changes rather than genetic drift. The Study Of Urban and Rural CD Evolution (SOURCE, n = 380) has considered diet-omics domains simultaneously to detect complex interactions and identify potential beneficial and pathogenic factors linked with rural-urban transition and CD. We characterize exposures, diet, ileal transcriptomics, metabolomics, and microbiome in newly diagnosed CD patients and controls in rural and urban China and Israel. We show that time spent by rural residents in urban environments is linked with changes in gut microbial composition and metabolomics, which mirror those seen in CD. Ileal transcriptomics highlights personal metabolic and immune gene expression modules, that are directly linked to potential protective dietary exposures (coffee, manganese, vitamin D), fecal metabolites, and the microbiome. Bacteria-associated metabolites are primarily linked with host immune modules, whereas diet-linked metabolites are associated with host epithelial metabolic functions.


Crohn Disease , Diet , Gastrointestinal Microbiome , Rural Population , Urban Population , Crohn Disease/microbiology , Crohn Disease/genetics , Humans , Male , Female , China/epidemiology , Adult , Israel/epidemiology , Metabolomics , Cohort Studies , Middle Aged , Feces/microbiology , Ileum/microbiology , Ileum/metabolism , Transcriptome , Young Adult
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732126

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Enterohemorrhagic Escherichia coli , Ileum , Organoids , Rectum , Animals , Cattle , Ileum/microbiology , Ileum/metabolism , Ileum/ultrastructure , Rectum/microbiology , Enterohemorrhagic Escherichia coli/pathogenicity , Organoids/metabolism , Organoids/microbiology , Mucus/metabolism , Escherichia coli Infections/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure
4.
Gut Microbes ; 16(1): 2335879, 2024.
Article En | MEDLINE | ID: mdl-38695302

Dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) and the gut microbiome affect each other. We investigated the impact of supplementation with Buglossoides arvensis oil (BO), rich in stearidonic acid (SDA), on the human gut microbiome. Employing the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME), we simulated the ileal and ascending colon microbiomes of four donors. Our results reveal two distinct microbiota clusters influenced by BO, exhibiting shared and contrasting shifts. Notably, Bacteroides and Clostridia abundance underwent similar changes in both clusters, accompanied by increased propionate production in the colon. However, in the ileum, cluster 2 displayed a higher metabolic activity in terms of BO-induced propionate levels. Accordingly, a triad of bacterial members involved in propionate production through the succinate pathway, namely Bacteroides, Parabacteroides, and Phascolarctobacterium, was identified particularly in this cluster, which also showed a surge of second-generation probiotics, such as Akkermansia, in the colon. Finally, we describe for the first time the capability of gut bacteria to produce N-acyl-ethanolamines, and particularly the SDA-derived N-stearidonoyl-ethanolamine, following BO supplementation, which also stimulated the production of another bioactive endocannabinoid-like molecule, commendamide, in both cases with variations across individuals. Spearman correlations enabled the identification of bacterial genera potentially involved in endocannabinoid-like molecule production, such as, in agreement with previous reports, Bacteroides in the case of commendamide. This study suggests that the potential health benefits on the human microbiome of certain dietary oils may be amenable to stratified nutrition strategies and extend beyond n-3 PUFAs to include microbiota-derived endocannabinoid-like mediators.


Bacteria , Endocannabinoids , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/drug effects , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Bacteria/genetics , Endocannabinoids/metabolism , Colon/microbiology , Colon/metabolism , Ileum/microbiology , Ileum/metabolism , Fatty Acids, Omega-3/metabolism , Plant Oils/metabolism , Plant Oils/pharmacology , Dietary Supplements , Adult , Male
5.
J Biochem Mol Toxicol ; 38(6): e23736, 2024 Jun.
Article En | MEDLINE | ID: mdl-38769691

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. We previously reported spontaneous ileocecal tumorigenesis in AhR-deficient mice after the age of 10 weeks, which originated in the confined area between ileum and cecum. This study aimed to investigate the underlying mechanism that causes tumor development at this particular location. To observe mucosal architecture in detail, tissues of ileocecal region were stained with methylene blue. Gene expression profile in the ileocecal tissue was compared with cecum. Immunohistochemical analysis was performed with ileocecal tissues using antibodies against ileum-specific Reg3ß or cecum-specific Pitx2. In AhR+/+ mice and AhR+/- mice, that do not develop lesions, methylene blue staining revealed the gradually changing shape and arrangement of villi from ileum to cecum. It was also observed in AhR-deficient mice before developing lesions. Microarray-based analysis revealed abundant antimicrobial genes, such as Reg3, in the ileocecal tissue while FGFR2 and Pitx2 were specific to cecum. Immunohistochemical analysis of AhR-deficient mice indicated that lesions originated from the ileocecal junction, a boundary area between different epithelial types. Site-specific gene expression analysis revealed higher expression of IL-1ß at the ileocecal junction compared with the ileum or cecum of 9-11-week-old AhR-deficient mice. These findings indicate that AhR plays a vital function in the ileocecal junction. Regulating AhR activity can potentially manage the stability of ileocecal tissue possessing cancer-prone characteristics. This investigation contributes to understanding homeostasis in different epithelial transitional tissues, frequently associated with pathological states.


Interleukin-1beta , Receptors, Aryl Hydrocarbon , Up-Regulation , Animals , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/deficiency , Mice , Interleukin-1beta/metabolism , Interleukin-1beta/genetics , Cecum/metabolism , Ileum/metabolism , Ileum/pathology , Mice, Knockout , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors
6.
BMC Genomics ; 25(1): 426, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38684965

BACKGROUND: In the beef industry, bull calves are usually castrated to improve flavor and meat quality; however, this can reduce their growth and slaughter performance. The gut microbiota is known to exert a significant influence on growth and slaughter performance. However, there is a paucity of research investigating the impact of castration on gut microbiota composition and its subsequent effects on slaughter performance and meat flavor. RESULT: The objective of this study was to examine the processes via which castration hinders slaughter productivity and enhances meat quality. Bull and castrated calves were maintained under the same management conditions, and at slaughter, meat quality was assessed, and ileum and epithelial tissue samples were obtained. The research employed metagenomic sequencing and non-targeted metabolomics techniques to investigate the makeup of the microbiota and identify differential metabolites. The findings of this study revealed the Carcass weight and eye muscle area /carcass weight in the bull group were significantly higher than those in the steer group. There were no significant differences in the length, width, and crypt depth of the ileum villi between the two groups. A total of 53 flavor compounds were identified in the two groups of beef, of which 16 were significantly higher in the steer group than in the bull group, and 5 were significantly higher in the bull group than in the steer group. In addition, bacteria, Eukaryota, and virus species were significantly separated between the two groups. The lipid metabolism pathways of α-linolenic acid, linoleic acid, and unsaturated fatty acids were significantly enriched in the Steers group. Compared with the steer group, the organic system pathway is significantly enriched in the bull group. The study also found that five metabolites (LPC (0:0/20:3), LPC (20:3/0:0), LPE (0:0/22:5), LPE (22:5/0:0), D-Mannosamine), and three species (s_Cloning_vector_Hsp70_LexA-HP1, s_Bacteroides_Coprophilus_CAG: 333, and s_Clostridium_nexile-CAG: 348) interfere with each other and collectively have a positive impact on the flavor compounds of beef. CONCLUSIONS: These findings provide a basic understanding that under the same management conditions, castration does indeed reduce the slaughter performance of bulls and improve the flavor of beef. Microorganisms and metabolites contribute to these changes through interactions.


Gastrointestinal Microbiome , Ileum , Red Meat , Animals , Cattle , Male , Red Meat/microbiology , Ileum/microbiology , Ileum/metabolism , Metabolomics
7.
Animal ; 18(5): 101135, 2024 May.
Article En | MEDLINE | ID: mdl-38636148

There is a gap in the understanding of the relationship between dietary phytate levels and the relative efficacy of phytase to improve amino acid (AA) digestibility in pigs and chickens. Two experiments were conducted to investigate the effect of exogenous phytase on standardized ileal digestibility (SID) of AA and the apparent ileal digestibility (AID) of P in both standard- (SP) and high-phytate (HP) diets for broilers and swine. There were either 40 cages of Cobb 500 male broilers or 10 crossbred barrows (35 kg) fitted with ileal T-cannulas. Both studies were allotted to five dietary treatments (8 replicates). Treatments consisted of four corn-soybean meal-based diets arranged in a 2 × 2 factorial of standard or high phytate and exogenous phytase at 0 or 1 000 phytase units (FYT)/kg; and one N-free diet. Birds were fed a common starter diet from d 0 to 20 and fed experimental diets from d 20 to 25. Birds were euthanized on d 25 via CO2 asphyxiation, and digesta were collected from the terminal ileum. Pigs were fed for a total of four 7-d periods, where digesta were collected on d 6 and 7 of each period. Diet and digesta samples were analyzed for DM, N, Ti, AA, and P to determine AA and P digestibility. The SID of AA was determined by correcting the AID of AA for the basal endogenous losses estimated using the N-free diet. Main effects of the diet type (standard or HP) and phytase (0 or 1 000 FYT/kg), and the interaction of diet type and phytase were evaluated. For both experiments, the HP diets produced lower SID of AA compared to the SP (P < 0.001). For broilers, there was a phytase effect (P < 0.001) for the SID of all AAs evaluated regardless of the diet type. For pigs, phytase improved (P < 0.05) the SID of Met, Lys, Cys, Glu and Ser and tended to improve (P < 0.10) Arg, Leu, Thr, and Tyr. There were no significant interactions for either experiment. For both experiments, AID of P was lower for the HP diets (P < 0.01), and phytase produced greater AID of P for both diet types (P < 0.01). These data indicate that phytase greatly improves the digestibility of P for broilers and pigs and has the ability to significantly increase the digestibility of amino acids for these animals, regardless of the dietary phytate P.


6-Phytase , Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Digestion , Ileum , Phytic Acid , Animals , 6-Phytase/administration & dosage , 6-Phytase/pharmacology , Chickens/physiology , Chickens/metabolism , Animal Feed/analysis , Phytic Acid/metabolism , Phytic Acid/administration & dosage , Phytic Acid/pharmacology , Male , Digestion/drug effects , Diet/veterinary , Animal Nutritional Physiological Phenomena/drug effects , Ileum/metabolism , Swine/physiology , Amino Acids/metabolism , Dietary Supplements/analysis
8.
Arch Anim Nutr ; 78(1): 95-107, 2024 Feb.
Article En | MEDLINE | ID: mdl-38567675

The aim was to determine ileal endogenous nitrogen losses (ENL) and true ileal N-digestibility (TD-N) under non-steady-state conditions of the 15N-isotope dilution technique (15N-IDT), using diets generating low and high ENL and compare results to those obtained under steady-state conditions. Twelve growing pigs (mean LW 22.4 kg) fitted with a post-valve T-caecum cannula were fed an enzyme-hydrolysed casein (EHC)-based diet or an EHC diet + 4% quebracho tannins (QT) and were labelled via continuous 15N-leucine i.v. infusion or twice daily oral 15N-leucine administration. Digesta were collected daily over three consecutive hours with blood plasma sampled on the four consecutive days after cessation of 15N-labelling. There was a significant effect of sampling day on the dilution factor. Endogenous N losses were significantly lower for the EHC than the EHC+QT diet (2.41 vs. 8.69 g/kg DMI), while no significant effect of sampling day was observed. The TD-N of the EHC+QT diet did not differ from the TD-N of the EHC diet (95.1 vs. 92.0%). A significant effect of sampling day was observed for TD-N with day 1 and 2, being higher than day 4. Non-steady-state conditions overestimated ENL by 25-28% as compared to 3 h collections in steady-state conditions, but the relative overestimation was similar for the EHC diet as for the EHC+QT diet. TD-N did not differ significantly compared to 12 h steady-state measurements, but comparison to 3 h steady-state measurements showed that non-steady-state conditions overestimated TD-N for the EHC+QT diet by 9%. However, on day 4 this overestimation disappeared. Using the 15N-IDT during non-steady-state conditions can provide valuable additional data on endogenous N losses and TD-N.


Animal Feed , Diet , Digestion , Ileum , Nitrogen Isotopes , Nitrogen , Animals , Ileum/physiology , Ileum/metabolism , Nitrogen/metabolism , Digestion/drug effects , Digestion/physiology , Diet/veterinary , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Male , Sus scrofa/physiology , Indicator Dilution Techniques/veterinary , Swine/physiology , Female
9.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674044

Serotonin transporter (SERT) deficiency has been implicated in metabolic syndrome, intestinal inflammation, and microbial dysbiosis. Interestingly, changes in microbiome metabolic capacity and several alterations in host gene expression, including lipid metabolism, were previously observed in SERT-/- mice ileal mucosa. However, the precise host or microbial metabolites altered by SERT deficiency that may contribute to the pleiotropic phenotype of SERT KO mice are not yet understood. This study investigated the hypothesis that SERT deficiency impacts lipid and microbial metabolite abundances in the ileal mucosa, where SERT is highly expressed. Ileal mucosal metabolomics was performed by Metabolon on wild-type (WT) and homozygous SERT knockout (KO) mice. Fluorescent-activated cell sorting (FACS) was utilized to measure immune cell populations in ileal lamina propria to assess immunomodulatory effects caused by SERT deficiency. SERT KO mice exhibited a unique ileal mucosal metabolomic signature, with the most differentially altered metabolites being lipids. Such changes included increased diacylglycerols and decreased monoacylglycerols in the ileal mucosa of SERT KO mice compared to WT mice. Further, the ileal mucosa of SERT KO mice exhibited several changes in microbial-related metabolites known to play roles in intestinal inflammation and insulin resistance. SERT KO mice also had a significant reduction in the abundance of ileal group 3 innate lymphoid cells (ILC3). In conclusion, SERT deficiency induces complex alterations in the ileal mucosal environment, indicating potential links between serotonergic signaling, gut microbiota, mucosal immunity, intestinal inflammation, and metabolic syndrome.


Gastrointestinal Microbiome , Ileum , Intestinal Mucosa , Mice, Knockout , Serotonin Plasma Membrane Transport Proteins , Animals , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin Plasma Membrane Transport Proteins/deficiency , Ileum/metabolism , Ileum/pathology , Intestinal Mucosa/metabolism , Mice , Lipid Metabolism , Metabolomics/methods , Male , Metabolome , Mice, Inbred C57BL
10.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38622951

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Amino Acids , Fermented Foods , Swine , Animals , Female , Pregnancy , Amino Acids/metabolism , Digestion/physiology , Glutamine/metabolism , Tryptophan/metabolism , Cysteine/metabolism , Lysine/metabolism , Glycine max , Diet/veterinary , Arginine/metabolism , Serine , Animal Feed/analysis , Ileum/metabolism , Animal Nutritional Physiological Phenomena
11.
Cell Biochem Funct ; 42(2): e3976, 2024 Mar.
Article En | MEDLINE | ID: mdl-38489223

Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.


Dental Caries , Drinking Water , Mice , Animals , Female , Fluorides/pharmacology , Fluorides/analysis , Mice, Inbred NOD , Blood Glucose/analysis , Proteomics , Drinking Water/analysis , Ileum/chemistry , Ileum/metabolism
12.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Article En | MEDLINE | ID: mdl-38458672

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Chickens , NLR Family, Pyrin Domain-Containing 3 Protein , Toluidines , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chickens/metabolism , NF-kappa B/metabolism , Inflammation , Dietary Supplements , Ileum/metabolism , Fatty Acids, Unsaturated/therapeutic use
13.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38504643

High crude protein (CP; 21% to 26%) diets fed during the first 21 to 28 d postweaning are viewed negatively because of a perceived increase in the incidence rates of diarrhea due to increased intestinal protein fermentation and/or augmented enteric pathogen burden. This is thought to antagonize nursery pig health and growth performance. Therefore, our objective was to evaluate the impact of low vs. high dietary CP on 21-day postweaned pig intestinal function. Analyzed parameters included ex vivo intestinal barrier integrity (ileum and colon), ileal nutrient transport, tissue inflammation, and fecal DM. One hundred and twenty gilts and barrows (average body weight) were randomly assigned to one of two diets postweaning. Diets were fed for 21 d, in two phases. Phase 1 diets: low CP (17%) with a 1.4% standardized ileal digestible (SID) Lys (LCP), or high CP (24%) with a 1.4% SID Lysine (HCP). Phase 2: LCP (17%) and a 1.35% SID lysine, or HCP (24%) formulated to a 1.35% SID lysine. Pig growth rates, feed intakes, and fecal consistency did not differ (P > 0.05) due to dietary treatment. Six animals per treatment were euthanized for additional analyses. There were no differences in colonic epithelial barrier function as measured by transepithelial electrical resistance (TER) and fluorescein isothiocyanate (FITC)-dextran transport between treatments (P > 0.05). Interleukins (IL)-1α, IL-1ß, IL-1ra, IL-2 IL-4, IL-6, and IL-12 were not different between treatments (P > 0.05). However, IL-8 and IL-18 were higher in HCP- vs. LCP-fed pigs (P < 0.05). There were no differences in fecal dry matter (DM; P > 0.05) between treatments. In the ileum, there was a tendency (P = 0.06) for TER to be higher in HCP-fed pigs, suggesting a more robust barrier. Interestingly, glucose and glutamine transport were decreased in HCP- vs. LCP-fed pigs (P < 0.05). FITC-dextran transport was not different between treatments (P > 0.05). There were also no differences in ileal cytokine concentrations between diets (P > 0.05). Taken together, the data show that low CP does not negatively impact colonic barrier function, fecal DM, or inflammation. In contrast, ileal barrier function and nutrient transport were altered, suggesting a regional effect of diet on overall intestinal function.


High dietary crude protein (CP) is thought to antagonize nursery pig enteric health. Feeding high CP diets to nursery pigs did not exacerbate intestinal health or inflammation, and overall, protein level in the diet has little impact on animal health and performance.


Ileum , Lysine , Swine , Animals , Female , Lysine/metabolism , Ileum/metabolism , Diet/veterinary , Sus scrofa , Dietary Proteins/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena
14.
J Physiol Biochem ; 80(2): 465-477, 2024 May.
Article En | MEDLINE | ID: mdl-38526704

Hypothermia is an essential environmental factor in gastrointestinal diseases, but the main molecular mechanisms of pathogenesis remain unclear. The current study sought to better understand how chronic cold stress affects gut damage and its underlying mechanisms. In this work, to establish chronic cold stress (CS)-induced intestinal injury model, mice were subjected to continuous cold exposure (4 °C) for 3 h per day for 3 weeks. Our results indicated that CS led to gut injury via inducing changes of heat shock proteins 70 (HSP70) and apoptosis-related (caspases-3, Bax and Bcl-2) proteins; enhancing expression of intestinal tight-related (ZO-1 and occludin) proteins; promoting releases of inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), high mobility group box 1 (HMGB1), interleukin1ß (IL-1ß), IL-18 and IL-6 inflammatory mediators in the ileum; and altering gut microbial diversity. Furthermore, persistent cold exposure resulted in the cleavage of pyroptosis-related Gasdermin D (GSDMD) protein by regulating the NLRP3/ASC/caspase-1 and caspase-11 pathway, and activation of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, which are strongly associated with changes in gut microbiota diversity. Taken together, these investigations provide new insights into the increased risk of intestinal disorders at extremely low temperatures and establish a theoretical foundation for the advancement of novel pharmaceutical interventions targeting cold-related ailments.


Gasdermins , Gastrointestinal Microbiome , Pyroptosis , Animals , Male , Mice , Mice, Inbred C57BL , Cold-Shock Response , Phosphate-Binding Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Ileum/metabolism , Ileum/microbiology , Ileum/pathology , Inflammation/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
15.
J Nutr ; 154(4): 1461-1471, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432560

BACKGROUND: An in vivo/in vitro ileal fermentation assay using growing pigs has been developed but not yet formally validated. OBJECTIVES: This study aimed to validate the in vivo/in vitro ileal fermentation assay by comparing in vitro fermentation values with those obtained in vivo in growing pigs. The effect of raising pigs under different environmental conditions was also investigated. METHODS: Thirty piglets (1.59 ± 0.31 kg body weight, mean ± standard deviation) were subjected to 1 of 3 treatments: artificially reared (AR) (nonfarm, laboratory housing conditions) from postnatal day (PND) 7 (AR group), inoculated orally with human infant fecal extracts from birth until PND 8 and AR (AR+ group), or conventionally reared on a farm (control group). Starting at PND 7, the AR and AR+ pigs received human infant formula for 3 wk, followed by a human-type diet for 5 wk. Control pigs were weaned on the farm and, on PND 63, relocated to the laboratory animal facility. From PND 63, all pigs received a human-type diet. On PND 78, pigs were killed, after which ileal digesta were collected to perform an in vitro ileal fermentation (in vitro organic matter [OM] fermentability and organic acid production) and to determine digesta microbial composition and dietary OM fermentability in vivo. RESULTS: The rearing regimen resulted in only a few differences in ileal microbial taxonomic composition. The rearing regimen generally did not affect the in vitro production of individual organic acids. The in vivo and in vitro OM fermentability of proximal ileal digesta (19.7 ± 2.04%; mean ± SEM) was similar (P > 0.05) for the AR and control pigs but not for the AR+ pigs. CONCLUSIONS: The control-rearing regimen was preferred over AR or AR+ because of ease of implementation. The in vitro ileal fermentation assay accurately predicted the in vivo OM fermentability.


Diet , Ileum , Humans , Swine , Animals , Fermentation , Ileum/metabolism , Feces , Diet/veterinary , Research Design , Animal Feed/analysis , Digestion
16.
Food Funct ; 15(4): 2078-2089, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38303670

Nutritional strategies are required to limit the prevalence of denutrition in the elderly. With this in mind, fortified meals can provide more protein, but their digestibility must be ensured. Using a dynamic in vitro digester, DIDGI®, programmed with the digestion conditions of the elderly, we evaluated the supplementation of each component of a meal and assessed protein digestibility, amino acid profile, micro-nutrients and vitamins bioaccessibility for a full course meal. Higher protein digestibility was evidenced for the fortified meal, with higher release of essential amino acids. Moreover the large increase of leucine released was comparable to the range advocated for the elderly to favour protein anabolism. This in vitro study underlines the interest of using dish formulations to meet the nutritional needs of seniors, which is why this work will be completed by a clinical study in nursing home.


Digestion , Malnutrition , Humans , Aged , Amino Acids/metabolism , Amino Acids, Essential/metabolism , Malnutrition/prevention & control , Malnutrition/metabolism , Leucine/metabolism , Animal Feed , Diet , Ileum/metabolism
17.
Sci Total Environ ; 918: 170679, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38325485

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) is a quinone derivative of a common tire additive 6PPD, whose occurrence has been widely reported both in the environment and human bodies including in adults, pregnant women and children. Yet, knowledge on the potential intestinal toxicity of 6PPD-Q in mammals at environmentally relevant dose remain unknown. In this study, the effects of 6PPD-Q on the intestines of adult ICR mice were evaluated by orally administering environmentally relevant dose or lower levels of 6PPD-Q (0.1, 1, 10, and 100 µg/kg) for 21 days. We found that 6PPD-Q disrupted the integrity of the intestinal barrier, mostly in the jejunum and ileum, but not in the duodenum or colon, in a dose-dependent manner. Moreover, intestinal inflammation manifested with elevated levels of TNF-α, IL-1, and IL-6 mostly observed in doses at 10 and 100 µg/kg. Using reverse target screening technology combining molecular dynamic simulation modeling we identified key cannabinoid receptors including CNR2 activation to be potentially mediating the intestinal inflammation induced by 6PPD-Q. In summary, this study provides novel insights into the toxic effects of emerging contaminant 6PPD-Q on mammalian intestines and that the chemical may be a cannabinoid receptor agonist to modulate inflammation.


Intestines , Jejunum , Pregnancy , Child , Female , Humans , Animals , Mice , Jejunum/metabolism , Receptors, Cannabinoid/metabolism , Mice, Inbred ICR , Ileum/metabolism , Inflammation/chemically induced , Quinones , Mammals
18.
J Appl Toxicol ; 44(6): 863-873, 2024 06.
Article En | MEDLINE | ID: mdl-38311468

Although the medicinal properties of colchicine (COL) have been widely known for centuries, its toxicity has been the subject of controversy. The narrow therapeutic window causes COL to induce gastrointestinal adverse effects even when taken at recommended doses, mainly manifested as nausea, vomiting, and diarrhea. However, the mechanism of COL-induced gastrointestinal toxic reactions remains obscure. In the present study, the mice were dosed with COL (2.5 mg/kg b.w./day) for a week to explore the effect of COL on bile acid metabolism and the mechanism of COL-induced diarrhea. The results showed that COL treatment affected liver biochemistry in mice, resulting in a significant down-regulation of the mRNA expression levels of bile acid biosynthesis regulators Cyp7a1, Cyp8b1, Cyp7b1, and Cyp27a1 in liver tissues. The mRNA expression levels of bile acid transporters Ntcp, Oatp1, Mrp2, Ibabp, Mrp3, Osta, and Ostb in liver and ileum tissues were also significantly down-regulated. In addition, COL treatment significantly inhibited the mRNA expression levels of Fxr and its downstream target genes Shp, Lrh1, and Fgf15 in liver and ileum tissues, affecting the feedback regulation of bile acid biosynthesis. More importantly, the inhibition of COL on bile acid transporters in ileal and hepatic tissues affected bile acid recycling in the ileum as well as their reuptake in the liver, leading to a significantly increased accumulation of bile acids in the colon, which may be an important cause of diarrhea. In conclusion, our study revealed that COL treatment affected bile acid biosynthesis and enterohepatic circulation, thereby disrupting bile acid metabolic homeostasis in mice.


Bile Acids and Salts , Colchicine , Enterohepatic Circulation , Homeostasis , Liver , Animals , Bile Acids and Salts/metabolism , Enterohepatic Circulation/drug effects , Colchicine/toxicity , Homeostasis/drug effects , Liver/drug effects , Liver/metabolism , Mice , Male , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Ileum/drug effects , Ileum/metabolism , Diarrhea/chemically induced
19.
Hepatol Int ; 18(3): 929-942, 2024 Jun.
Article En | MEDLINE | ID: mdl-38332428

BACKGROUND AND AIMS: Experimental studies linked dysfunctional Farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling to liver disease. This study investigated key intersections of the FXR-FGF19 pathway along the gut-liver axis and their link to disease severity in patients with cirrhosis. METHODS: Patients with cirrhosis undergoing hepatic venous pressure gradient measurement (cohort-I n = 107, including n = 53 with concomitant liver biopsy; n = 5 healthy controls) or colonoscopy with ileum biopsy (cohort-II n = 37; n = 6 controls) were included. Hepatic and intestinal gene expression reflecting FXR activation and intestinal barrier integrity was assessed. Systemic bile acid (BA) and FGF19 levels were measured. RESULTS: Systemic BA and FGF19 levels correlated significantly (r = 0.461; p < 0.001) and increased with cirrhosis severity. Hepatic SHP expression decreased in patients with cirrhosis (vs. controls; p < 0.001), indicating reduced FXR activation in the liver. Systemic FGF19 (r = -0.512, p < 0.001) and BA (r = -0.487, p < 0.001) levels correlated negatively with hepatic CYP7A1, but not SHP or CYP8B1 expression, suggesting impaired feedback signaling in the liver. In the ileum, expression of FXR, SHP and FGF19 decreased in patients with cirrhosis, and interestingly, intestinal FGF19 expression was not linked to systemic FGF19 levels. Intestinal zonula occludens-1, occludin, and alpha-5-defensin expression in the ileum correlated with SHP and decreased in patients with decompensated cirrhosis as compared to controls. CONCLUSIONS: FXR-FGF19 signaling is dysregulated at essential molecular intersections along the gut-liver axis in patients with cirrhosis. Decreased FXR activation in the ileum mucosa was linked to reduced expression of intestinal barrier proteins. These human data call for further mechanistic research on interventions targeting the FXR-FGF19 pathway in patients with cirrhosis. CLINICAL TRIAL NUMBER: NCT03267615.


Fibroblast Growth Factors , Liver Cirrhosis , Liver , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Humans , Fibroblast Growth Factors/metabolism , Male , Female , Liver Cirrhosis/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Middle Aged , Liver/metabolism , Bile Acids and Salts/metabolism , Intestinal Mucosa/metabolism , Adult , Aged , Ileum/metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167082, 2024 Apr.
Article En | MEDLINE | ID: mdl-38367899

Hemorrhagic shock (HS) leads to intestinal damage and subsequent multiple organ dysfunction syndrome. Intestinal barrier dysfunction is the main cause of multiple organ failure associated with HS. Leukocyte immunoglobulin-like receptor B4 (Lilrb4) belongs to the Ig superfamily and is a vital natural immunomodulatory receptor. The purpose of this study was to identify the role and molecular mechanism of Lilrb4 in HS-induced ileal injury. In this work, HS was established by femoral artery cannula and 90 min of HS (blood pressure, 35-40 mmHg), followed by resuscitation. RNA sequencing analysis showed that Lilrb4 was highly expressed in the ileum of HS rats. As observed, HS rats exhibited severe ileal injury, characterized by enlarged subepithelial space, edema, exfoliation and extensive loss of villi. Whereas, lentivirus system-mediated Lilrb4 overexpression considerably mitigated these alterations. HS led to increased release of markers associated with intestinal injury, which was effectively reversed by Lilrb4 overexpression. In addition, after resuscitation, Lilrb4 overexpression inhibited HS-triggered inflammatory response, as evidenced by decreased levels of proinflammatory cytokines. Lilrb4 also inhibited the activation of NF-κB signal induced by HS. Notably, Lilrb4 modulated the balance of regulatory T (Treg)-T helper 17 (Th17) cells in the mesenteric lymph node (MLN), which may also contribute to its protective role in HS progression. In aggregate, these findings confirmed that Lilrb4 overexpression protected against ileal injury caused by HS, indicating that Lilrb4 may be a potential candidate for the treatment of HS.


NF-kappa B , Shock, Hemorrhagic , Animals , Rats , Ileum/metabolism , NF-kappa B/metabolism , Shock, Hemorrhagic/complications , Signal Transduction
...