Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55.812
Filter
1.
Cancer Biol Ther ; 25(1): 2385517, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39087955

ABSTRACT

BACKGROUND: CDK4 is highly expressed and associated with poor prognosis and decreased survival in advanced neuroblastoma (NB). Targeting CDK4 degradation presents a potentially promising therapeutic strategy compared to conventional CDK4 inhibitors. However, the autophagic degradation of the CDK4 protein and its anti-proliferation effect in NB cells has not been mentioned. RESULTS: We identified autophagy as a new pathway for the degradation of CDK4. Firstly, autophagic degradation of CDK4 is critical for NVP-BEZ235-induced G0/G1 arrest, as demonstrated by the overexpression of CDK4, autophagy inhibition, and blockade of autophagy-related genes. Secondly, we present the first evidence that p62 binds to CDK4 and then enters the autophagy-lysosome to degrade CDK4 in a CTSB-dependent manner in NVP-BEZ235 treated NB cells. Similar results regarding the interaction between p62 and CDK4 were observed in the NVP-BEZ235 treated NB xenograft mouse model. CONCLUSIONS: Autophagic degradation of CDK4 plays a pivotal role in G0/G1 cell cycle arrest in NB cells treated with NVP-BEZ235.


Subject(s)
Autophagy , Cyclin-Dependent Kinase 4 , G1 Phase Cell Cycle Checkpoints , Neuroblastoma , Cyclin-Dependent Kinase 4/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Humans , Animals , Mice , Autophagy/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Quinolines/pharmacology , Resting Phase, Cell Cycle/drug effects , Cell Proliferation/drug effects , Imidazoles/pharmacology , Mice, Nude , Proteolysis
2.
J Immunol Res ; 2024: 5537948, 2024.
Article in English | MEDLINE | ID: mdl-39056014

ABSTRACT

CD8+ T cells are essential for adaptive immunity against infection and tumors. Their ability to proliferate after stimulation is crucial to their functionality. Dendritic cells (DCs) are professional antigen-presenting cells that induce their proliferation. Here, we show that thapsigargin-induced LAD2 mast cell (MC) line-released products can impair the ability of monocyte-derived DCs to induce CD8+ T-cell proliferation and the generation of Th1 cytokine-producing T cells. We found that culture medium conditioned with LAD2 MCs previously stimulated with thapsigargin (thapsLAD2) induces maturation of DCs as determined by the maturation markers CD80, CD83, CD86, and HLA-DR. However, thapsLAD2-matured DCs produced no detectable TNFα or IL-12 during the maturation. In addition, although their surface expression of PD-L1 was comparable with the immature or TLR7/8-agonist (R848)-matured DCs, their TIM-3 expression was significantly higher than in immature DCs and even much higher than in R848-matured DCs. In addition, contrary to R848-matured DCs, the thapsLAD2-matured DCs only tended to induce enhanced proliferation of CD4+ T cells than immature DCs. For CD8+ T cells, this tendency was not even detected because thapsLAD2-matured and immature DCs comparably induced their proliferation, which contrasted with the significantly enhanced proliferation induced by R848-matured DCs. Furthermore, these differences were comparably recapitulated in the ability of the tested DCs to induce IFNγ- and IFNγ/TNFα-producing T cells. These findings show a novel mechanism of MC-mediated regulation of adaptive immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Proliferation , Dendritic Cells , Lymphocyte Activation , Mast Cells , Thapsigargin , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Thapsigargin/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , Mast Cells/immunology , Mast Cells/drug effects , Mast Cells/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Monocytes/immunology , Monocytes/drug effects , Monocytes/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Cytokines/metabolism , Imidazoles/pharmacology , Cell Line
3.
Sci Rep ; 14(1): 16897, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043893

ABSTRACT

The chemokine (CCL)-chemokine receptor (CCR2) interaction, importantly CCL2-CCR2, involved in the intrahepatic recruitment of monocytes upon liver injury promotes liver fibrosis. CCL2-CCR2 antagonism using Cenicriviroc (CVC) showed promising results in several preclinical studies. Unfortunately, CVC failed in phase III clinical trials due to lack of efficacy to treat liver fibrosis. Lack of efficacy could be attributed to the fact that macrophages are also involved in disease resolution by secreting matrix metalloproteinases (MMPs) to degrade extracellular matrix (ECM), thereby inhibiting hepatic stellate cells (HSCs) activation. HSCs are the key pathogenic cell types in liver fibrosis that secrete excessive amounts of ECM causing liver stiffening and liver dysfunction. Knowing the detrimental role of intrahepatic monocyte recruitment, ECM, and HSCs activation during liver injury, we hypothesize that combining CVC and MMP (MMP1) could reverse liver fibrosis. We evaluated the effects of CVC, MMP1 and CVC + MMP1 in vitro and in vivo in CCl4-induced liver injury mouse model. We observed that CVC + MMP1 inhibited macrophage migration, and TGF-ß induced collagen-I expression in fibroblasts in vitro. In vivo, MMP1 + CVC significantly inhibited normalized liver weights, and improved liver function without any adverse effects. Moreover, MMP1 + CVC inhibited monocyte infiltration and liver inflammation as confirmed by F4/80 and CD11b staining, and TNFα gene expression. MMP1 + CVC also ameliorated liver fibrogenesis via inhibiting HSCs activation as assessed by collagen-I staining and collagen-I and α-SMA mRNA expression. In conclusion, we demonstrated that a combination therapeutic approach by combining CVC and MMP1 to inhibit intrahepatic monocyte recruitment and increasing collagen degradation respectively ameliorate liver inflammation and fibrosis.


Subject(s)
Extracellular Matrix , Hepatic Stellate Cells , Liver Cirrhosis , Matrix Metalloproteinase 1 , Monocytes , Animals , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 1/genetics , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Monocytes/metabolism , Monocytes/drug effects , Extracellular Matrix/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Male , Mice, Inbred C57BL , Carbon Tetrachloride , Disease Models, Animal , Macrophages/metabolism , Macrophages/drug effects , Humans , Cell Movement/drug effects , Drug Synergism , Imidazoles , Sulfoxides
4.
Environ Sci Pollut Res Int ; 31(33): 45954-45969, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38980489

ABSTRACT

Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.


Subject(s)
Glycine , Glyphosate , Neonicotinoids , Nitro Compounds , Proteome , Animals , Bees/drug effects , Neonicotinoids/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Nitro Compounds/toxicity , Imidazoles/toxicity , Insecticides/toxicity
5.
Open Biol ; 14(7): 240057, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39043224

ABSTRACT

With the spread of resistance to long-established insecticides targeting Anopheles malaria vectors, understanding the actions of compounds newly identified for vector control is essential. With new commercial vector-control products containing neonicotinoids under development, we investigate the actions of 6 neonicotinoids (imidacloprid, thiacloprid, clothianidin, dinotefuran, nitenpyram and acetamiprid) on 13 Anopheles gambiae nicotinic acetylcholine receptor (nAChR) subtypes produced by expression of combinations of the Agα1, Agα2, Agα3, Agα8 and Agß1 subunits in Xenopus laevis oocytes, the Drosophila melanogaster orthologues of which we have previously shown to be important in neonicotinoid actions. The presence of the Agα2 subunit reduces neonicotinoid affinity for the mosquito nAChRs, whereas the Agα3 subunit increases it. Crystal structures of the acetylcholine binding protein (AChBP), an established surrogate for the ligand-binding domain, with dinotefuran bound, shows a unique target site interaction through hydrogen bond formation and CH-N interaction at the tetrahydrofuran ring. This is of interest as dinotefuran is also under trial as the toxic element in baited traps. Multiple regression analyses show a correlation between the efficacy of neonicotinoids for the Agα1/Agα2/Agα8/Agß1 nAChR, their hydrophobicity and their rate of knockdown of adult female An. gambiae, providing new insights into neonicotinoid features important for malaria vector control.


Subject(s)
Anopheles , Guanidines , Insecticides , Mosquito Vectors , Neonicotinoids , Nitro Compounds , Receptors, Nicotinic , Animals , Anopheles/metabolism , Anopheles/genetics , Anopheles/drug effects , Neonicotinoids/pharmacology , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Nitro Compounds/pharmacology , Nitro Compounds/chemistry , Guanidines/pharmacology , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Xenopus laevis , Ligands , Pyridines/pharmacology , Malaria/transmission , Malaria/parasitology , Thiazoles/pharmacology , Thiazoles/chemistry , Thiazoles/metabolism , Thiazines/pharmacology , Thiazines/chemistry , Oocytes/metabolism , Oocytes/drug effects , Female , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Imidazoles/pharmacology , Imidazoles/chemistry
6.
Int J Nanomedicine ; 19: 6603-6618, 2024.
Article in English | MEDLINE | ID: mdl-38979533

ABSTRACT

Objective: Ovarian cancer cells are prone to acquire tolerance to chemotherapeutic agents, which seriously affects clinical outcomes. The development of novel strategies to enhance the targeting of chemotherapeutic agents to overcome drug resistance and minimize side effects is significant for improving the clinical outcomes of ovarian cancer patients. Methods: We employed folic acid (FA)-modified ZIF-90 nanomaterials (FA-ZIF-90) to deliver the chemotherapeutic drug, cisplatin (DDP), via dual targeting to improve its targeting to circumvent cisplatin resistance in ovarian cancer cells, especially by targeting mitochondria. FA-ZIF-90/DDP could rapidly release DDP in response to dual stimulation of acidity and ATP in tumor cells. Results: FA-ZIF-90/DDP showed good blood compatibility. It was efficiently taken up by human ovarian cancer cisplatin-resistant cells A2780/DDP and aggregated in the mitochondrial region. FA-ZIF-90/DDP significantly inhibited the mitochondrial activity and metastatic ability of A2780/DDP cells. In addition, it effectively induced apoptosis in A2780/DDP cells and overcame cisplatin resistance. In vivo experiments showed that FA-ZIF-90/DDP increased the accumulation of DDP in tumor tissues and significantly inhibited tumor growth. Conclusion: FA-modified ZIF-90 nanocarriers can improve the tumor targeting and anti-tumor effects of chemotherapeutic drugs, reduce toxic side effects, and are expected to be a novel therapeutic strategy to reverse drug resistance in ovarian cancer.


Subject(s)
Antineoplastic Agents , Apoptosis , Cisplatin , Drug Resistance, Neoplasm , Folic Acid , Imidazoles , Ovarian Neoplasms , Zeolites , Female , Cisplatin/pharmacology , Cisplatin/chemistry , Cisplatin/pharmacokinetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Drug Resistance, Neoplasm/drug effects , Animals , Zeolites/chemistry , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Folic Acid/chemistry , Folic Acid/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/administration & dosage , Apoptosis/drug effects , Drug Delivery Systems/methods , Mitochondria/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Drug Carriers/chemistry , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Xenograft Model Antitumor Assays
8.
J Phys Chem B ; 128(28): 6940-6950, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38956449

ABSTRACT

Two ionic liquids (ILs) with amphiphilic properties composed of 1-butyl-3-methylimidazolium dioctylsulfosuccinate (bmim-AOT) and 1-hexyl-3-methylimidazolium dioctylsulfosuccinate (hmim-AOT) form unilamellar vesicles spontaneously simply by dissolving the IL-like surfactant in water. These novel vesicles were characterized using two different and highly sensitive fluorescent probes: 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN) and trans-4-[4-(dimethylamino)-styryl]-1-methylpyridinium iodide (HC). These fluorescent probes provide information about the physicochemical properties of the bilayer, such as micropolarity, microviscosity, and electron-donor capacity. In addition, the biocompatibility of these vesicles with the blood medium was evaluated, and their toxicity was determined using Dictyostelium discoideum amoebas. First, using PRODAN and HC, it was found that the bilayer composition and the chemical structure of the ions at the interface produced differences between both amphiphiles, making the vesicles different. Thus, the bilayer of hmim-AOT vesicles is less polar, more rigid, and has a lower electron-donor capacity than those made by bmim-AOT. Finally, the results obtained from the hemolysis studies and the growth behavior of unicellular amoebas, particularly utilizing the D. discoideum assay, showed that both vesicular systems do not produce toxic effects up to a concentration of 0.02 mg/mL. This elegant assay, devoid of animal usage, highlights the potential of these newly organized systems for the delivery of drugs and bioactive molecules of different polarities.


Subject(s)
Ionic Liquids , Surface-Active Agents , Unilamellar Liposomes , Ionic Liquids/chemistry , Surface-Active Agents/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism , Nanomedicine , Fluorescent Dyes/chemistry , Pyridinium Compounds/chemistry , Imidazoles/chemistry , Lipid Bilayers/chemistry
9.
J Phys Chem B ; 128(28): 6816-6829, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38959082

ABSTRACT

The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF4), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area (A) isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles. The ILs could induce vesicle aggregation by acting as a "glue" at lower concentrations (<1.5 mM), while at higher concentrations, the ILs disrupt the bilayer structure. Besides, ILs could result in the thinning of the bilayer, evidenced from the scattering studies. Steady-state fluorescence anisotropy and lifetime studies suggest asymmetric insertion of ILs into the lipid bilayer. MTT assay using human blood lymphocytes indicates the safe application of vesicles in the presence of ILs, with a minimal toxicity of up to 2.5 mM IL in the dispersion. These results are proposed to have applications in the field of drug delivery systems with benign environmental impact.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Imidazoles/chemistry , Phospholipids/chemistry , Cholesterol/chemistry , Lipid Bilayers/chemistry , Surface Properties , 1,2-Dipalmitoylphosphatidylcholine/chemistry
10.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000295

ABSTRACT

Olprinone (OLP) is a selective inhibitor of phosphodiesterase III and is used clinically in patients with heart failure and those undergoing cardiac surgery; however, little is known about the effects of OLP on hepatoprotection. The purpose of this study aimed to determine whether OLP has protective effects in in vivo and in vitro rat models of endotoxin-induced liver injury after hepatectomy and to clarify the mechanisms of action of OLP. In the in vivo model, rats underwent 70% partial hepatectomy and lipopolysaccharide treatment (PH/LPS). OLP administration increased survival by 85.7% and decreased tumor necrosis factor-α, C-X-C motif chemokine ligand 1, and inducible nitric oxide synthase (iNOS) mRNA expression in the livers of rats treated with PH/LPS. OLP also suppressed nuclear translocation and/or DNA binding ability of nuclear factor kappa B (NF-κB). Pathological liver damage induced by PH/LPS was alleviated and neutrophil infiltration was reduced by OLP. Primary cultured rat hepatocytes treated with the pro-inflammatory cytokine interleukin-1ß (IL-1ß) were used as a model of in vitro liver injury. Co-treatment with OLP inhibited dose-dependently IL-1ß-stimulated iNOS induction and NF-κB activation. Our results demonstrate that OLP may partially inhibit the induction of several inflammatory mediators through the suppression of NF-κB and thus prevent liver injury induced by endotoxin after liver resection.


Subject(s)
Disease Models, Animal , Hepatectomy , Hepatocytes , Imidazoles , NF-kappa B , Nitric Oxide Synthase Type II , Pyridones , Animals , Hepatectomy/adverse effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Rats , Male , Pyridones/pharmacology , Pyridones/therapeutic use , NF-kappa B/metabolism , Imidazoles/pharmacology , Nitric Oxide Synthase Type II/metabolism , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 3 Inhibitors/therapeutic use , Interleukin-1beta/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Sepsis/drug therapy , Rats, Sprague-Dawley , Cells, Cultured , Tumor Necrosis Factor-alpha/metabolism , Chemokine CXCL1/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism
11.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000516

ABSTRACT

The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.


Subject(s)
CCR5 Receptor Antagonists , Diabetic Neuropathies , Disease Models, Animal , Receptors, CCR2 , Receptors, CCR5 , Animals , Mice , Diabetic Neuropathies/drug therapy , Male , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Female , Receptors, CCR5/metabolism , Receptors, CCR5/genetics , CCR5 Receptor Antagonists/pharmacology , CCR5 Receptor Antagonists/therapeutic use , Morphine/pharmacology , Morphine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia/drug therapy , Imidazoles , Sulfoxides
12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000607

ABSTRACT

Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.


Subject(s)
Imiquimod , Killer Cells, Natural , Lymphocyte Activation , Poly I-C , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Toll-Like Receptors , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Poly I-C/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Imiquimod/pharmacology , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Child , Oligodeoxyribonucleotides/pharmacology , Cytokines/metabolism , Female , Interferon-gamma/metabolism , Male , Imidazoles/pharmacology , Cytotoxicity, Immunologic/drug effects , Child, Preschool , Toll-Like Receptor Agonists
13.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38967261

ABSTRACT

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Subject(s)
Fungicides, Industrial , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungi/drug effects , Fungi/growth & development , Pyrazoles/chemistry , Pyrazoles/pharmacology , Drug Design , Plant Diseases/microbiology , Plant Diseases/prevention & control , Pyrimidines/chemistry , Pyrimidines/pharmacology , Molecular Structure , Imidazoles/chemistry , Imidazoles/pharmacology
15.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999028

ABSTRACT

Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for Mycobacterium tuberculosis survival. Over twenty molecules were synthesized and the results showed modest inhibitory efficacy against the protein. Docking experiments were carried out to show how these molecules could interact with the protein's substrate binding site. Disappointingly, unlike triazolophthlazines, these imidazoquinoline derivatives showed an absence of inhibition on mycobacterial growth.


Subject(s)
Antitubercular Agents , Bacterial Proteins , Molecular Docking Simulation , Mycobacterium tuberculosis , Oxidoreductases , Quinolines , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/drug effects , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/chemical synthesis , Quinolines/chemistry , Quinolines/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Microbial Sensitivity Tests , Binding Sites , Molecular Structure
16.
Biomater Sci ; 12(15): 3947-3955, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38949480

ABSTRACT

Zwitterionic carboxyalkyl poly(1-vinylimidazole) (CA-PVIm) polymers with imidazolium cations and carboxylate anions have been synthesized as a carrier for the in vivo delivery of plasmid DNA (pDNA) to skeletal muscle. From differential scanning calorimetry measurements, resulting CA-PVIm had intermediate water in hydration water as a biocompatible polymer. Notably, when the pDNA and resulting CA-PVIm were mixed, slight retarded bands of the pDNA were observed in agarose gel electrophoresis, suggesting the polyion complex (PIC) formation between the pDNA and CA-PVIm despite zwitterionic polymers. Resulting PICs maintained the higher-order structure of the pDNA. Using resulting pDNA PICs, the highest pDNA expression by intramuscular injection was achieved in the PIC with 7 mol% carboxymethylated PVIm, that is, CA1(7)-PVIm, observed in a widespread area by in vivo imaging system. These results suggest that the CA1(7)-PVIm/pDNA PIC is effective for the diffusive delivery of the pDNA into skeletal muscle for the treatment of serious muscle diseases.


Subject(s)
DNA , Imidazoles , Muscle, Skeletal , Plasmids , Polyvinyls , Plasmids/administration & dosage , Plasmids/chemistry , Muscle, Skeletal/metabolism , Animals , Imidazoles/chemistry , Imidazoles/administration & dosage , DNA/administration & dosage , DNA/chemistry , Polyvinyls/chemistry , Mice , Diffusion , Gene Transfer Techniques
17.
Neuroreport ; 35(12): 753-762, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38980926

ABSTRACT

We aimed to study the reparative effects of orientin against spinal cord injury (SCI) in rats and explore its potential mechanisms. Sprague-Dawley rats were divided into Sham, SCI, Orientin, and SB203580 [an inhibitor of p38 mitogen-activated protein kinase (p38MAPK)] groups. In the SCI group, rats underwent Allen's beat. SCI animals in Orientin and SB203580 groups were respectively treated with 40 mg kg-1 orientin and 3 mg kg-1 SB203580 once daily. Functional recovery was evaluated based on Basso, Beattie, and Bresnahan scoring. Histopathological analysis was performed using hematoxylin-eosin and Nissl staining. Cell apoptosis was examined by TUNEL staining. The relative quantity of apoptosis-related proteins, glial fibrillary acidic protein (GFAP), neurofilament 200 (NF200), and brain derived neurotrophic factor (BDNF) was detected via western blotting. The indices related to inflammation and oxidation were measured using agent kits. The p38MAPK/inducible nitric oxide synthase (iNOS) signaling activity was detected using real-time quantitative PCR, western blotting, and immunohistochemical staining. Orientin was revealed to effectively mitigate cell apoptosis, neuroinflammation, and oxidative stress in impaired tissues. Meanwhile, orientin exerted great neuroprotective effects by abating GFAP expression, and up-regulating the expression of NF200 and BDNF, and significantly suppressed the p38MAPK/iNOS signaling. Orientin application could promote the repair of secondary SCI through attenuating oxidative stress and inflammatory response, reducing cell apoptosis and suppressing p38MAPK/iNOS signaling.


Subject(s)
Apoptosis , Flavonoids , Glucosides , Neuroprotective Agents , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/pathology , Neuroprotective Agents/pharmacology , Flavonoids/pharmacology , Rats , Apoptosis/drug effects , Glucosides/pharmacology , Glucosides/therapeutic use , Male , p38 Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/drug effects , Recovery of Function/drug effects , Recovery of Function/physiology , Imidazoles/pharmacology , Pyridines
18.
BMC Cardiovasc Disord ; 24(1): 344, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977993

ABSTRACT

BACKGROUND: The link between diabetes mellitus and chronic hepatitis C infection remains well established. It is estimated that up to one third of chronic hepatitis C patients have type II diabetes mellitus. Hepatitis C virus infection is one of the main global health burdens. Sofosbuvir and Daclatasvir are used as effective antiviral inhibitors of hepatitis C virus. The cardiovascular effects of those drugs are not well studied. We used electrocardiography and echocardiography with global longitudinal strain assessment by speckle tracking to detect their effect on cardiac function. METHODS AND RESULTS: One hundred diabetic patients with hepatitis C infection were included in the study. Abdominal ultrasound and laboratory work up were carried out for all participants. Left ventricular systolic and diastolic function were assessed by 2D-echocardiography and global longitudinal strain, before and 3 months after treatment. Results showed significant decrease in global longitudinal strain 3 months after therapy (-21 ± 4 vs. -18 ± 7; P < 0.001) but other echocardiographic findings showed no significant changes. CONCLUSIONS: Sofosbuvir and Daclatasvir were associated with early left ventricular systolic dysfunction as assessed by global longitudinal strain in diabetic patients. More deterioration in left ventricular systolic function was detected among those with Child-Pough class B. Further long-term follow-up may be required.


Subject(s)
Antiviral Agents , Carbamates , Diabetes Mellitus, Type 2 , Hepatitis C, Chronic , Imidazoles , Pyrrolidines , Sofosbuvir , Valine , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/complications , Male , Female , Middle Aged , Sofosbuvir/therapeutic use , Sofosbuvir/adverse effects , Valine/analogs & derivatives , Valine/therapeutic use , Pyrrolidines/therapeutic use , Imidazoles/therapeutic use , Treatment Outcome , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/diagnosis , Carbamates/therapeutic use , Ventricular Function, Left/drug effects , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/drug therapy , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/diagnosis , Time Factors , Aged , Electrocardiography , Adult
19.
Acta Cir Bras ; 39: e393724, 2024.
Article in English | MEDLINE | ID: mdl-39016360

ABSTRACT

PURPOSE: To evaluate collagen fibers during the bone repair process in critical defects created in the tibias of rats, treated with zoledronic acid (AZ) associated with low-level laser therapy (LLLT). METHODS: Ten rats were distributed according to treatment: group 1) saline solution; group 2) LLLT; group 3) AZ; group 4) AZ and LLLT. AZ was administered at the dose of 0.035 mg/kg at fortnightly intervals over eight weeks. Next, 2-mm bone defects were created in the tibias of all animals. The bone defects in groups 2 and 4 were irradiated LLLT in the immediate postoperative period. After periods 14 and 28 of application, the animals were euthanized, and birefringence analysis was performed. RESULTS: Approximately 90% of the total area was occupied by collagen fibers within the red color spectrum, this area being statistically larger in relation to the area occupied by collagen fibers within the green and yellow spectrum, in the four groups. Over the 14-day period, there was no statistically significant difference between the groups. In the 28-day period, group 2 (14.02 ± 15.9%) was superior in quantifying green birefringent fibers compared to group 1 (3.06 ± 3.24%), with p = 0.009. CONCLUSIONS: LLLT associated with ZA is effective in stimulating the neoformation of collagen fibers. The LLLT group without the association with ZA showed a greater amount of immature and less organized matrix over a period of 28 days.


Subject(s)
Bone Density Conservation Agents , Collagen , Diphosphonates , Imidazoles , Low-Level Light Therapy , Rats, Wistar , Zoledronic Acid , Animals , Zoledronic Acid/pharmacology , Zoledronic Acid/therapeutic use , Low-Level Light Therapy/methods , Imidazoles/pharmacology , Diphosphonates/pharmacology , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Collagen/drug effects , Collagen/radiation effects , Male , Tibia/drug effects , Tibia/radiation effects , Tibia/surgery , Bone Regeneration/drug effects , Bone Regeneration/radiation effects , Time Factors , Rats , Reproducibility of Results
20.
Drug Dev Res ; 85(5): e22235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39021343

ABSTRACT

RIPK1 plays a key role in necroptosis and is associated with various inflammatory diseases. Using structure-based virtual screening, a novel hit with 5-(1-benzyl-1H-imidazol-4-yl)-1,2,4-oxadiazole scaffold was identified as an RIPK1 inhibitor with an IC50 value of 1.3 µM. Further structure-activity relationship study was performed based on similarity research and biological evaluation. The molecular dynamics simulation of compound 2 with RIPK1 indicated that it may act as a type II kinase inhibitor. This study provides a highly efficient way to discover novel scaffold RIPK1 inhibitors for further development.


Subject(s)
Molecular Dynamics Simulation , Oxadiazoles , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Structure-Activity Relationship , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Oxadiazoles/pharmacology , Oxadiazoles/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Docking Simulation , Imidazoles/pharmacology , Imidazoles/chemistry , Drug Evaluation, Preclinical , Drug Discovery/methods
SELECTION OF CITATIONS
SEARCH DETAIL