Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.518
Filter
1.
Carbohydr Polym ; 343: 122463, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174120

ABSTRACT

This article presents a method for producing hydrogel dressings using high methylated pectin from apples or citrus, doped with the antiseptic agent, octenidine dihydrochloride. Octenidine was incorporated in-situ during the polymer crosslinking. The pectins were characterized by their varying molecular weight characteristics, monosaccharide composition, and degree of esterification (DE). The study assessed the feasibility of producing biologically active hydrogels with pectin and delved into how the polymer's characteristics affect the properties of the resulting dressings. The structure evaluation of hydrogel materials showed interactions between individual components of the system and their dependence on the type of used pectin. Both the antimicrobial properties and cytotoxicity of the dressings were evaluated. The results suggest that the primary determinants of the functional attributes of the hydrogels are the molecular weight characteristics and the DE of the pectin. As these values rise, there is an increase in polymer-polymer interactions, overshadowing polymer-additive interactions. This intensification strengthens the mechanical and thermal stability of the hydrogels and enhances the release of active components into the surrounding environment. Biological evaluations demonstrated the ability of octenidine to be released from the dressings and effectively inhibit the growth of microbial pathogens.


Subject(s)
Anti-Infective Agents, Local , Bandages , Hydrogels , Imines , Pectins , Pyridines , Pectins/chemistry , Pectins/pharmacology , Imines/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Anti-Infective Agents, Local/chemistry , Anti-Infective Agents, Local/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Citrus/chemistry , Malus/chemistry , Molecular Weight , Humans , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Animals
2.
Food Chem ; 460(Pt 2): 140688, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39089027

ABSTRACT

As the contamination and enrichment in food chain of levofloxacin (LV) antibiotics have caused a significant threat to life safety, the instant detection of LV has become an urgent need. Here, a PDI-functionalized imine-based covalent organic framework (PDI-COF300) was prepared by the electrostatic self-assembly method as fluorescent probe for smartphone visual detection of LV, which exhibited excellent fluorescence quantum yield (82.68%), greater stability, high sensitivity with detection limit of 0.303 µM. Based on the results of molecular docking and Stern-Volmer equation, the LV detection by PDI-COF300 was mainly a static quenching process through π-π stacked hydrophobic interactions and fluorescence resonance energy transfer. Besides, PDI-COF300 was applied to LV detection in environmental medium and milk samples with recoveries from 85.56% to 108.34% and relative standard deviations <2.70%. This work also provided a new general strategy for using PDI-COF in smartphone devices and fluorescent papers for LV fluorescence detection and microanalysis.


Subject(s)
Imines , Levofloxacin , Smartphone , Levofloxacin/chemistry , Levofloxacin/analysis , Imines/chemistry , Metal-Organic Frameworks/chemistry , Milk/chemistry , Animals , Limit of Detection , Fluorescent Dyes/chemistry , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Spectrometry, Fluorescence
3.
J Org Chem ; 89(16): 11446-11454, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39113180

ABSTRACT

An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.


Subject(s)
Biocatalysis , Nitriles , Oxidoreductases , Pyrazoles , Pyrimidines , Nitriles/chemistry , Nitriles/metabolism , Pyrimidines/chemistry , Pyrimidines/biosynthesis , Pyrimidines/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Pyrazoles/chemistry , Pyrazoles/metabolism , Imines/chemistry , Imines/metabolism , Molecular Structure , Hydrazines/chemistry , Protein Engineering
4.
J Inorg Biochem ; 260: 112691, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39126757

ABSTRACT

Three artificial imine reductases, constructed via supramolecular anchoring utilising FeIII-azotochelin, a natural siderophore, to bind an iridium-containing catalyst to periplasmic siderophore-binding protein (PBP) scaffolds, have previously been synthesised and subjected to catalytic testing. Despite exhibiting high homology and possessing conserved siderophore anchor coordinating residues, the three artificial metalloenzymes (ArMs) displayed significant variability in turnover frequencies (TOFs). To further understand the catalytic properties of these ArMs, their kinetic behaviour was evaluated with respect to the reduction of three cyclic imines: dihydroisoquinoline, harmaline, and papaverine. Kinetic analyses revealed that all examined ArMs adhere to Michaelis-Menten kinetics, with the most pronounced saturation profile observed for the substrate harmaline. Additionally, molecular docking studies suggested varied hydrogen-bonding interactions between substrates and residues within the artificial binding pocket. Pi-stacking and pi-cation interactions were identified for harmaline and papaverine, corroborating the higher affinity of these substrates for the ArMs in comparison to dihydroisoquinoline. Furthermore, it was demonstrated that multiple cavities are capable of accommodating substrates in close proximity to the catalytic centre, thereby rationalising the moderate enantioselectivity conferred by the unmodified scaffolds.


Subject(s)
Imines , Oxidation-Reduction , Oxidoreductases , Imines/chemistry , Imines/metabolism , Kinetics , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Molecular Docking Simulation
5.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000025

ABSTRACT

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Subject(s)
Imines , Maleimides , Phosphines , Succinimides , Maleimides/chemistry , Maleimides/chemical synthesis , Phosphines/chemistry , Catalysis , Imines/chemistry , Succinimides/chemistry , Stereoisomerism , Molecular Structure , Isomerism
6.
J Inorg Biochem ; 259: 112657, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38981409

ABSTRACT

Imine reduction is a useful reaction in the preparation of amine derivatives. Various catalysts have been reported to promote this reaction and photoredox catalysts are promising candidates for sustainable amine synthesis. Improvement of this reaction using biomolecule-based reaction scaffolds is expected to increase the utility of the reaction. In this context, we have recently investigated photoredox Ru complexes with pentapeptide scaffolds via coordination bonds as catalysts for photoreduction of dihydroisoquinoline derivatives. First, Ru bipyridine terpyridine complexes coordinated with five different pentapeptides (XVHVV: X = V, F, W, Y, C) were prepared and characterized by mass spectrometry. Catalytic activities of the Ru complexes with XVHVV were evaluated for photoreduction of dihydroisoquinoline derivatives in the presence of ascorbate and thiol compounds as sacrificial reagents and hydrogen sources. Interestingly, the turnover number of the Ru complex with VVHVV is 531, which is two-fold higher than that of a simple Ru complex with an imidazole ligand. The detailed emission lifetime measurements indicate that the enhanced catalytic activity provided by the peptide scaffold is caused by an efficient reaction with the thiol derivative to accelerate reductive quenching of Ru complex. The quenching behavior suggests formation of an active species such as a Ru(I) complex. These findings reveal that the simple pentapeptide serves as an effective scaffold to enhance the photocatalytic activity of a photoactive Ru complex.


Subject(s)
Coordination Complexes , Imines , Oxidation-Reduction , Ruthenium , Ruthenium/chemistry , Imines/chemistry , Coordination Complexes/chemistry , Oligopeptides/chemistry , Pyridines/chemistry , Photochemical Processes , Catalysis
7.
J Am Chem Soc ; 146(29): 20263-20269, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39001849

ABSTRACT

α,ß-Diamino acids are important structural motifs and building blocks for numerous bioactive natural products, peptidomimetics, and pharmaceuticals, yet efficient asymmetric synthesis to access these stereoarrays remains a challenge. Herein, we report the development of a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is engineered to catalyze stereoselective Mannich-type reactions between free α-amino acids and enolizable cyclic imines. This biocatalyst enabled one-step asymmetric enzymatic synthesis of the unusual pyrrolidine-containing amino acid L-tambroline at gram-scale with high enantio- and diastereocontrol. Furthermore, this enzymatic platform is capable of utilizing a diverse range of α-amino acids as the Mannich donor and various cyclic imines as the acceptor. By coupling with different imine-generating enzymes, we established versatile biocatalytic cascades and demonstrated a general, concise, versatile, and atom-economic approach to access unprotected α,ß-diamino acids, including structurally complex α,α-disubstituted α,ß-diamino acids with contiguous stereocenters.


Subject(s)
Amino Acids , Imines , Imines/chemistry , Imines/metabolism , Stereoisomerism , Amino Acids/chemistry , Amino Acids/chemical synthesis , Amino Acids/metabolism , Biocatalysis , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/metabolism , Molecular Structure
8.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892102

ABSTRACT

The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a-d are reported herein. The nitrones 10a-d were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5-81% after 20 min; 79-96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10a-d showed negligible activity (8-46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 µM).


Subject(s)
Antioxidants , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Lipoxygenase/metabolism , Glycine max/enzymology , Glycine max/chemistry , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Lipoxygenase Inhibitors/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Imines/chemistry , Imines/pharmacology , Biphenyl Compounds/chemistry , Biphenyl Compounds/antagonists & inhibitors , Picrates/chemistry , Picrates/antagonists & inhibitors , Nitrogen Oxides/chemistry , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Free Radical Scavengers/chemical synthesis
9.
Sci Rep ; 14(1): 13780, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877034

ABSTRACT

Alzheimer's disease (AD), a severe neurodegenerative disorder, imposes socioeconomic burdens and necessitates innovative therapeutic strategies. Current therapeutic interventions are limited and underscore the need for novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes implicated in the pathogenesis of AD. In this study, we report a novel synthetic strategy for the generation of 2-aminopyridine derivatives via a two-component reaction converging aryl vinamidinium salts with 1,1-enediamines (EDAMs) in a dimethyl sulfoxide (DMSO) solvent system, catalyzed by triethylamine (Et3N). The protocol introduces a rapid, efficient, and scalable synthetic pathway, achieving good to excellent yields while maintaining simplistic workup procedures. Seventeen derivatives were synthesized and subsequently screened for their inhibitory activity against AChE and BChE. The most potent derivative, 3m, exhibited an IC50 value of 34.81 ± 3.71 µM against AChE and 20.66 ± 1.01 µM against BChE compared to positive control donepezil with an IC50 value of 0.079 ± 0.05 µM against AChE and 10.6 ± 2.1 µM against BChE. Also, detailed kinetic studies were undertaken to elucidate their modes of enzymatic inhibition of the most potent compounds against both AChE and BChE. The promising compound was then subjected to molecular docking and dynamics simulations, revealing significant binding affinities and favorable interaction profiles against AChE and BChE. The in silico ADMET assessments further determined the drug-like properties of 3m, suggesting it as a promising candidate for further pre-clinical development.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Aminopyridines , Butyrylcholinesterase , Cholinesterase Inhibitors , Molecular Docking Simulation , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Alzheimer Disease/drug therapy , Aminopyridines/chemistry , Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Butyrylcholinesterase/chemistry , Humans , Structure-Activity Relationship , Imines/chemistry , Imines/pharmacology , Imines/chemical synthesis
10.
Int J Biol Macromol ; 275(Pt 2): 133132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945725

ABSTRACT

With the increased occurrence of bacteria resistance to conventional antibiotics, the development of novel antimicrobials is urgently needed. Traditional biomaterials used for delivering these agents often struggle to achieve sustained release while maintaining non-cytotoxic properties. In this study, we present an innovative approach using bacterial polyhydroxyalkanoates (PHA) as a carrier for antimicrobial delivery, specifically designed for wound healing applications. Octenidine dihydrochloride (OCT), a widely used antimicrobial agent, served as our model drug. To achieve the desired balance of OCT release and low cytotoxicity, we introduced a novel bio-derived additive, 3-hydroxy-pentadecanoic acid (3OHC15), extracted from bacteria. This additive significantly improved the hydrophilicity of PHA films, resulting in enhanced and sustained release of OCT. Importantly, the additive did not adversely affect the material's tensile strength or thermal properties. The increased OCT release led to improved antibacterial activity against both Gram-negative and -positive strains. Most notably, the incorporation of 3OHC15 in PHA mitigated the cytotoxic effects of the released drug on human fibroblasts, ensuring biocompatibility. This work represents a novel strategy in the design of biomaterials for the delivery of bioactive compounds, achieving a critical balance between efficacy and cytocompatibility, and marks a significant advancement in the field of antimicrobial delivery systems.


Subject(s)
Polyhydroxyalkanoates , Polyhydroxyalkanoates/chemistry , Polyhydroxyalkanoates/pharmacology , Humans , Fibroblasts/drug effects , Imines/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Hydrophobic and Hydrophilic Interactions , Cell Survival/drug effects
11.
Dalton Trans ; 53(31): 12951-12961, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38842058

ABSTRACT

Four new copper(II) complexes were synthesized and characterized with the general formula [Cu(N-N)(Th)(NO3)], where N-N corresponds to the N-heterocyclic ligands 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), 4,7-diphenyl-1,10-phenanthroline (dpp), and 4,4-dimethyl-2,2'-bipyridine (dmbp) and Th represents the N,N-dibenzyl-N'-benzoylthiourea. Cytotoxic activities of the complexes against HCT116 (human colon carcinoma), HepG2 (human hepatocellular carcinoma), and non-tumor MRC-5 (human lung fibroblast) cells were investigated. The copper(II) complexes 1-4 were characterized by spectroscopic techniques while complexes 1 and 2 were studied using single-crystal X-ray diffraction as well. The complexes possessed a five-coordinated structure with one nitrate ligand as a monodentate at the axial position and two bidentate ligands N-heterocyclic and N,N-dibenzyl-N'-benzoylthiourea. The complexes showed promising IC50 values, ranging from 0.3 to 9.0 µM. Furthermore, interaction studies with biomolecules such as calf thymus DNA (ct-DNA) and Bovine Serum Albumin (BSA), which can act as possible biological targets of the complexes, were carried out. The studies suggested that the compounds interact moderately with ct-DNA and BSA. Complexes 1, 2, and 4 did not lead to cell accumulation at any stage of the cell cycle but caused a significant increase in internucleosomal DNA fragmentation. Whereas, compound 3 caused cell cycle arrest in the S phase while doxorubicin caused cell cycle arrest in the G2/M phase. The effect of structural modifications on the metal compounds was correlated with their biological properties and it was concluded that an increase in biological activity occurred with increasing the extension of the diimine ligands. Thus, complex 3 was the most promising one.


Subject(s)
Antineoplastic Agents , Cell Cycle , Coordination Complexes , Copper , DNA , Serum Albumin, Bovine , Thiourea , Copper/chemistry , Copper/pharmacology , Humans , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/metabolism , DNA/metabolism , DNA/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cattle , Thiourea/chemistry , Thiourea/pharmacology , Cell Cycle/drug effects , Animals , Imines/chemistry , Imines/pharmacology , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Structure
12.
ACS Sens ; 9(6): 3262-3271, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38809959

ABSTRACT

As trimethylamine (TMA) is widely used in agriculture and industry, inhalation of TMA can cause very serious negative effects on human health. However, most of the current gas sensors for detecting TMA are commonly performed at high temperatures and cannot meet market needs. Inspired by this, we prepared imine covalent organic frameworks (TB-COF) synthesized from two monomers, 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-benzotricarboxaldehyde (BTCA), using acetic acid as a catalyst at room temperature. Based on this, three sensors were prepared for gas sensitivity testing, namely, TA, BT, and TB-COF sensors. The three sensors were tested for 15 different gases at room temperature. From the whole gas sensitivity data, the TB-COF sensor made by compositing TA and BT has a higher sensitivity (6845.9%) to TMA at 500 ppm, which is 6.1 and 5.4 times higher than the response of TA and BT sensors, respectively. The TB-COF sensor adsorbs and desorbs TMA in a controlled 23 s cycle with a low detection limit of 28.6 ppb. This result indicates that TB-COF prepared at room temperature can be used as a gas-sensitive sensing material for real-time monitoring of TMA. The gas sensing results demonstrate the great potential of COFs for sensor development and application and provide ideas for further development of COFs-based gas sensors.


Subject(s)
Imines , Metal-Organic Frameworks , Methylamines , Methylamines/analysis , Methylamines/chemistry , Imines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Gases/chemistry , Gases/analysis
13.
Nature ; 631(8021): 556-562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806060

ABSTRACT

Asymmetric catalysis enables the synthesis of optically active compounds, often requiring the differentiation between two substituents on prochiral substrates1. Despite decades of development of mainly noble metal catalysts, achieving differentiation between substituents with similar steric and electronic properties remains a notable challenge2,3. Here we introduce a class of Earth-abundant manganese catalysts for the asymmetric hydrogenation of dialkyl ketimines to give a range of chiral amine products. These catalysts distinguish between pairs of minimally differentiated alkyl groups bound to the ketimine, such as methyl and ethyl, and even subtler distinctions, such as ethyl and n-propyl. The degree of enantioselectivity can be adjusted by modifying the components of the chiral manganese catalyst. This reaction demonstrates a wide substrate scope and achieves a turnover number of up to 107,800. Our mechanistic studies indicate that exceptional stereoselectivity arises from the modular assembly of confined chiral catalysts and cooperative non-covalent interactions between the catalyst and the substrate.


Subject(s)
Chemistry Techniques, Synthetic , Hydrogenation , Imines , Nitriles , Stereoisomerism , Amines/chemistry , Amines/chemical synthesis , Catalysis , Imines/chemistry , Manganese/chemistry , Nitriles/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry , Substrate Specificity , Alkylation
14.
Org Lett ; 26(19): 4082-4087, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38717253

ABSTRACT

DNA-encoded library (DEL) technologies enable the fast exploration of gigantic chemical space to identify ligands for the target protein of interest and have become a powerful hit finding tool for drug discovery projects. However, amenable DEL chemistry is restricted to a handful of reactions, limiting the creativity of drug hunters. Here, we describe a new on-DNA synthetic pathway to access sulfides and sulfoximines. These moieties, usually contemplated as challenging to achieve through alkylation and oxidation, can now be leveraged in routine DEL selection campaigns.


Subject(s)
DNA , Sulfides , DNA/chemistry , Sulfides/chemistry , Sulfides/chemical synthesis , Molecular Structure , Imines/chemistry , Oxidation-Reduction , Alkylation , Drug Discovery
15.
Eur J Pharm Sci ; 198: 106797, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38735401

ABSTRACT

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4­chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4­chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.


Subject(s)
Hyperalgesia , Molecular Docking Simulation , Neuralgia , Sciatic Nerve , Animals , Neuralgia/drug therapy , Neuralgia/metabolism , Male , Hyperalgesia/drug therapy , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Rats , Rats, Wistar , Disease Models, Animal , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Computer Simulation , Constriction , Imines/chemistry , Imines/pharmacology
16.
Org Lett ; 26(21): 4463-4468, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747552

ABSTRACT

(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline ((S)-1-(4-methoxybenzyl)-OHIQ) is the key intermediate of the nonopioid antitussive dextromethorphan. In this study, (S)-IR61-V69Y/P123A/W179G/F182I/L212V (M4) was identified with a 766-fold improvement in catalytic efficiency compared with wide-type IR61 through enzyme engineering. M4 could completely convert 200 mM of 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline into (S)-1-(4-methoxybenzyl)-OHIQ in 77% isolated yield, with >99% enantiomeric excess and a high space-time yield of 542 g L-1 day-1, demonstrating a great potential for the synthesis of dextromethorphan intermediate in industrial applications.


Subject(s)
Dextromethorphan , Dextromethorphan/chemistry , Dextromethorphan/chemical synthesis , Molecular Structure , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Imines/chemistry , Stereoisomerism , Antitussive Agents/chemistry , Antitussive Agents/chemical synthesis , Protein Engineering
17.
J Inorg Biochem ; 258: 112617, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805758

ABSTRACT

Four Pt(II) bis(pyrrole-imine) Schiff base chelates (1-4) were synthesised by previously reported methods, through a condensation reaction, and the novel crystal structure of 2,2'-{propane-1,3-diylbis[nitrilo(E)methylylidene]}bis(pyrrol-1-ido)platinum(II) (1) was obtained. Pt(II) complexes 1-4 exhibited phosphorescence, with increased luminescence in anaerobic solvents or when bound to human serum albumin (HSA). One of the complexes shows a 15.6-fold increase in quantum yield when bound to HSA and could be used to detect HSA concentrations as low as 5 nM. Pt(II) complexes 1-3 was investigated as potential theranostic agents in MCF-7 breast cancer cells, but only complex 3 exhibited cytotoxicity when irradiated with UV light (λ355nmExcitation). Interestingly, the cytotoxicity of complex 1 was unresponsive to UV light irradiation. This indicates that only complex 3 can be considered a potential photosensitising agent.


Subject(s)
Pyrroles , Humans , MCF-7 Cells , Pyrroles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Schiff Bases/chemistry , Imines/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/radiation effects , Coordination Complexes/chemical synthesis , Luminescent Agents/chemistry , Luminescent Agents/toxicity , Luminescent Agents/chemical synthesis , Breast Neoplasms/pathology , Breast Neoplasms/metabolism
18.
Br J Pharmacol ; 181(16): 2851-2868, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38657956

ABSTRACT

BACKGROUND AND PURPOSE: The analgesic action of paracetamol involves KV7 channels, and its metabolite N-acetyl-p-benzo quinone imine (NAPQI), a cysteine modifying reagent, was shown to increase currents through such channels in nociceptors. Modification of cysteine residues by N-ethylmaleimide, H2O2, or nitric oxide has been found to modulate currents through KV7 channels. The study aims to identify whether, and if so which, cysteine residues in neuronal KV7 channels might be responsible for the effects of NAPQI. EXPERIMENTAL APPROACH: To address this question, we used a combination of perforated patch-clamp recordings, site-directed mutagenesis, and mass spectrometry applied to recombinant KV7.1 to KV7.5 channels. KEY RESULTS: Currents through the cardiac subtype KV7.1 were reduced by NAPQI. Currents through all other subtypes were increased, either by an isolated shift of the channel voltage dependence to more negative values (KV7.3) or by such a shift combined with increased maximal current levels (KV7.2, KV7.4, KV7.5). A stretch of three cysteine residues in the S2-S3 linker region of KV7.2 was necessary and sufficient to mediate these effects. CONCLUSION AND IMPLICATION: The paracetamol metabolite N-acetyl-p-benzo quinone imine (NAPQI) modifies cysteine residues of KV7 subunits and reinforces channel gating in homomeric and heteromeric KV7.2 to KV7.5, but not in KV7.1 channels. In KV7.2, a triple cysteine motif located within the S2-S3 linker region mediates this reinforcement that can be expected to reduce the excitability of nociceptors and to mediate antinociceptive actions of paracetamol.


Subject(s)
Acetaminophen , Benzoquinones , Cysteine , Imines , Cysteine/metabolism , Acetaminophen/pharmacology , Benzoquinones/pharmacology , Benzoquinones/metabolism , Animals , Imines/pharmacology , Imines/chemistry , Imines/metabolism , Neurons/drug effects , Neurons/metabolism , KCNQ Potassium Channels/metabolism , KCNQ Potassium Channels/genetics , Humans , Amino Acid Motifs , Analgesics, Non-Narcotic/pharmacology , HEK293 Cells , Rats
19.
Molecules ; 29(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38675623

ABSTRACT

Since the discovery of cisplatin in the 1960s, the search for metallo-drugs that are more efficient than platinum complexes with negligible side effects has attracted much interest. Among the other metals that have been examined for potential applications as anticancer agents is copper. The interest in copper was recently boosted by the discovery of cuproptosis, a recently evidenced form of cell death mediated by copper. However, copper is also known to induce the proliferation of cancer cells. In view of these contradictory results, there is a need to find the most suitable copper chelators, among which Schiff-based derivatives offer a wide range of possibilities. Gathering several metal complexes in a single, larger entity may provide enhanced properties. Among the nanometric objects suitable for such purpose are dendrimers, precisely engineered hyperbranched macromolecules, which are outstanding candidates for improving therapy and diagnosis. In this review article, we present an overview of the use of a particular Schiff base, namely pyridine-imine, linked to the surface of dendrimers, suitable for complexing copper, and the use of such dendrimer complexes in biology, in particular against cancers.


Subject(s)
Copper , Imines , Pyridines , Animals , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Dendrimers/chemistry , Imines/chemistry , Neoplasms/drug therapy , Pyridines/chemistry , Schiff Bases/chemistry
20.
Chem Res Toxicol ; 37(5): 698-710, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38619497

ABSTRACT

Reactive metabolite formation is a major mechanism of hepatotoxicity. Although reactive electrophiles can be soft or hard in nature, screening strategies have generally focused on the use of glutathione trapping assays to screen for soft electrophiles, with many data sets available to support their use. The use of a similar assay for hard electrophiles using cyanide as the trapping agent is far less common, and there is a lack of studies with sufficient supporting data. Using a set of 260 compounds with a defined hepatotoxicity status by the FDA, a comprehensive literature search yielded cyanide trapping data on an unbalanced set of 20 compounds that were all clinically hepatotoxic. Thus, a further set of 19 compounds was selected to generate cyanide trapping data, resulting in a more balanced data set of 39 compounds. Analysis of the data demonstrated that the cyanide trapping assay had high specificity (92%) and a positive predictive value (83%) such that hepatotoxic compounds would be confidently flagged. Structural analysis of the adducts formed revealed artifactual methylated cyanide adducts to also occur, highlighting the importance of full structural identification to confirm the nature of the adduct formed. The assay was demonstrated to add the most value for compounds containing typical structural alerts for hard electrophile formation: half of the severe hepatotoxins with these structural alerts formed cyanide adducts, while none of the severe hepatotoxins with no relevant structural alerts formed adducts. The assay conditions used included cytosolic enzymes (e.g., aldehyde oxidase) and an optimized cyanide concentration to minimize the inhibition of cytochrome P450 enzymes by cyanide. Based on the demonstrated added value of this assay, it is to be initiated for use at GSK as part of the integrated hepatotoxicity strategy, with its performance being reviewed periodically as more data is generated.


Subject(s)
Chemical and Drug Induced Liver Injury , Cyanides , Cyanides/metabolism , Cyanides/chemistry , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Imines/chemistry , Imines/metabolism , Liver/metabolism , Liver/drug effects , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL