Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.029
Filter
1.
Free Radic Biol Med ; 220: 179-191, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704053

ABSTRACT

Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.


Subject(s)
Atorvastatin , Disease Models, Animal , Extracellular Traps , Imipenem , NADPH Oxidase 2 , Sepsis , Animals , Atorvastatin/pharmacology , Extracellular Traps/drug effects , Extracellular Traps/metabolism , Sepsis/drug therapy , Sepsis/metabolism , Sepsis/complications , Sepsis/pathology , Mice , Imipenem/pharmacology , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Lung Injury/drug therapy , Lung Injury/pathology , Lung Injury/metabolism , Male , MAP Kinase Signaling System/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Neutrophils/pathology , Signal Transduction/drug effects , Humans , Mice, Inbred C57BL , Drug Therapy, Combination
2.
J Nepal Health Res Counc ; 21(3): 353-365, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38615204

ABSTRACT

BACKGROUND: This systematic review aimed to determine the antimicrobial resistance pattern of the extended-spectrum ß-lactamases producing Escherichia coli (ESBL-EC) in urine samples in Nepal. METHODS: Systematic literature review was conducted to locate all articles reporting ESBL-EC in urine samples published between January 2012 to December 2022. The Egger's weighted regression analysis was done to assess the publication bias. A random-effects model was used to calculate the pooled prevalence and corresponding 95% confidence interval due to significant between-study heterogeneity. The strength of correlation between multidrug resistance and ESBL production in E.coli strains was determined using Pearson's correlation coefficient. The data were analyzed using R-language 4.2.2. software. RESULTS: The combined prevalence of E.coli in urine samples was found to be 14 % (95% CI, 11-18), while the overall pooled prevalence of ESBL E.coli and MDR E.coli were 30% (95% CI, 20-42) and 70% (95% CI, 38-90) respectively. A strong positive correlation of 0.99 (95% CI, 0.89-1.0) was found between ESBL production and MDR among E.coli isolates. Imipenem was the drug of choice against ESBL-E.coli in urine specimens. CONCLUSIONS: Our analyses showed the overall ESBL-EC and MDR-EC burden in Nepal is considerably high. Likewise, the study also infers an increasing trend of antibiotic resistance pattern of ESBL-EC in urine samples.


Subject(s)
Escherichia coli , Imipenem , Humans , Nepal/epidemiology , Drug Resistance, Microbial , Language
3.
J Glob Antimicrob Resist ; 37: 190-194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588973

ABSTRACT

We assessed 160 patients who received imipenem/cilastatin/relebactam for ≥2 days. At treatment initiation, the median Charlson Comorbidity Index was 5, 45% were in the intensive care unit, and 19% required vasopressor support. The in-hospital mortality rate was 24%. These data advance our understanding of real-world indications and outcomes of imipenem/cilastatin/relebactam use.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Cilastatin , Imipenem , Humans , Male , Anti-Bacterial Agents/pharmacology , Female , Imipenem/pharmacology , Middle Aged , Aged , Cilastatin/pharmacology , Cilastatin/administration & dosage , Cilastatin/therapeutic use , United States , Azabicyclo Compounds/pharmacology , Cilastatin, Imipenem Drug Combination/administration & dosage , Hospital Mortality , Retrospective Studies , Intensive Care Units , Aged, 80 and over , Treatment Outcome , Adult
4.
BMC Infect Dis ; 24(1): 412, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641583

ABSTRACT

BACKGROUND: Vibrio furnissii is an emerging human pathogen closely related to V. fluvialis that causes acute gastroenteritis. V. furnissii infection has been reported to be rarer than V. fluvialis, but a multi-drug resistance plasmid has recently been discovered in V. furnissii. METHODS: During daily monitoring at a general hospital in Beijing, China, seven V. furnissii strains were collected from patients aged over 14 years who presented with acute diarrhoea between April and October 2018. Genome analysis and comparison were performed for virulence and antimicrobial resistance genes, plasmids and transposon islands, together with phylogenetic analysis. Antimicrobial resistance to 19 antibiotics was investigated using the microbroth dilution method. Virulence phenotypes were investigated based on type VI secretion system (T6SS) expression and using a bacterial killing assay and a haemolysin assay. RESULTS: Phylogenetic analysis based on single-nucleotide polymorphisms revealed a closer relationship between V. furnissii and V. fluvialis than between other Vibrio spp. The seven V. furnissii isolates were in different monophyletic clades in the phylogenetic tree, suggesting that the seven cases of gastroenteritis were independent. High resistance to cefazolin, tetracycline and streptomycin was found in the V. furnissii isolates at respective rates of 100.0%, 57.1% and 42.9%, and intermediate resistance to ampicillin/sulbactam and imipenem was observed at respective rates of 85.7% and 85.7%. Of the tested strains, VFBJ02 was resistant to both imipenem and meropenem, while VFBJ01, VFBJ02, VFBJ05 and VFBJ07 were multi-drug resistant. Transposon islands containing antibiotic resistance genes were found on the multi-drug resistance plasmid in VFBJ05. Such transposon islands also occurred in VFBJ07 but were located on the chromosome. The virulence-related genes T6SS, vfh, hupO, vfp and ilpA were widespread in V. furnissii. The results of the virulence phenotype assays demonstrated that our isolated V. furnissii strains encoded an activated T6SS and grew in large colonies with strong beta-haemolysis on blood agar. CONCLUSION: This study showed that diarrhoea associated with V. furnissii occurred sporadically and was more common than expected in the summer in Beijing, China. The antibiotic resistance of V. furnissii has unique characteristics compared with that of V. fluvialis. Fluoroquinolones and third-generation cephalosporins, such as ceftazidime and doxycycline, were effective at treating V. furnissii infection. Continua laboratory-based surveillance is needed for the prevention and control of V. furnissii infection, especially the dissemination of the antibiotic resistance genes in this pathogen.


Subject(s)
Gastroenteritis , Vibrio , Humans , Aged , Virulence/genetics , Phylogeny , Vibrio/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Diarrhea/microbiology , Imipenem/pharmacology
5.
Mikrobiyol Bul ; 58(2): 135-147, 2024 Apr.
Article in Turkish | MEDLINE | ID: mdl-38676582

ABSTRACT

Pseudomonas aeruginosa is a non-fermentative gram-negative bacillus. Many virulence factors play a role in the pathogenesis of P.aeruginosa. The aim of this study was to early detection of ST111, ST175, ST235, ST253, ST395 which are named high-risk clones with increased epidemic potential due to multidrug resistance in P.aeruginosa isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method and to evaluate the relationship between high-risk clones and the presence of P.aeruginosa virulence factors and carbapenemase production genes.P.aeruginosa isolates (n= 100) found to be resistant to at least imipenem or meropenem antibiotics isolated from the various clinical samples in the medical microbiology laboratory between 01.01.2021 and 07.06.2022 were included in the study. For the detection of virulence genes uniplex polymerase chain reaction (PCR) for toxA and multiplex PCR for algD, plcN, lasB, plcH were performed in P.aeruginosa isolates. In the detection of carbapenemase genes, two separate multiplex PCRs used for blaKPC , blaNDM , blaVIM , blaOXA-48 and for blaIMP , blaSPM , blaSIM , blaGIM , blaGES . Investigation of the peaks specific to high-risk clones was performed by using VITEK®-MS (bioMérieux, France) system. P.aeruginosa isolates were mostly isolated from intensive care units (45%) and respiratory tract samples (46%). The antibiotic to which the isolates were found to be most susceptible was amikacin, while highest resistance was detected for piperacillin. In PCR results, toxA, lasB, plcH, plcN and algD were detected as 89%, 99%, 98%, 100%, 100%, respectively. When the presence of characteristic peaks belonging to high-risk clones was evaluated with MALDI-TOF MS, ST253 (7%) and ST175 (2%) were detected. The peaks specific to ST235 and ST395 clones were not detected in our study. blaVIM was detected in two isolates and blaGES-5 carbapenemase was detected in two isolates. Virulence factors were detected at high rates in both high-risk clones and other strains and no significant relationship was found between high-risk clones and virulence factors. Early detection of high-risk clones, identification of antimicrobial resistance mechanisms will help to develop strategic treatment options and prevent their worldwide spread.


Subject(s)
Polymerase Chain Reaction , Pseudomonas aeruginosa , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Virulence Factors , beta-Lactamases , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , Humans , beta-Lactamases/genetics , Virulence Factors/genetics , Bacterial Proteins/genetics , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Imipenem/pharmacology , Meropenem/pharmacology , Virulence/genetics
6.
Antimicrob Agents Chemother ; 68(5): e0017424, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38557171

ABSTRACT

Mycobacterium abscessus (MAB) infections pose a growing public health threat. Here, we assessed the in vitro activity of the boronic acid-based ß-lactamase inhibitor, vaborbactam, with different ß-lactams against 100 clinical MAB isolates. Enhanced activity was observed with meropenem and ceftaroline with vaborbactam (1- and >4-fold MIC50/90 reduction). CRISPRi-mediated blaMAB gene knockdown showed a fourfold MIC reduction to ceftaroline but not the other ß-lactams. Our findings demonstrate vaborbactam's potential in combination therapy against MAB infections.


Subject(s)
Anti-Bacterial Agents , Boronic Acids , Cefoxitin , Ceftaroline , Cephalosporins , Imipenem , Meropenem , Microbial Sensitivity Tests , Mycobacterium abscessus , Mycobacterium abscessus/drug effects , Meropenem/pharmacology , Boronic Acids/pharmacology , Anti-Bacterial Agents/pharmacology , Cephalosporins/pharmacology , Imipenem/pharmacology , Cefoxitin/pharmacology , Humans , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , beta-Lactamase Inhibitors/pharmacology
7.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38653725

ABSTRACT

AIMS: Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, ß-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS: The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS: This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Bacterial Outer Membrane Proteins , Imipenem , Microbial Sensitivity Tests , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Imipenem/pharmacology , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Acinetobacter Infections/microbiology , Humans , Porins/genetics , Porins/metabolism
8.
PLoS One ; 19(4): e0298577, 2024.
Article in English | MEDLINE | ID: mdl-38635685

ABSTRACT

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Subject(s)
Boronic Acids , Ceftazidime , Stenotrophomonas maltophilia , Ceftazidime/pharmacology , Cefiderocol , Meropenem , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Stenotrophomonas , Phylogeny , RNA, Ribosomal, 16S , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Drug Combinations , Imipenem/pharmacology , Microbial Sensitivity Tests , beta-Lactamases/genetics
9.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622558

ABSTRACT

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Carbapenems , Carbapenems/pharmacology , Meropenem/pharmacology , Molecular Docking Simulation , Real-Time Polymerase Chain Reaction , Levofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Imipenem/pharmacology , Drug Resistance , Microbial Sensitivity Tests , beta-Lactamases/genetics
10.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600509

ABSTRACT

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Subject(s)
COVID-19 , Coinfection , Escherichia coli Infections , Humans , Escherichia coli , Ertapenem/pharmacology , Levofloxacin/pharmacology , Meropenem/pharmacology , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/microbiology , Imipenem/pharmacology , Porins/genetics , Porins/pharmacology , Microbial Sensitivity Tests
11.
BMC Infect Dis ; 24(1): 433, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654215

ABSTRACT

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION: We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS: Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Colistin , Klebsiella Infections , Klebsiella pneumoniae , Liver Abscess, Pyogenic , Microbial Sensitivity Tests , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Male , Liver Abscess, Pyogenic/microbiology , Liver Abscess, Pyogenic/drug therapy , Middle Aged , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Multilocus Sequence Typing , Imipenem/therapeutic use , Imipenem/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics
12.
Arch Microbiol ; 206(4): 169, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489041

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Acinetobacter baumannii/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
13.
J Antimicrob Chemother ; 79(5): 1118-1125, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38517465

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality but has the potential to alter the pharmacokinetics (PK) of antimicrobials. Imipenem/cilastatin/relebactam is an antibiotic with utility in treating certain multi-drug resistant Gram-negative infections. Herein, we describe the population pharmacokinetics of imipenem and relebactam in critically ill patients supported on ECMO. METHODS: Patients with infection supported on ECMO received 4-6 doses of imipenem/cilastatin/relebactam per current prescribing information based on estimated creatinine clearance. Blood samples were collected following the final dose of the antibiotic. Concentrations were determined via LC-MS/MS. Population PK models were fit with and without covariates using Pmetrics. Monte Carlo simulations of 1000 patients assessed joint PTA of fAUC0-24/MIC ≥ 8 for relebactam, and ≥40% fT > MIC for imipenem for each approved dosing regimen. RESULTS: Seven patients supported on ECMO were included in PK analyses. A two-compartment model with creatinine clearance as a covariate on clearance for both imipenem and relebactam fitted the data best. The mean ±â€Šstandard deviation parameters were: CL0, 15.21 ±â€Š6.52 L/h; Vc, 10.13 ±â€Š2.26 L; K12, 2.45 ±â€Š1.16 h-1 and K21, 1.76 ±â€Š0.49 h-1 for imipenem, and 6.95 ±â€Š1.34 L/h, 9.81 ±â€Š2.69 L, 2.43 ±â€Š1.13 h-1 and 1.52 ±â€Š0.67 h-1 for relebactam. Simulating each approved dose of imipenem/cilastatin/relebactam according to creatinine clearance yielded PTAs of ≥90% up to an MIC of 2 mg/L. CONCLUSIONS: Imipenem/cilastatin/relebactam dosed according to package insert in patients supported on ECMO is predicted to achieve exposures sufficient to treat susceptible Gram-negative isolates, including Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Critical Illness , Extracorporeal Membrane Oxygenation , Imipenem , Microbial Sensitivity Tests , Humans , Imipenem/pharmacokinetics , Imipenem/administration & dosage , Male , Middle Aged , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Female , Adult , Azabicyclo Compounds/pharmacokinetics , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/therapeutic use , Aged , Monte Carlo Method , Tandem Mass Spectrometry , Cilastatin, Imipenem Drug Combination/pharmacokinetics
14.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38544327

ABSTRACT

AIMS: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections poses a significant threat to human health, necessitating urgent development of new antimicrobial agents. Silver nanoparticles (AgNPs), which are among the most widely used engineered nanomaterials, have been extensively studied. However, the impact of AgNPs on CRKP and the potential for drug resistance development remain inadequately explored. METHODS AND RESULTS: In this study, broth dilution method was used to determine the minimum inhibitory concentration (MIC) was determined using the broth dilution method. Results indicated MIC values of 93.1 ± 193.3 µg ml-1 for AgNPs, 2.3 ± 5.1 µg ml-1 for AgNO3, and 25.1 ± 48.3 µg ml-1 for imipenem (IMI). The combined inhibitory effect of AgNPs and IMI on CRKP was assessed using the checkerboard method. Moreover, after 6-20 generations of continuous culture, the MIC value of AgNPs increased 2-fold. Compared to IMI, resistance of Kl. pneumoniae to AgNPs developed more slowly, with a higher fold increase in MIC observed after 20 generations. Whole-genome sequencing revealed four nonsynonymous single nucleotide polymorphism mutations in CRKP after 20 generations of AgNP treatment. CONCLUSION: We have demonstrated that AgNPs significantly inhibit CRKP isolates and enhance the antibacterial activity of imipenem against Kl. pneumoniae. Although the development of AgNP resistance is gradual, continued efforts are necessary for monitoring and studying the mechanisms of AgNP resistance.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Imipenem , Klebsiella pneumoniae , Metal Nanoparticles , Microbial Sensitivity Tests , Silver , Imipenem/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Resistance, Bacterial/genetics
15.
Int J Antimicrob Agents ; 63(5): 107150, 2024 May.
Article in English | MEDLINE | ID: mdl-38513748

ABSTRACT

OBJECTIVES: To analyse the impact of the most clinically relevant ß-lactamases and their interplay with low outer membrane permeability on the activity of cefiderocol, ceftazidime/avibactam, aztreonam/avibactam, cefepime/enmetazobactam, cefepime/taniborbactam, cefepime/zidebactam, imipenem/relebactam, meropenem/vaborbactam, meropenem/xeruborbactam and meropenem/nacubactam against recombinant Escherichia coli strains. METHODS: We constructed 82 E. coli laboratory transformants expressing the main ß-lactamases circulating in Enterobacterales (70 expressing single ß-lactamase and 12 producing double carbapenemase) under high (E. coli TG1) and low (E. coli HB4) permeability conditions. Antimicrobial susceptibility testing was determined by reference broth microdilution. RESULTS: Aztreonam/avibactam, cefepime/zidebactam, cefiderocol, meropenem/xeruborbactam and meropenem/nacubactam were active against all E. coli TG1 transformants. Imipenem/relebactam, meropenem/vaborbactam, cefepime/taniborbactam and cefepime/enmetazobactam were also highly active, but unstable against most of MBL-producing transformants. Combination of ß-lactamases with porin deficiency (E. coli HB4) did not significantly affect the activity of aztreonam/avibactam, cefepime/zidebactam, cefiderocol or meropenem/nacubactam, but limited the effectiveness of the rest of carbapenem- and cefepime-based combinations. Double-carbapenemase production resulted in the loss of activity of most of the compounds tested, an effect particularly evident for those E. coli HB4 transformants in which MBLs were present. CONCLUSIONS: Our findings highlight the promising activity that cefiderocol and new ß-lactam/ß-lactamase inhibitors have against recombinant E. coli strains expressing widespread ß-lactamases, including when these are combined with low permeability or other enzymes. Aztreonam/avibactam, cefiderocol, cefepime/zidebactam and meropenem/nacubactam will help to mitigate to some extent the urgency of new compounds able to resist MBL action, although NDM enzymes represent a growing challenge against which drug development efforts are still needed.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Borinic Acids , Carboxylic Acids , Cefepime , Cefiderocol , Ceftazidime , Cephalosporins , Cyclooctanes , Drug Combinations , Escherichia coli , Lactams , Microbial Sensitivity Tests , Triazoles , beta-Lactamase Inhibitors , beta-Lactamases , Escherichia coli/drug effects , Escherichia coli/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Cephalosporins/pharmacology , beta-Lactamase Inhibitors/pharmacology , Azabicyclo Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Cyclooctanes/pharmacology , Ceftazidime/pharmacology , Cefepime/pharmacology , Boronic Acids/pharmacology , Meropenem/pharmacology , Aztreonam/pharmacology , Imipenem/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Heterocyclic Compounds, 1-Ring/pharmacology , Cell Membrane Permeability/drug effects
16.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542095

ABSTRACT

Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine.


Subject(s)
Anti-Bacterial Agents , Pets , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pets/microbiology , Escherichia coli , Tylosin , Angiotensin Receptor Antagonists , Proteomics , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Imipenem , Ecosystem , Microbial Sensitivity Tests
17.
Microbiol Spectr ; 12(4): e0391923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38483476

ABSTRACT

In 2020, the Ralstonia mannitolilytica strain JARB-RN-0044 was isolated from a midstream urine sample of an elderly hospitalized patient in Japan and was highly resistant to carbapenem (i.e., imipenem, meropenem, and doripenem). Whole-genome sequencing revealed that the complete genome consists of two replicons, a 3.5-Mb chromosome and a 1.5-Mb large non-chromosomal replicon which has not been reported in R. mannitolilytica, and referred to as the "megaplasmid" in this study based on Cluster of Orthologous Group of proteins functional analysis. The strain JARB-RN-0044 harbored two novel OXA-60 and OXA-22 family class D ß-lactamase genes blaOXA-1176 and blaOXA-1177 on the megaplasmid. Cloning experiments indicated that Escherichia coli recombinant clone expressing blaOXA-1176 gene showed increased minimum inhibitory concentrations (MICs) of imipenem, meropenem, and doripenem, indicating that blaOXA-1176 gene encodes carbapenemase. In contrast, E. coli recombinant clone expressing blaOXA-1177 gene showed increased MICs of piperacillin and cefazolin, but not of carbapenem. Interestingly, the 44.6 kb putative prophage region containing genes encoding phage integrase, terminase, head and tail protein was identified in the downstream region of blaOXA-1176 gene, and comparative analysis with some previously reported R. mannitolilytica isolates revealed that the prophage region was unique to strain JARB-RN-0044. The existence of a highly carbapenem-resistant R. mannitolilytica isolate may raise human health concerns in Japan, where the population is rapidly aging.IMPORTANCERalstonia mannitolilytica is an aerobic non-fermenting Gram-negative rod commonly found in aquatic environments and soil. The bacteria can occasionally cause severe hospital-acquired bloodstream infections in immunocompromised patients and it has been recently recognized as an emerging opportunistic human pathogen. Furthermore, some R. mannitolilytica isolates are resistant to various antimicrobial agents, including ß-lactams and aminoglycosides, making antimicrobial therapy challenging and clinically problematic. However, clinical awareness of this pathogen is limited. To our knowledge, in Japan, there has been only one report of a carbapenem-resistant R. mannitolilytica clinical isolate from urine by Suzuki et al. in 2015. In this study, whole-genome sequencing analysis revealed the presence and genetic context of novel blaOXA-1176 and blaOXA-1177 genes on the 1.5 Mb megaplasmid from highly carbapenem-resistant R. mannitolilytica isolate and characterized the overall distribution of functional genes in the chromosome and megaplasmid. Our findings highlight the importance of further attention to R. mannitolilytica isolate in clinical settings.


Subject(s)
Carbapenems , Escherichia coli , Ralstonia , Humans , Aged , Carbapenems/pharmacology , Carbapenems/therapeutic use , Meropenem , Doripenem , Escherichia coli/genetics , Escherichia coli/metabolism , Japan , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Imipenem , Microbial Sensitivity Tests
18.
Mol Med ; 30(1): 29, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395744

ABSTRACT

BACKGROUND: The escalating challenge of Carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired pneumonia (HAP) is closely linked to the blaNDM-1 gene. This study explores the regulatory mechanisms of blaNDM-1 expression and aims to enhance antibacterial tactics to counteract the spread and infection of resistant bacteria. METHODS: KP and CRKP strains were isolated from HAP patients' blood samples. Transcriptomic sequencing (RNA-seq) identified significant upregulation of blaNDM-1 gene expression in CRKP strains. Bioinformatics analysis revealed blaNDM-1 gene involvement in beta-lactam resistance pathways. CRISPR-Cas9 was used to delete the blaNDM-1 gene, restoring sensitivity. In vitro and in vivo experiments demonstrated enhanced efficacy with Imipenem and Thanatin or Subatan combination therapy. RESULTS: KP and CRKP strains were isolated with significant upregulation of blaNDM-1 in CRKP strains identified by RNA-seq. The Beta-lactam resistance pathway was implicated in bioinformatics analysis. Knockout of blaNDM-1 reinstated sensitivity in CRKP strains. Further, co-treatment with Imipenem, Thanatin, or Subactam markedly improved antimicrobial effectiveness. CONCLUSION: Silencing blaNDM-1 in CRKP strains from HAP patients weakens their Carbapenem resistance and optimizes antibacterial strategies. These results provide new theoretical insights and practical methods for treating resistant bacterial infections.


Subject(s)
Klebsiella Infections , Pneumonia , Humans , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella pneumoniae/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Imipenem , Hospitals , Klebsiella Infections/drug therapy , Klebsiella Infections/genetics , Klebsiella Infections/microbiology
19.
BMC Microbiol ; 24(1): 52, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331716

ABSTRACT

Resistance mechanisms are a shelter for Acinetobacter baumannii to adapt to our environment which causes difficulty for the infections to be treated and WHO declares this organism on the top of pathogens priority for new drug development. The most common mechanism that develops drug resistance is the overexpression of the efflux pump, especially Resistance-nodulation-cell division (RND) family, to almost most antibiotics. The study is designed to detect RND efflux pump genes in A. baumannii, and its correlation to multidrug resistance, in particular, the carbapenems resistance Acinetobacter baumannii (CRAB), and using different inhibitors that restore the antibiotic susceptibility of imipenem. Clinical A. baumannii isolates were recovered from different Egyptian hospitals in Intensive care unit (ICU). The expression of genes in two strains was analyzed using RT-PCR before and after inhibitor treatment. About 100 clinical A. baumannii isolates were recovered and identified and recorded as MDR strains with 75% strains resistant to imipenem. adeB, adeC, adeK, and adeJ were detected in thirty- seven the carbapenems resistance Acinetobacter baumannii (CRAB) strains. Cinnamomum verum oil, Trimethoprim, and Omeprazole was promising inhibitor against 90% of the carbapenems resistance Acinetobacter baumannii (CRAB) strains with a 2-6-fold decrease in imipenem MIC. Downregulation of four genes was associated with the addition of those inhibitors to imipenem for two the carbapenems resistance Acinetobacter baumannii (CRAB) (ACN15 and ACN99) strains, and the effect was confirmed in 24 h killing kinetics. Our investigation points to the carbapenems resistance Acinetobacter baumannii (CRAB) strain's prevalence in Egyptian hospitals with the idea to revive the imipenem activity using natural and chemical drugs as inhibitors that possessed high synergistic activity.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Trimethoprim/metabolism , Trimethoprim/pharmacology , Trimethoprim/therapeutic use , Cinnamomum zeylanicum/metabolism , Bacterial Proteins/metabolism , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
20.
Int J Antimicrob Agents ; 63(4): 107113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354826

ABSTRACT

BACKGROUND: Aztreonam-avibactam is under clinical development for treatment of infections caused by carbapenem-resistant Enterobacterales (CRE), especially those resistant to recently approved ß-lactamase inhibitor combinations (BLICs). OBJECTIVES: To evaluate a large collection of CRE isolates, including those non-susceptible to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam. METHODS: Overall, 24 580 Enterobacterales isolates were consecutively collected (1/patient) in 2020-2022 from 64 medical centres located in Western Europe (W-EU), Eastern Europe (E-EU), Latin America (LATAM), and the Asia-Pacific region (APAC). Of those, 1016 (4.1%) were CRE. Isolates were susceptibility tested by broth microdilution. CRE isolates were screened for carbapenemase genes by whole genome sequencing. RESULTS: Aztreonam-avibactam inhibited 99.6% of CREs at ≤8 mg/L. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam were active against 64.6%, 57.4%, and 50.7% of CRE isolates, respectively; most of the non-susceptible isolates carried metallo-beta-lactamases. Aztreonam-avibactam was active against ≥98.9% of isolates non-susceptible to these BLICs. The activity of these BLICs varied by region, with highest susceptibility rates observed in W-EU (76.9% for ceftazidime-avibactam, 72.5% for meropenem-vaborbactam, 63.8% for imipenem-relebactam) and the lowest susceptibility rates identified in the APAC region (39.9% for ceftazidime-avibactam, 37.8% for meropenem-vaborbactam, and 27.5% for imipenem-relebactam). The most common carbapenemase types overall were KPC (44.6% of CREs), NDM (29.9%), and OXA-48-like (16.0%). KPC predominated in LATAM (64.1% of CREs in the region) and W-EU (61.1%). MBL occurrence was highest in APAC (59.5% of CREs in the region), followed by LATAM (34.0%), E-EU (28.9%), and W-EU (23.6%). CONCLUSIONS: Aztreonam-avibactam demonstrated potent activity against CRE isolates resistant to ceftazidime-avibactam, meropenem-vaborbactam, and/or imipenem-relebactam independent of the carbapenemase produced.


Subject(s)
Aztreonam , Boronic Acids , beta-Lactamase Inhibitors , Humans , Aztreonam/pharmacology , Meropenem , beta-Lactamase Inhibitors/pharmacology , Latin America , Anti-Bacterial Agents/pharmacology , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , Europe/epidemiology , Drug Combinations , Imipenem/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...