Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Biol Res ; 57(1): 55, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152497

ABSTRACT

After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.


Subject(s)
Endometrium , Neovascularization, Pathologic , Placenta Growth Factor , Pre-Eclampsia , Protein Serine-Threonine Kinases , Transcription Factors , Female , Humans , Pregnancy , Endometrium/metabolism , Endometrium/blood supply , Enzyme-Linked Immunosorbent Assay , Immediate-Early Proteins/metabolism , Neovascularization, Pathologic/metabolism , Placenta Growth Factor/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Stromal Cells/metabolism , Transcription Factors/metabolism
2.
Cell Signal ; 120: 111241, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825173

ABSTRACT

Cardiac fibroblasts (CF) are mesenchymal-type cells responsible for maintaining the homeostasis of the heart's extracellular matrix (ECM). Their dysfunction leads to excessive secretion of ECM proteins, tissue stiffening, impaired nutrient and oxygen exchange, and electrical abnormalities in the heart. Additionally, CF act as sentinel cells in the cardiac tissue microenvironment, responding to various stimuli that may affect heart function. Deleterious stimuli induce an inflammatory response in CF, increasing the secretion of cytokines such as IL-1ß and TNF-α and the expression of cell adhesion molecules like ICAM1 and VCAM1, initially promoting damage resolution by recruiting immune cells. However, constant harmful stimuli lead to a chronic inflammatory process and heart dysfunction. Therefore, it is necessary to study the mechanisms that govern CF inflammation. NFκB is a key regulator of the cardiac inflammatory process, making the search for mechanisms of NFκB regulation and CF inflammatory response crucial for developing new treatment options for cardiovascular diseases. SGK1, a serine-threonine protein kinase, is one of the regulators of NFκB and is involved in the fibrotic effects of angiotensin II and aldosterone, as well as in CF differentiation. However, its role in the CF inflammatory response is unknown. On the other hand, many bioactive natural products have demonstrated anti-inflammatory effects, but their role in CF inflammation is unknown. One such molecule is boldine, an alkaloid obtained from Boldo (Peumus boldus), a Chilean endemic tree with proven cytoprotective effects. However, its involvement in the regulation of SGK1 and CF inflammation is unknown. In this study, we evaluated the role of SGK1 and boldine in the inflammatory response in CF isolated from neonatal Sprague-Dawley rats. The involvement of SGK1 was analyzed using GSK650394, a specific SGK1 inhibitor. Our results demonstrate that SGK1 is crucial for LPS- and IFN-γ-induced inflammatory responses in CF (cytokine expression, cell adhesion molecule expression, and leukocyte adhesion). Furthermore, a conditioned medium (intracellular content of CF subject to freeze/thaw cycles) was used to simulate a sterile inflammation condition. The conditioned medium induced a potent inflammatory response in CF, which was completely prevented by the SGK1 inhibitor. Finally, our results indicate that boldine inhibits both SGK1 activation and the CF inflammatory response induced by LPS, IFN-γ, and CF-conditioned medium. Taken together, our results position SGK1 as an important regulator of the CF inflammatory response and boldine as a promising anti-inflammatory drug in the context of cardiovascular diseases.


Subject(s)
Aporphines , Fibroblasts , Immediate-Early Proteins , NF-kappa B , Protein Serine-Threonine Kinases , Signal Transduction , Animals , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Signal Transduction/drug effects , Rats , Aporphines/pharmacology , Inflammation/metabolism , Inflammation/pathology , Myocardium/pathology , Myocardium/metabolism , Cells, Cultured , Rats, Sprague-Dawley
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732158

ABSTRACT

Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.


Subject(s)
Cell Membrane , Endocytosis , Epithelial Sodium Channels , Hypertension , Neutrophils , Epithelial Sodium Channels/metabolism , Humans , Neutrophils/metabolism , Hypertension/metabolism , Hypertension/pathology , Cell Membrane/metabolism , Membrane Lipids/metabolism , Protein Serine-Threonine Kinases/metabolism , Male , Female , Immediate-Early Proteins/metabolism , Middle Aged , Membrane Microdomains/metabolism
4.
Immunology ; 163(4): 493-511, 2021 08.
Article in English | MEDLINE | ID: mdl-33835494

ABSTRACT

The impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) activity induces intracellular chloride (Cl- ) accumulation. The anion Cl- , acting as a second messenger, stimulates the secretion of interleukin-1ß (IL-1ß), which starts an autocrine positive feedback loop. Here, we show that NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) are indirectly modulated by the intracellular Cl- concentration, showing maximal expression and activity at 75 mM Cl- , in the presence of the ionophores nigericin and tributyltin. The expression of PYD and CARD domain containing (PYCARD/ASC) remained constant from 0 to 125 mM Cl- . The CASP1 inhibitor VX-765 and the NLRP3 inflammasome inhibitor MCC950 completely blocked the Cl- -stimulated IL-1ß mRNA expression and partially the IL-1ß secretion. DCF fluorescence (cellular reactive oxygen species, cROS) and MitoSOX fluorescence (mitochondrial ROS, mtROS) also showed maximal ROS levels at 75 mM Cl- , a response strongly inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase (NOX) inhibitor GKT137831. These inhibitors also affected CASP1 and NLRP3 mRNA and protein expression. More importantly, the serum/glucocorticoid regulated kinase 1 (SGK1) inhibitor GSK650394, or its shRNAs, completely abrogated the IL-1ß mRNA response to Cl- and the IL-1ß secretion, interrupting the autocrine IL-1ß loop. The results suggest that Cl- effects are mediated by SGK1, in which under Cl- modulation stimulates the secretion of mature IL-1ß, in turn, responsible for the upregulation of ROS, CASP1, NLRP3 and IL-1ß itself, through autocrine signalling.


Subject(s)
Caspase 1/metabolism , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Immediate-Early Proteins/metabolism , Interleukin-1beta/metabolism , Intracellular Space/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Serine-Threonine Kinases/metabolism , Caspase Inhibitors/pharmacology , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Dipeptides/pharmacology , Feedback, Physiological , Furans/pharmacology , Humans , Immediate-Early Proteins/genetics , Indenes/pharmacology , Interleukin-1beta/genetics , Mutation/genetics , Nigericin/pharmacology , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Sulfonamides/pharmacology , para-Aminobenzoates/pharmacology
5.
Scand J Immunol ; 93(4): e13004, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33247598

ABSTRACT

In recent years, the role of anti-proliferative TOB proteins in the regulation of immune response by inhibiting T cell activation has been demonstrated. Nevertheless, no previous studies have explored their expression in patients with IBD. The aim of the study was to characterize the gene and protein expression of the TOB/BTG family in intestinal tissue of patients with IBD. This is an observational and cross-sectional study that included 63 IBD patients. Gene expression of TOB/BTG family was measured by RT-PCR. Protein expression of TOB/CD16 and BTG/Ki-67 was evaluated by immunohistochemistry. TOB/BTG family mRNAs were detected and quantitated by RT-qPCR in rectal and ileum biopsies from UC patients and CD patients, respectively, and non-inflammatory control tissues. Results showed that TOB1 and BTG1 gene expression was decreased in the colonic mucosa from patients with UC compared with the control group. The TOB2 and BTG2 genes were over-expressed in the colonic mucosa of patients with UC in remission compared with the active UC and control group. The high TOB2 gene expression was associated with histological remission (P = .01). TOB1/CD16, TOB2/CD16, BTG1/Ki-67, BTG2/Ki-67 and BTG4/Ki-67 single and double positive cells were mostly NK, macrophages, epithelial cells, connective tissue cells and perivascular inflammatory infiltrates in tissues from patients with UC and CD. This is the first depiction of the TOB/BTG family gene and protein expression in rectal and ileum tissues by a CD16+ subpopulation in IBD.


Subject(s)
Immediate-Early Proteins/metabolism , Inflammatory Bowel Diseases/metabolism , Tumor Suppressor Proteins/metabolism , Adult , Cell Proliferation/physiology , Colitis/metabolism , Colon/metabolism , Cross-Sectional Studies , Epithelial Cells/metabolism , Female , Gene Expression/physiology , Humans , Intestinal Mucosa/metabolism , Ki-67 Antigen/metabolism , Macrophages/metabolism , Male , Middle Aged , RNA, Messenger/metabolism , Receptors, IgG/metabolism
6.
Arch Virol ; 165(1): 69-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31705208

ABSTRACT

Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.


Subject(s)
Herpesviridae Infections/metabolism , Herpesvirus 1, Bovine/pathogenicity , Proteomics/methods , Viral Proteins/metabolism , Animals , Cattle , Cell Line , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/metabolism , Immediate-Early Proteins/metabolism , Mass Spectrometry , Phosphorylation , Protein Interaction Maps , Stathmin/metabolism , Virus Replication
7.
Braz. j. otorhinolaryngol. (Impr.) ; Braz. j. otorhinolaryngol. (Impr.);85(6): 705-715, Nov.-Dec. 2019. tab, graf
Article in English | LILACS | ID: biblio-1055510

ABSTRACT

Abstract Introduction: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. Objective: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. Methods: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. Results: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. Conclusion: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Resumo Introdução: A quinase 3 sérica induzida por glicocorticoide, uma serina/treonina quinase que funciona downstream da via de sinalização PI3K, desempenha um papel crítico nos processos neoplásicos. É expressa por vários tumores e contribui para a carcinogênese. Objetivo: Investigar a expressão de quinase 3 sérica induzida por glicocorticoide no carcinoma nasofaríngeo, estudar os efeitos antitumorais do shRNA da quinase 3 sérica induzida por glicocorticoide, que inibem sua expressão em células de carcinoma nasofaríngeo, e discutir as implicações potenciais de nossos achados. Método: A expressão de proteína quinase 3 sérica induzida por glicocorticoide em linhagens de células de carcinoma nasofaríngeo (CNE-1, CNE-2, HNE-1, HONE-1 e SUNE-1) e a linhagem de células humanas imortalizadas do epitélio nasofaríngeo NP69 foram avaliadas por Western blot. A expressão da quinase 3 sérica induzida por glicocorticoide em 42 tecidos de CNF embebidos em parafina foi feita por imuno-histoquímica. Testes com MTT, citometria de fluxo e testes de raspagem foram feitos após as células CNE-2 terem sido transfectadas com o melhor plasmídeo shRNA da quinase 3 sérica induzida por glicocorticoide selecionado por Western blot, com o uso de lipofectamina para estudar seu efeito na proliferação, apoptose e migração celular. Resultados: Foi observada uma sobre-expressão da quinase 3 sérica induzida por glicocorticoide em tecidos e células de carcinoma nasofaríngeo humanas. A expressão de quinase 3 sérica induzida por glicocorticoide diminuiu acentuadamente após as células CNE-2 terem sido transfectadas com o shRNA da quinase 3 sérica induzida por glicocorticoide, conduzindo a forte inibição de proliferação e migração celular. Além disso, a taxa de apoptose aumentou nas células CNE-2 após o knockdown da quinase 3 sérica induzida por glicocorticoide. Conclusão: A expressão de quinase 3 sérica induzida por glicocorticoide foi observada com maior frequência à medida que o epitélio nasofaríngeo progride de tecido normal para carcinoma. Isso sugere que a quinase 3 sérica induzida por glicocorticoide contribui para o processo multietapas da carcinogênese do carcinoma nasofaríngeo. A quinase 3 sérica induzida por glicocorticoide representa um alvo para a terapia do carcinoma nasofaríngeo e há uma base para a investigação adicional dessa modalidade de tratamento adjuvante para o carcinoma nasofaríngeo.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Nasopharyngeal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Immunohistochemistry , Cell Movement/drug effects , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein Serine-Threonine Kinases/pharmacology , Apoptosis , Immediate-Early Proteins/pharmacology , RNA, Small Interfering/metabolism , Cell Proliferation/drug effects , Nasopharyngeal Carcinoma/pathology
8.
Int J Mol Sci ; 20(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744099

ABSTRACT

Chronic vasopressin secretion induced by recurrent mild heat stress exposure is significantly enhanced by limited rehydration with a fructose-containing beverage both in rodents and in humans. Moreover, this effect has been associated with upregulation of the polyol-fructokinase pathway and increased renal oxidative stress. Previously, we have shown that pharmacological inhibition of both V1a and V2 vasopressin receptors with conivaptan improved such renal alterations. The aim of this study was to evaluate the independent contributions of V1a and V2 receptors to the renal damage caused by mild heat stress and limited rehydration with a fructose-containing beverage. Osmotic minipumps were used to deliver either relcovaptan (0.64 mg/day) or tolvaptan (0.25 mg/day) in male Wistar rats for two weeks. Corresponding dilution vehicles were used as controls. To induce dehydration, rats were exposed to mild heat stress (37 °C for 1 h, Monday to Friday). All groups received a 10% fructose solution as a rehydration fluid for 2 h after mild heat stress. For the remainder of the day and on weekends, rats received tap water. The independent blockade of either the V1a or the V2 receptor prevented renal damage, reduced oxidative stress, and decreased plasma cortisol and systemic inflammation. However, the beneficial effects were regulated by different mechanisms. Tolvaptan inhibited polyol-fructokinase pathway overactivation, while relcovaptan prevented upregulation of the renin-angiotensin system and SGK1 expression. These data suggest that both V1a and V2 receptors participate in renal damage caused by heat stress-induced dehydration when fructose-containing beverages are used as rehydration fluids.


Subject(s)
Beverages/analysis , Fructose/metabolism , Heat-Shock Response , Receptors, Vasopressin/metabolism , Animals , Fluid Therapy , Heat-Shock Response/drug effects , Hydrocortisone/blood , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Indoles/pharmacology , Kidney Cortex/metabolism , Male , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pyrrolidines/pharmacology , Rats , Rats, Wistar , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renin-Angiotensin System/drug effects , Temperature , Tolvaptan/pharmacology , Up-Regulation/drug effects
9.
Clin Transl Oncol ; 21(12): 1624-1633, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30963468

ABSTRACT

BACKGROUND: Synovial sarcoma (SS) is an aggressive soft-tissue sarcoma with a poor prognosis owing to its resistance to radiation and chemotherapy. Thus, novel therapeutic strategies for SS are urgently required. Anlotinib, a new oral tyrosine kinase inhibitor, is designed to primarily inhibit multi-targets in vasculogenesis and angiogenesis. This study was designed to characterize its antitumor efficacy and possible mechanism in patients with advanced refractory synovial sarcoma. METHODS: Anlotinib's antitumor effect was evaluated in vivo and vitro. Downstream targets of anlotinib in treating synovial sarcoma were analyzed through microarray assay. Cell proliferation and apoptosis analyses were performed to evaluate the impact of candidate downstream gene depletion in synovial sarcoma cells. Microarray assay were carried out to investigate potential signal network related with candidate downstream gene. RESULTS: Anlotinib significantly suppresses synovial sarcoma proliferation in PDTX model and cell lines. Additionally, GINS1 (also named as PSF1, Partner of SLD Five 1), rather than other conventional gene target, was demonstrated to be a vital target of anlotinib's antitumor effect in synovial sarcoma through microarray assay. Expression of GINS1 was remarkably higher in synovial sarcoma tumor samples and related with poor outcome. Knockdown of GINS1 expression could remarkably inhibit proliferation and promote apoptosis in vitro. Meanwhile, through microarray assay, CITED2, EGR1, SGK1 and SPP1 were identified and further validated by qPCR/WB as downstream targets of GINS1. CONCLUSION: Anlotinib might suppress proliferation of SS through a novel downstream GINS1-regulated network which plays a vital function in SS proliferation and also demonstrated that targeting the GINS1-regulated signal pathway could be a potential strategy for management of SS.


Subject(s)
Bone Neoplasms/drug therapy , DNA-Binding Proteins/drug effects , Indoles/therapeutic use , Neoplasm Proteins/drug effects , Protein Kinase Inhibitors/therapeutic use , Quinolines/therapeutic use , Sarcoma, Synovial/drug therapy , Apoptosis/drug effects , Bone Neoplasms/genetics , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Disease Progression , Early Growth Response Protein 1/drug effects , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Gene Knockdown Techniques , Humans , Immediate-Early Proteins/drug effects , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osteopontin/drug effects , Osteopontin/genetics , Osteopontin/metabolism , Protein Array Analysis , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/analysis , Repressor Proteins/drug effects , Repressor Proteins/genetics , Repressor Proteins/metabolism , Sarcoma, Synovial/genetics , Trans-Activators/drug effects , Trans-Activators/genetics , Trans-Activators/metabolism
10.
Braz J Otorhinolaryngol ; 85(6): 705-715, 2019.
Article in English | MEDLINE | ID: mdl-30108027

ABSTRACT

INTRODUCTION: Serum- and glucocorticoid-inducible kinase 3, a serine/threonine kinase that functions downstream of the PI3K signaling pathway, plays a critical role in neoplastic processes. It is expressed by various tumors and contributes to carcinogenesis. OBJECTIVE: The objective was to investigate serum- and glucocorticoid-inducible kinase 3 expression in nasopharyngeal carcinoma, to study the anti-tumor effects of serum- and glucocorticoid-inducible kinase 3 shRNA by inhibiting its expression in nasopharyngeal carcinoma cells and to discuss the potential implications of our findings. METHODS: Serum- and glucocorticoid-inducible kinase 3 protein expression in nasopharyngeal carcinoma cell lines (CNE-1, CNE-2, HNE-1, HONE-1, and SUNE-1) and the human immortalized nasopharyngeal epithelium cell line NP69 were assayed by western blotting. Serum- and glucocorticoid-inducible kinase 3 expression in 42 paraffin-embedded nasopharyngeal carcinoma tissues were performed by immunohistochemistry. MTT assay, flow cytometry, and scratch tests were performed after CNE-2 cells were transfected with the best serum- and glucocorticoid-inducible kinase 3 shRNA plasmid selected by western blotting using lipofectamine to study its effect on cell proliferation, apoptosis, and migration. RESULTS: Serum- and glucocorticoid-inducible kinase 3 was overexpressed in human nasopharyngeal carcinoma tissues and cells. Serum- and glucocorticoid-inducible kinase 3 expression decreased markedly after CNE-2 cells were transfected with the serum- and glucocorticoid-inducible kinase 3 shRNA, leading to strong inhibition of cell proliferation and migration. In addition, the apoptosis rate increased in CNE-2 cells after serum- and glucocorticoid-inducible kinase 3 knockdown. CONCLUSION: Serum- and glucocorticoid-inducible kinase 3 expression was more frequently observed as the nasopharyngeal epithelium progresses from normal tissue to carcinoma. This suggests that serum- and glucocorticoid-inducible kinase 3 contributes to the multistep process of NPC carcinogenesis. Serum- and glucocorticoid-inducible kinase 3 represents a target for nasopharyngeal carcinoma therapy, and a basis exists for the further investigation of this adjuvant treatment modality for nasopharyngeal carcinoma.


Subject(s)
Immediate-Early Proteins/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Adult , Apoptosis , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Immediate-Early Proteins/pharmacology , Immunohistochemistry , Male , Middle Aged , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Nasopharyngitis/metabolism , Nasopharyngitis/pathology , Protein Serine-Threonine Kinases/pharmacology , RNA, Small Interfering/metabolism
11.
J Neuroendocrinol ; 29(7)2017 07.
Article in English | MEDLINE | ID: mdl-28523794

ABSTRACT

Damage observed in the hippocampus of the adult spontaneously hypertensive rat (SHR) resembles the neuropathology of mineralocorticoid-induced hypertension, supporting a similar endocrine dysfunction in both entities. In the present study, we tested the hypothesis that increased expression of the hippocampal mineralocorticoid receptor (MR) in SHR animals is associated with a prevalent expression of pro-inflammatory over anti-inflammatory factors. Accordingly, in the hippocampus, we measured mRNA expression and immunoreactivity of the MR and glucocorticoid receptor (GR) using a quantitative polymerase chain reaction and histochemistry. We also measured serum-glucocorticoid-activated kinase 1 (Sgk1 mRNA), the number and phenotype of Iba1+ microglia, as well as mRNA expression levels of the pro-inflammatory factors cyclo-oxygenase 2 (Cox2), Nlrp3 inflammasome and tumour necrosis factor α (Tnfα). Expression of anti-inflammatory transforming growth factor (Tgf)ß mRNA and the NADPH-diaphorase activity of nitric oxide synthase (NOS) were also determined. The results showed that, in the hippocampus of SHR rats, expression of MR and the number of immunoreactive MR/GR co-expressing cells were increased compared to Wistar-Kyoto control animals. Expression of Sgk1, Cox2, Nlrp3 and the number of ramified glia cells positive for Iba1+ were also increased, whereas Tgfß mRNA expression and the NADPH-diaphorase activity of NOS were decreased. We propose that, in the SHR hippocampus, increased MR expression causes a bias towards a pro-inflammatory phenotype characteristic for hypertensive encephalopathy.


Subject(s)
Hippocampus/metabolism , Inflammation/metabolism , Neurons/metabolism , Receptors, Mineralocorticoid/metabolism , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Male , Microglia/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
12.
Am J Physiol Cell Physiol ; 311(5): C720-C734, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27488665

ABSTRACT

SMCTs move several important fuel molecules that are involved in lipid, carbohydrate, and amino acid metabolism, but their regulation has been poorly studied. Insulin controls the translocation of several solutes that are involved in energetic cellular metabolism, including glucose. We studied the effect of insulin on the function of human SMCT1 expressed in Xenopus oocytes. The addition of insulin reduced α-keto-isocaproate (KIC)-dependent 22Na+ uptake by 29%. Consistent with this result, the coinjection of SMCT1 with SGK1 cRNA decreased the KIC-dependent 22Na+ uptake by 34%. The reduction of SMCT1 activity by SGK1 depends on its kinase activity, and it was observed that the coinjection of SMCT1 with S442D-SGK1 (a constitutively active mutant) decreased the KIC-dependent 22Na+ uptake by 50%. In contrast, an SMCT1 coinjection with K127M-SGK1 (an inactive mutant) had no effect on the KIC-dependent Na+ uptake. The decreasing SMCT1 function by insulin or SGK1 was corroborated by measuring [1-14C]acetate uptake and the electric currents of SMCT1-injected oocytes. Previously, we found that SMCT2/Slc5a12-mRNA, but not SMCT1/Slc5a8-mRNA, is present in zebrafish pancreas (by in situ hybridization); however, SLC5a8 gene silencing was associated with the development of human pancreatic cancer. We confirmed that the mRNA and protein of both transporters were present in rat pancreas using RT-PCR with specific primers, Western blot analysis, and immunohistochemistry. Additionally, significant propionate-dependent 22Na+ uptake occurred in pancreatic islets and was reduced by insulin treatment. Our data indicate that human SMCT1 is regulated by insulin and SGK1 and that both SMCTs are present in the mammalian pancreas.


Subject(s)
Immediate-Early Proteins/metabolism , Insulin/metabolism , Monocarboxylic Acid Transporters/metabolism , Protein Serine-Threonine Kinases/metabolism , Sodium/metabolism , Animals , DNA, Complementary/metabolism , Humans , Male , Oocytes/metabolism , Pancreas/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Xenopus laevis/metabolism , Zebrafish/metabolism
13.
Genet Mol Res ; 12(3): 3735-41, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24085434

ABSTRACT

The aim of this study was to identify differentially expressed genes (DEGs) in renal medullary hypertension and reveal their pathogenic mechanisms. We downloaded the gene expression profile of GSE28360 from the Gene Expression Omnibus database. The profile included 14 samples (5 normal and 9 hypertension). The DEGs in normal and disease samples were distinguished with a false-discovery rate threshold of <0.05 and a fold-change value of >2 or <-2. We put the selected genes into the online program String 8.3 to obtain the protein-protein interaction network and selected the hub proteins. These hub proteins were then placed in the PANTHER database to determine hub protein-related pathways and explain their functions. Finally, we cleared up the single-nucleotide polymorphisms (SNPs) of the hub genes via combing with the National Center for Biotechnology SNP database. A total of 13 genes were identified as DEGs between normal and disease samples. Five selected hub proteins, B-cell translocation gene 2 (BTG2), FBJ murine osteosarcoma viral oncogene homolog (FOS), nuclear receptor subfamily 4, group A, member 1 (NR4A1), NR4A member 2 (NR4A2), and NR4A member 3 (NR4A3), were mainly related to angiogenesis and B-cell activation. After SNP analysis, 103, 103, 595, 150, and 493 SNPs were found to correspond to BTG2, FOS, NR4A1, NR4A2, and NR4A3, respectively. Our results suggest that pathways of angiogenesis and B-cell activation may involve in the progression of renal medulla hypertension.


Subject(s)
B-Lymphocytes/cytology , Hypertension, Renal/genetics , Lymphocyte Activation , Angiogenesis Inducing Agents/metabolism , Blood Pressure/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Microarray Analysis , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Transcriptome , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
14.
PLoS One ; 8(3): e57630, 2013.
Article in English | MEDLINE | ID: mdl-23472095

ABSTRACT

The serum- and glucocorticoid-regulated protein kinase (SGK) is an AGC kinase involved in signal cascades regulated by glucocorticoid hormones and serum in mammals. The Saccharomyces cerevisiae ypk1 and ypk2 genes were identified as SGK homologues and Ypk1 was shown to regulate the balance of sphingolipids between the inner and outer plasma membrane. This investigation characterized the Aspergillus nidulans YPK1 homologue, YpkA, representing the first filamentous fungal YPK1 homologue. Two conditional mutant strains were constructed by replacing the endogenous ypk1 promoter with two different regulatable promoters, alcA (from the alcohol dehydrogenase gene) and niiA (from the nitrate reductase gene). Both constructs confirmed that ypkA was an essential gene in A. nidulans. Repression of ypkA caused decreased radial growth, a delay in conidial germination, deficient polar axis establishment, intense branching during late stages of growth, a lack of asexual spores, and a terminal phenotype. Membrane lipid polarization, endocytosis, eisosomes and vacuolar distribution were also affected by ypkA repression, suggesting that YpkA plays a role in hyphal morphogenesis via coordinating the delivery of cell membrane and wall constituents to the hyphal apex. The A. nidulans Pkh1 homologue pkhA was also shown to be an essential gene, and preliminary genetic analysis suggested that the ypkA gene is not directly downstream of pkhA or epistatic to pkhA, rather, ypkA and pkhA are genetically independent or in parallel. BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase, which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phytoceramide. When barA was absent, ypkA repression was lethal to the cell. Therefore, there appears to be a genetic interaction between ypkA, barA, and the sphingolipid synthesis. Transcriptional profiling of ypkA overexpression and down-regulation revealed several putative YpkA targets associated with the observed phenotypes.


Subject(s)
Aspergillus nidulans/metabolism , Fungal Proteins/metabolism , Immediate-Early Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism , Acyl Coenzyme A/metabolism , Aspergillus nidulans/genetics , Catalysis , Cell Membrane/metabolism , Endocytosis , Fungal Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/metabolism , Multigene Family , Mutation , Phenotype , Protein Serine-Threonine Kinases/genetics , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Spores, Fungal/metabolism
15.
J Virol ; 87(5): 2639-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23255797

ABSTRACT

Immediate-early 3 (IE3) gene products are required to activate early (E)-stage gene expression of murine cytomegaloviruses (MCMV). The first early gene activated by IE3 is the M112-113 gene (also called E1), although a complete understanding of the activation mechanism is still lacking. In this paper, we identify a 10-bp cis-regulating motif upstream of the M112-113 TATA box as important for IE3 activation of M112-113 expression. Results from DNA affinity assays and chromatin immunoprecipitation assays show that the association of IE3 with the M112-113 gene promoter was eliminated by deletion of the 10-bp DNA sequence, now named IE3AM (for IE3 activating motif). In addition, IE3 interacts with TATA box binding protein (TBP), a core protein of TFIID (transcription initiation) complexes. Finally, we created an IE3AM-deleted MCMV (MCMVdIE3AM) using a bacterial artificial chromosome system. The mutant virus can still replicate in NIH 3T3 cells but at a significantly lower level. The defectiveness of the MCMVdIE3AM infection can be rescued in an M112-113-complemented cell line. Our results suggest that the interactions of IE3 with IE3AM and with TBP stabilize the TFIID complex at the M112-113 promoter such that M112-113 gene expression can be activated and/or enhanced.


Subject(s)
Gene Expression Regulation, Viral , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Muromegalovirus/physiology , Promoter Regions, Genetic , Viral Proteins/genetics , Virus Replication , Animals , Cell Line , DNA, Viral/genetics , DNA, Viral/metabolism , Gene Expression , Herpesviridae Infections/virology , Mice , Muromegalovirus/genetics , Muromegalovirus/metabolism , NIH 3T3 Cells , Sequence Deletion , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Viral Proteins/metabolism
16.
J Biol Chem ; 287(19): 15622-34, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22416134

ABSTRACT

The Kaposi sarcoma-associated herpesvirus (KSHV; or human herpesvirus-8)-encoded protein called K-bZIP (also named K8) was found to be multifunctional. In this study, we discovered that K-bZIP interacts with histone deacetylase (HDAC) 1/2 in 12-O-tetradecanoylphorbol-13-acetate-stimulated BCBL-1 lymphocyte cells. K-bZIP appears to repress HDAC activity through this interaction, which we determined to be independent of K-bZIP SUMOylation. We dissected the domains of K-bZIP and found that the leucine zipper (LZ) domain is essential for the interaction of K-bZIP and HDAC. In addition, we constructed a KSHV bacterial artificial chromosome (BAC) with LZ domain-deleted K-bZIP (KSHVdLZ) and transfected this mutated KSHV BAC DNA into HEK 293T cells. As a result, it was consistently found that K-bZIP without its LZ domain failed to interact with HDAC2. We also showed that the interaction between K-bZIP and HDAC is necessary for the inhibition of the lytic gene promoters (ORF50 and OriLyt) of KSHV by K-bZIP. Furthermore, we found that the LZ domain is also important for the interaction of K-bZIP with the promoters of ORF50 and OriLyt. Most interestingly, although it was found to have suppressive effects on the promoters of ORF50 and OriLyt, KSHVdLZ replicates at a significantly lower level than its BAC-derived revertant (KSHVdLZRev) or KSHVWT (BAC36) in HEK 293T cells. The defectiveness of KSHVdLZ replication can be partially rescued by siRNA against HDAC2. Our results suggest that the function of K-bZIP interaction with HDAC is two-layered. 1) K-bZIP inhibits HDAC activity generally so that KSHVdLZ replicates at a lower level than does KSHVWT. 2) K-bZIP can recruit HDAC to the promoters of OriLyt and ORF50 through interaction with HDAC for K-bZIP to have a temporary repressive effect on the two promoters.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Herpesvirus 8, Human/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Repressor Proteins/metabolism , Viral Proteins/metabolism , Virus Replication , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites/genetics , Blotting, Western , Cell Line, Tumor , DNA Replication , HEK293 Cells , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/physiology , Histone Deacetylase 1/genetics , Histone Deacetylase 2/genetics , Host-Pathogen Interactions , Humans , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Leucine Zippers/genetics , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/virology , Mutation , Promoter Regions, Genetic/genetics , Protein Binding , RNA Interference , Repressor Proteins/genetics , Sumoylation , Trans-Activators/genetics , Trans-Activators/metabolism , Viral Proteins/genetics
17.
J Renin Angiotensin Aldosterone Syst ; 13(1): 56-66, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21987533

ABSTRACT

Spironolactone (SPR), a mineralocorticoid receptor blocker, diminishes hyperglycemia-induced reduction in glucose-6-phosphate dehydrogenase (G6PD) activity, improving oxidative stress damage. This study investigated whether SPR ameliorates nephropathy by increasing G6PD activity and reducing oxidative stress in spontaneously hypertensive diabetic rats (SHRs). The streptozotocin-induced diabetic rats received or not SPR 50 mg/kg per day, for eight weeks. A human mesangial cell line was cultured in normal or high glucose conditions, with or without SPR, for 24 h. Plasma glucose levels and systolic blood pressure were unaltered by diabetes or by SPR treatment. Albuminuria, fibronectin expression, 8-OHdG urinary levels, lipid peroxidation and p47phox expression were higher in the diabetic rats compared with the control and were reduced by SPR. The antioxidant GSH/GSSG ratio was reduced in the diabetic rats and the treatment reestablished it. Diabetes-induced SGK1 up-regulation was inhibited by SPR. Reactive oxygen species (ROS) and superoxide production induced by NADPH oxidase were increased by hyperglycemia and high glucose, in vivo and in vitro, respectively, and were reduced with SPR. Hyperglycemia and high glucose decreased G6PD activity, which was restored with SPR. These results suggest that SPR ameliorates nephropathy in diabetic SHRs by restoring G6PD activity and diminishes oxidative stress without affecting glycaemia and blood pressure.


Subject(s)
Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/enzymology , Glucosephosphate Dehydrogenase/metabolism , Oxidative Stress , Spironolactone/therapeutic use , Animals , Antioxidants/metabolism , Biomarkers/metabolism , DNA Damage , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/pathology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glutathione Disulfide/metabolism , Humans , Immediate-Early Proteins/metabolism , Kidney Cortex/drug effects , Kidney Cortex/enzymology , Kidney Cortex/pathology , Lipid Peroxidation/drug effects , Mesangial Cells/drug effects , Mesangial Cells/enzymology , Mesangial Cells/pathology , Mineralocorticoid Receptor Antagonists/pharmacology , Mineralocorticoid Receptor Antagonists/therapeutic use , Models, Biological , NADP/metabolism , NADPH Oxidases/metabolism , Oxidants/metabolism , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/metabolism , Rats , Rats, Inbred SHR , Spironolactone/pharmacology , Superoxides/metabolism , Up-Regulation/drug effects
18.
Phytother Res ; 26(4): 535-40, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21915933

ABSTRACT

The antiherpes effects of the crude extract obtained from Ilex paraguariensis leaves (yerba mate) and their purified fractions were investigated. The most active fraction was selected and assayed to determine the viral multiplication steps upon which it acted. In order to detect the major components of this fraction, thin layer chromatography (TLC) analysis was performed. The antiviral activity was evaluated against HSV-1 and HSV-2 by a viral plaque number reduction assay (IC(50) ) and the cytotoxicity by a MTT assay (CC(50) ). According to the obtained results, all tested samples showed antiherpes activity at noncytotoxic concentrations, and the ethyl acetate fraction was the most active (SI = CC(50) /IC(50) = 188.7 and 264.7 for HSV-1 and HSV-2, respectively). The results also demonstrated that this fraction exerts antiviral activity by the reduction of viral infectivity, the inhibition of virus entry into cells and cell-to-cell virus spread, as well as by the impaired levels of ICP27, ICP4, gD and gE proteins of HSV-1. The TLC analysis showed that this fraction contains monodesmosidic triterpenoid saponins, matesaponin-1 (a bidesmosidic one), caffeic and chlorogenic acids and rutin, which suggests that they could act synergistically and be responsible for the detected antiherpes activity.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Ilex paraguariensis/chemistry , Virus Replication/drug effects , Acetates/chemistry , Animals , Antiviral Agents/isolation & purification , Cell Survival , Chlorocebus aethiops , Chromatography, Thin Layer , Herpesvirus 1, Human/physiology , Herpesvirus 2, Human/physiology , Immediate-Early Proteins/metabolism , Inhibitory Concentration 50 , Plant Extracts/pharmacology , Plant Leaves/chemistry , Rutin/isolation & purification , Saponins/isolation & purification , Vero Cells , Viral Plaque Assay
19.
J Am Soc Nephrol ; 22(9): 1707-19, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21852580

ABSTRACT

Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.


Subject(s)
Aldosterone/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Immediate-Early Proteins/metabolism , Kidney Tubules, Distal/enzymology , Protein Serine-Threonine Kinases/metabolism , Sodium Chloride Symporters/metabolism , Ubiquitin-Protein Ligases/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Down-Regulation , HEK293 Cells , Humans , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Phosphorylation , Signal Transduction , Ubiquitination , Xenopus Proteins , Xenopus laevis
20.
J Gen Virol ; 92(Pt 9): 2006-2019, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21632568

ABSTRACT

Cytomegalovirus (CMV) major immediate-early protein 1 (IE1) has multiple functions and is important for efficient viral infection. As does its counterpart in human CMV, murine CMV (MCMV) IE1 also functions as a disruptor of mouse-cell nuclear domain 10 (ND10), where many different gene-regulation proteins congregate. It still remains unclear how MCMV IE1 disperses ND10 and whether this dispersion could have any effect on viral replication. MCMV IE1 is 595 aa long and has multiple functional domains that have not yet been fully analysed. In this study, we dissected the IE1 molecule by truncation and/or deletion and found that the H2B homology domain (amino acid sequence NDIFERI) is required for the dispersion of ND10 by IE1. Furthermore, we made additional deletions and point mutations and found that the minimal truncation in the H2B homology domain required for IE1 to lose the ability to disperse ND10 is just 3 aa (IFE). Surprisingly, the mutated IE1 still interacted with PML and co-localized with ND10 but failed to disperse ND10. This suggests that binding to ND10 key protein is essential to, but not sufficient for, the dispersal of ND10, and that some other unknown mechanism must be involved in this biological procedure. Finally, we generated MCMV with IFE-deleted IE1 (MCMVdlIFE) and its revertant (MCMVIFERQ). Although MCMVdlIFE lost the ability to disperse ND10, plaque assays and viral gene production assays showed that the deletion of IFE did not increase viral replication in cell culture. We conclude that the dispersion of ND10 appears not to be important for MCMV replication in a mouse-cell culture.


Subject(s)
Antigens, Nuclear/metabolism , Immediate-Early Proteins/metabolism , Muromegalovirus/physiology , Virus Replication , Animals , Cell Line , Immediate-Early Proteins/genetics , Mice , Point Mutation , Protein Binding , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL