Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 667
Filter
1.
Cell Commun Signal ; 22(1): 347, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943141

ABSTRACT

PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.


Subject(s)
Immune System Diseases , RNA, Small Interfering , Humans , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Animals , Immune System Diseases/genetics , Immune System Diseases/metabolism , Piwi-Interacting RNA
3.
JAMA Pediatr ; 178(7): 645-646, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38767875

ABSTRACT

This Viewpoint reviews the history and current state of gene therapy for inborn errors of immunity.


Subject(s)
Genetic Therapy , Immune System Diseases , Humans , Genetic Therapy/methods , Immune System Diseases/genetics
4.
World J Pediatr ; 20(5): 444-450, 2024 05.
Article in English | MEDLINE | ID: mdl-38733460

ABSTRACT

BACKGROUND: ELF4 deficiency has been recently recognized as a novel disorder within the spectrum of inborn errors of immunity (IEIs), specifically categorized as a "disease of immune dysregulation." Cases of this condition, reported by our team and others, are very limited worldwide. As such, our current knowledge of this new disease remains preliminary. This review aims to provide a brief overview of the clinical manifestations, pathogenesis, and treatment strategies for this novel IEI. DATA SOURCES: A comprehensive review was conducted after an extensive literature search in the PubMed/Medline database and websites concerning transcriptional factor ELF4 and reports concerning patients with ELF4 deficiency. Our search strategy was "ELF4 OR ETS-related transcription factor Elf-4 OR EL4-like factor 4 OR myeloid Elf-1-like factor" as of the time of manuscript submission. RESULTS: The current signature manifestations of ELF4 deficiency disorder are recurrent and prolonged oral ulcer, abdominal pain, and diarrhea in pediatric males. In some cases, immunodeficiency and autoimmunity can also be prominent. Targeted Sanger sequencing or whole exome sequencing can be used to detect variation in ELF4 gene. Western blotting for ELF4 expression of the patient's cells can confirm the pathogenic effect of the variant. To fully confirm the pathogenicity of the variant, further functional test is strongly advised. Glucocorticoid and biologics are the mainstream management of ELF4 deficiency disorder. CONCLUSIONS: Pediatric males presenting with recurring ulcerations in digestive tract epithelium with or without recurrent fever should be suspected of DEX. When atypical presentations are prominent, variations in ELF4 gene should be carefully evaluated functionally due to the complex nature of ELF4 function. Experience of treating DEX includes use of glucocorticoid and biologics and more precise treatment needs more patients to identify and further mechanistic study.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Proto-Oncogene Proteins c-ets/genetics , Transcription Factors/genetics , Transcription Factors/immunology , Immune System Diseases/genetics
5.
Brain Behav Immun ; 119: 767-780, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38677625

ABSTRACT

The co-occurrence and familial clustering of neurodevelopmental disorders and immune disorders suggest shared genetic risk factors. Based on genome-wide association summary statistics from five neurodevelopmental disorders and four immune disorders, we conducted genome-wide, local genetic correlation and polygenic overlap analysis. We further performed a cross-trait GWAS meta-analysis. Pleotropic loci shared between the two categories of diseases were mapped to candidate genes using multiple algorithms and approaches. Significant genetic correlations were observed between neurodevelopmental disorders and immune disorders, including both positive and negative correlations. Neurodevelopmental disorders exhibited higher polygenicity compared to immune disorders. Around 50%-90% of genetic variants of the immune disorders were shared with neurodevelopmental disorders. The cross-trait meta-analysis revealed 154 genome-wide significant loci, including 8 novel pleiotropic loci. Significant associations were observed for 30 loci with both types of diseases. Pathway analysis on the candidate genes at these loci revealed common pathways shared by the two types of diseases, including neural signaling, inflammatory response, and PI3K-Akt signaling pathway. In addition, 26 of the 30 lead SNPs were associated with blood cell traits. Neurodevelopmental disorders exhibit complex polygenic architecture, with a subset of individuals being at a heightened genetic risk for both neurodevelopmental and immune disorders. The identification of pleiotropic loci has important implications for exploring opportunities for drug repurposing, enabling more accurate patient stratification, and advancing genomics-informed precision in the medical field of neurodevelopmental disorders.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Immune System Diseases , Multifactorial Inheritance , Neurodevelopmental Disorders , Polymorphism, Single Nucleotide , Humans , Neurodevelopmental Disorders/genetics , Immune System Diseases/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Multifactorial Inheritance/genetics
6.
Cytokine ; 179: 156585, 2024 07.
Article in English | MEDLINE | ID: mdl-38579428

ABSTRACT

The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.


Subject(s)
Autoimmune Diseases , Cell Differentiation , RNA, Long Noncoding , T-Lymphocytes, Regulatory , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/immunology , T-Lymphocytes, Regulatory/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Cell Differentiation/immunology , Cell Differentiation/genetics , Animals , Th17 Cells/immunology , Neoplasms/immunology , Neoplasms/genetics , Immune System Diseases/immunology , Immune System Diseases/genetics
7.
Front Immunol ; 15: 1376698, 2024.
Article in English | MEDLINE | ID: mdl-38650934

ABSTRACT

Background: Migraine has an increased prevalence in several immune disorders, but genetic cause-effect relationships remain unclear. Mendelian randomization (MR) was used in this study to explore whether immune diseases are causally associated with migraine and its subtypes. Methods: We conducted a two-sample bidirectional multivariate Mendelian randomization study. Single-nucleotide polymorphisms (SNP) for six immune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes mellitus (T1D), allergic rhinitis (AR), asthma and psoriasis, were used as genetic instrumental variables. Summary statistics for migraine were obtained from 3 databases: the International Headache Genetics Consortium (IHGC), UK Biobank, and FinnGen study. MR analyses were performed per outcome database for each exposure and subsequently meta-analyzed. Reverse MR analysis was performed to determine whether migraine were risk factors for immune diseases. In addition, we conducted a genetic correlation to identify shared genetic variants for these two associations. Results: No significant causal relationship was found between immune diseases and migraine and its subtypes. These results were robust with a series of sensitivity analyses. Using the linkage disequilibrium score regression method (LDSC), we detected no genetic correlation between migraine and immune diseases. Conclusion: The evidence from our study does not support a causal relationship between immune diseases and migraine. The mechanisms underlying the frequent comorbidity of migraine and several immune diseases need to be further elucidated.


Subject(s)
Genetic Predisposition to Disease , Mendelian Randomization Analysis , Migraine Disorders , Polymorphism, Single Nucleotide , Humans , Migraine Disorders/genetics , Migraine Disorders/epidemiology , Immune System Diseases/genetics , Immune System Diseases/epidemiology , Genome-Wide Association Study , Linkage Disequilibrium , Risk Factors
8.
Genome Biol ; 25(1): 42, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38308274

ABSTRACT

BACKGROUND: Drug targets with genetic evidence are expected to increase clinical success by at least twofold. Yet, translating disease-associated genetic variants into functional knowledge remains a fundamental challenge of drug discovery. A key issue is that the vast majority of complex disease associations cannot be cleanly mapped to a gene. Immune disease-associated variants are enriched within regulatory elements found in T-cell-specific open chromatin regions. RESULTS: To identify genes and molecular programs modulated by these regulatory elements, we develop a CRISPRi-based single-cell functional screening approach in primary human T cells. Our pipeline enables the interrogation of transcriptomic changes induced by the perturbation of regulatory elements at scale. We first optimize an efficient CRISPRi protocol in primary CD4+ T cells via CROPseq vectors. Subsequently, we perform a screen targeting 45 non-coding regulatory elements and 35 transcription start sites and profile approximately 250,000 T -cell single-cell transcriptomes. We develop a bespoke analytical pipeline for element-to-gene (E2G) mapping and demonstrate that our method can identify both previously annotated and novel E2G links. Lastly, we integrate genetic association data for immune-related traits and demonstrate how our platform can aid in the identification of effector genes for GWAS loci. CONCLUSIONS: We describe "primary T cell crisprQTL" - a scalable, single-cell functional genomics approach for mapping regulatory elements to genes in primary human T cells. We show how this framework can facilitate the interrogation of immune disease GWAS hits and propose that the combination of experimental and QTL-based techniques is likely to address the variant-to-function problem.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Immune System Diseases , Humans , T-Lymphocytes , Regulatory Sequences, Nucleic Acid , Chromatin/genetics , Immune System Diseases/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
10.
J Clin Immunol ; 44(3): 61, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363452

ABSTRACT

Human inborn errors of immunity (IEI) comprise a group of diseases resulting from molecular variants that compromise innate and adaptive immunity. Clinical features of IEI patients are dominated by susceptibility to a spectrum of infectious diseases, as well as autoimmune, autoinflammatory, allergic, and malignant phenotypes that usually appear in childhood, which is when the diagnosis is typically made. However, some IEI patients are identified in adulthood due to symptomatic delay of the disease or other reasons that prevent the request for a molecular study. The application of next-generation sequencing (NGS) as a diagnostic technique has given rise to an ever-increasing identification of IEI-monogenic causes, thus improving the diagnostic yield and facilitating the possibility of personalized treatment. This work was a retrospective study of 173 adults with IEI suspicion that were sequenced between 2005 and 2023. Sanger, targeted gene-panel, and whole exome sequencing were used for molecular diagnosis. Disease-causing variants were identified in 44 of 173 (25.43%) patients. The clinical phenotype of these 44 patients was mostly related to infection susceptibility (63.64%). An enrichment of immune dysregulation diseases was found when cohorts with molecular diagnosis were compared to those without. Immune dysregulation disorders, group 4 from the International Union of Immunological Societies Expert Committee (IUIS), were the most prevalent among these adult patients. Immune dysregulation as a new item in the Jeffrey Model Foundation warning signs for adults significantly increases the sensitivity for the identification of patients with an IEI-producing molecular defect.


Subject(s)
Immune System Diseases , Adult , Humans , Retrospective Studies , Immune System Diseases/diagnosis , Immune System Diseases/genetics , Adaptive Immunity , High-Throughput Nucleotide Sequencing , Patients
11.
J Allergy Clin Immunol ; 153(3): 595-605, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040040

ABSTRACT

In the past 2 decades, a significant number of studies have been published describing the molecular and clinical aspects of immune dysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome. These studies have refined our knowledge of this rare yet prototypic genetic autoimmune disease, advancing the diagnosis, broadening the clinical spectrum, and improving our understanding of the underlying immunologic mechanisms. Despite these advances, Forkhead box P3 mutations have devastating consequences, and treating patients with IPEX syndrome remains a challenge, even with safer strategies for hematopoietic stem cell transplantation and gene therapy becoming a promising reality. The aim of this review was to highlight novel features of the disease to further advance awareness and improve the diagnosis and treatment of patients with IPEX syndrome.


Subject(s)
Diabetes Mellitus, Type 1/congenital , Genetic Diseases, X-Linked , Immune System Diseases , Immune System Diseases/congenital , Intestinal Diseases , Polyendocrinopathies, Autoimmune , Humans , T-Lymphocytes, Regulatory , Diarrhea , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Intestinal Diseases/diagnosis , Intestinal Diseases/genetics , Immune System Diseases/diagnosis , Immune System Diseases/genetics , Immune System Diseases/therapy , Mutation , Forkhead Transcription Factors/genetics , Polyendocrinopathies, Autoimmune/diagnosis , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/therapy
12.
J Allergy Clin Immunol ; 153(1): 335-340.e1, 2024 01.
Article in English | MEDLINE | ID: mdl-37802474

ABSTRACT

BACKGROUND: Racial and ethnic disparities in life expectancy in the United States have been widely documented. To date, there remains a paucity of similar data in patients with inborn errors of immunity (IEIs). OBJECTIVE: Our aim was to examine racial and ethnic differences in mortality due to an IEI in the United States. METHODS: We analyzed National Center for Health Statistics national mortality data from 2003 to 2018. We quantified age-adjusted death rate and age-specific death rate as a result of an IEI for each major racial and ethnic group in the United States and examined the association of race and ethnicity with death at a younger age. RESULTS: From 2003 to 2018, IEIs were reported as the underlying or contributing cause of death in 14,970 individuals nationwide. The age-adjusted death rate was highest among Black patients (4.25 per 1,000,000 person years), compared with 2.01, 1.71, 1.50, and 0.92 per 1,000,000 person years for White, American Indian/Alaska Native, Hispanic, and Asian/Pacific Islander patients, respectively. The odds of death before age 65 years were greatest among Black patients (odds ratio [OR] = 5.15 [95% CI = 4.61-5.76]), followed by American Indian/Alaska Native patients (OR = 3.58 [95% CI = 2.30-5.82]), compared with White patients. The odds of death before age 24 years were greater among Hispanic patients than among non-Hispanic patients (OR = 3.60 [95% CI = 3.08-4.18]). CONCLUSION: Our study highlights racial and ethnic disparities in mortality due to an IEI and the urgent need to further identify and systematically remove barriers in care for historically marginalized patients with IEIs.


Subject(s)
Ethnicity , Health Status Disparities , Immune System Diseases , Racial Groups , Humans , United States/epidemiology , Immune System Diseases/genetics , Immune System Diseases/mortality
13.
Immunol Rev ; 322(1): 244-258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37994657

ABSTRACT

FOXP3 gene is a key transcription factor driving immune tolerance and its deficiency causes immune dysregulation, polyendocrinopathy, enteropathy X-linked syndrome (IPEX), a prototypic primary immune regulatory disorder (PIRD) with defective regulatory T (Treg) cells. Although life-threatening, the increased awareness and early diagnosis have contributed to improved control of the disease. IPEX currently comprises a broad spectrum of clinical autoimmune manifestations from severe early onset organ involvement to moderate, recurrent manifestations. This review focuses on the mechanistic advancements that, since the IPEX discovery in early 2000, have informed the role of the human FOXP3+ Treg cells in controlling peripheral tolerance and shaping the overall immune landscape of IPEX patients and carrier mothers, contributing to defining new treatments.


Subject(s)
Genetic Diseases, X-Linked , Immune System Diseases , Intestinal Diseases , Polyendocrinopathies, Autoimmune , Humans , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , T-Lymphocytes, Regulatory , Intestinal Diseases/genetics , Syndrome , Forkhead Transcription Factors/genetics , Mutation , Polyendocrinopathies, Autoimmune/genetics , Immune System Diseases/genetics , Immune System Diseases/therapy
14.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139173

ABSTRACT

CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation.


Subject(s)
Basigin , Neoplasms , Animals , Humans , Mice , Basigin/genetics , Basigin/metabolism , Glycolysis , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA, Small Interfering/metabolism , T-Lymphocytes , Immune System Diseases/genetics , Immune System Diseases/metabolism
15.
J Clin Immunol ; 44(1): 11, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38129332

ABSTRACT

Four in five children with inborn errors of immunity globally remain undiagnosed. These figures are disproportionally high in low-income countries like Ethiopia. Apart from the inclusion of basic overviews of these disorders in to postgraduate pediatric curricula, little effort has been placed in to establishing clinical immunology training programs. This report summarizes the existing epidemiology of inborn errors of immunity in Ethiopia, unique presentations in Ethiopian children, challenges faced in diagnosing them, and efforts to improve their management.


Subject(s)
Genetic Diseases, Inborn , Immune System Diseases , Child , Humans , Ethiopia/epidemiology , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/immunology , Immune System Diseases/epidemiology , Immune System Diseases/genetics
16.
Rheum Dis Clin North Am ; 49(4): 825-840, 2023 11.
Article in English | MEDLINE | ID: mdl-37821198

ABSTRACT

Regulatory T cells (Tregs) are critical for enforcing peripheral tolerance. Monogenic "Tregopathies" affecting Treg development, stability, and/or function commonly present with polyautoimmunity, atopic disease, and infection. While autoimmune manifestations may present in early childhood, as more disorders are characterized, conditions with later onset have been identified. Treg numbers in the blood may be decreased in Tregopathies, but this is not always the case, and genetic testing should be pursued when there is high clinical suspicion. Currently, hematopoietic cell transplantation is the only curative treatment, but gene therapies are in development, and small molecule inhibitors/biologics may also be used.


Subject(s)
Genetic Diseases, X-Linked , Immune System Diseases , Child, Preschool , Humans , T-Lymphocytes, Regulatory , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/therapy , Immune System Diseases/genetics , Immune System Diseases/therapy
18.
WIREs Mech Dis ; 15(6): e1627, 2023.
Article in English | MEDLINE | ID: mdl-37565573

ABSTRACT

Transcription factors are crucial to regulate gene expression in immune cells and in other cell types. In lymphocytes, there are a large number of different transcription factors that are known to contribute to cell differentiation and the balance between quiescence and activation. One such transcription factor is E26 oncogene homolog 1 (Ets1). Ets1 expression is high in quiescent B and T lymphocytes and its levels are decreased upon activation. The human ETS1 gene has been identified as a susceptibility locus for many autoimmune and inflammatory diseases. In accord with this, gene knockout of Ets1 in mice leads to development of a lupus-like autoimmune disease, with enhanced activation and differentiation of both B cells and T cells. Prior reviews have summarized functional roles for Ets1 based on studies of Ets1 knockout mice. In recent years, numerous additional studies have been published that further validate ETS1 as a susceptibility locus for human diseases where immune dysregulation plays a causative role. In this update, new information that further links Ets1 to human autoimmune diseases is organized and collated to serve as a resource. This update also describes recent studies that seek to understand molecularly how Ets1 regulates immune cell activation, either using human cells and tissues or mouse models. This resource is expected to be useful to investigators seeking to understand how Ets1 may regulate the human immune response, particularly in terms of its roles in autoimmunity and inflammation. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Molecular and Cellular Physiology.


Subject(s)
Autoimmune Diseases , Immune System Diseases , Mice , Humans , Animals , Transcription Factors/genetics , Proto-Oncogene Protein c-ets-1/genetics , Mice, Knockout , Oncogenes , Autoimmune Diseases/genetics , Immune System Diseases/genetics
19.
Front Immunol ; 14: 1178582, 2023.
Article in English | MEDLINE | ID: mdl-37325673

ABSTRACT

Inborn errors of immunity (IEI) include a variety of heterogeneous genetic disorders in which defects in the immune system lead to an increased susceptibility to infections and other complications. Accurate, prompt diagnosis of IEI is crucial for treatment plan and prognostication. In this study, clinical utility of clinical exome sequencing (CES) for diagnosis of IEI was evaluated. For 37 Korean patients with suspected symptoms, signs, or laboratory abnormalities associated with IEI, CES that covers 4,894 genes including genes related to IEI was performed. Their clinical diagnosis, clinical characteristics, family history of infection, and laboratory results, as well as detected variants, were reviewed. With CES, genetic diagnosis of IEI was made in 15 out of 37 patients (40.5%). Seventeen pathogenic variants were detected from IEI-related genes, BTK, UNC13D, STAT3, IL2RG, IL10RA, NRAS, SH2D1A, GATA2, TET2, PRF1, and UBA1, of which four variants were previously unreported. Among them, somatic causative variants were identified from GATA2, TET2, and UBA1. In addition, we identified two patients incidentally diagnosed IEI by CES, which was performed to diagnose other diseases of patients with unrecognized IEI. Taken together, these results demonstrate the utility of CES for the diagnosis of IEI, which contributes to accurate diagnosis and proper treatments.


Subject(s)
Asian People , Immune System Diseases , Humans , Exome Sequencing , Immune System Diseases/genetics
20.
Nat Commun ; 14(1): 2743, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173304

ABSTRACT

Genome-wide association studies (GWAS) have mapped thousands of susceptibility loci associated with immune-mediated diseases. To assess the extent of the genetic sharing across nine immune-mediated diseases we apply genomic structural equation modelling to GWAS data from European populations. We identify three disease groups: gastrointestinal tract diseases, rheumatic and systemic diseases, and allergic diseases. Although loci associated with the disease groups are highly specific, they converge on perturbing the same pathways. Finally, we test for colocalization between loci and single-cell eQTLs derived from peripheral blood mononuclear cells. We identify the causal route by which 46 loci predispose to three disease groups and find evidence for eight genes being candidates for drug repurposing. Taken together, here we show that different constellations of diseases have distinct patterns of genetic associations, but that associated loci converge on perturbing different nodes in T cell activation and signalling pathways.


Subject(s)
Genome-Wide Association Study , Immune System Diseases , Humans , Genetic Predisposition to Disease , Leukocytes, Mononuclear , Immune System Diseases/genetics , Genome , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...