Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.545
Filter
1.
Immunohorizons ; 8(8): 511-526, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39093310

ABSTRACT

Glycoconjugate vaccines elicit robust anti-polysaccharide Ab response by recruiting T-cell help. Multiple doses of glycoconjugate vaccine are required to induce long-lasting immunity. The characteristics of anti-polysaccharide Ab response have been reported previously. However, the effect of glycoconjugate booster immunization on anti-polysaccharide and anti-carrier protein Ab repertoire remains poorly understood. In this study, we used clinically relevant pneumococcal capsular polysaccharide type 14 (PCP14) conjugated with cross-reactive material 197 (CRM197) as a model glycoconjugate Ag (PCP14-CRM197). We performed a comprehensive sequence analysis of mouse mAbs generated against PCP14 and CRM197 following immunization with one or three doses of PCP14-CRM197. Analysis of the paired Ig H and L chain transcripts revealed that anti-PCP14 Ab repertoire is extremely restricted. The reoccurrence of five replacement mutations at identical positions in anti-polysaccharide mAbs generated from different mice provided evidence for Ag-driven selection in PCP14-specific B cells. Convergent evolution was observed wherein distinct V(D)J rearrangements resulted in identical or nearly identical CDR3 in anti-PCP14 mAbs. Abs that lacked DH encoded amino acids dominated the anti-PCP14 Ab response. In contrast, anti-CRM197 Ab response was quite diverse, with fewer mutations compared with the anti-PCP14 mAbs, suggesting that conjugation of the polysaccharide to a carrier protein interferes with the development of carrier protein-specific Ab responses. Our findings provide molecular insights into the maturation of Ab responses driven by booster doses of glycoconjugate. This has fundamental implications for the design of glycoconjugate vaccines, especially where the development of Ab response against the carrier protein is also crucial.


Subject(s)
Antibodies, Bacterial , B-Lymphocytes , Bacterial Proteins , Glycoconjugates , Animals , Mice , Glycoconjugates/immunology , B-Lymphocytes/immunology , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Vaccines, Conjugate/immunology , Vaccines, Conjugate/administration & dosage , Female , Polysaccharides, Bacterial/immunology , Pneumococcal Vaccines/immunology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/immunology , Mice, Inbred BALB C , Antigens, Bacterial/immunology , Immunization/methods , Immunization, Secondary
2.
Proc Natl Acad Sci U S A ; 121(35): e2401058121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39163333

ABSTRACT

B cell receptors (BCRs) play a crucial role in recognizing and fighting foreign antigens. High-throughput sequencing enables in-depth sampling of the BCRs repertoire after immunization. However, only a minor fraction of BCRs actively participate in any given infection. To what extent can we accurately identify antigen-specific sequences directly from BCRs repertoires? We present a computational method grounded on sequence similarity, aimed at identifying statistically significant responsive BCRs. This method leverages well-known characteristics of affinity maturation and expected diversity. We validate its effectiveness using longitudinally sampled human immune repertoire data following influenza vaccination and SARS-CoV-2 infections. We show that different lineages converge to the same responding Complementarity Determining Region 3, demonstrating convergent selection within an individual. The outcomes of this method hold promise for application in vaccine development, personalized medicine, and antibody-derived therapeutics.


Subject(s)
COVID-19 , Receptors, Antigen, B-Cell , SARS-CoV-2 , Receptors, Antigen, B-Cell/immunology , Receptors, Antigen, B-Cell/genetics , Humans , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/immunology , Influenza Vaccines/immunology , Immunization/methods , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , B-Lymphocytes/immunology , Vaccination , Influenza, Human/immunology , Influenza, Human/prevention & control , Computational Biology/methods , High-Throughput Nucleotide Sequencing
4.
JCI Insight ; 9(13)2024 May 28.
Article in English | MEDLINE | ID: mdl-38973612

ABSTRACT

Staphylococcus aureus is a major human pathogen. An effective anti-S. aureus vaccine remains elusive as the correlates of protection are ill-defined. Targeting specific T cell populations is an important strategy for improving anti-S. aureus vaccine efficacy. Potential bottlenecks that remain are S. aureus-induced immunosuppression and the impact this might have on vaccine-induced immunity. S. aureus induces IL-10, which impedes effector T cell responses, facilitating persistence during both colonization and infection. Thus, it was hypothesized that transient targeting of IL-10 might represent an innovative way to improve vaccine efficacy. In this study, IL-10 expression was elevated in the nares of persistent carriers of S. aureus, and this was associated with reduced systemic S. aureus-specific Th1 responses. This suggests that systemic responses are remodeled because of commensal exposure to S. aureus, which negatively implicates vaccine function. To provide proof of concept that targeting immunosuppressive responses during immunization may be a useful approach to improve vaccine efficacy, we immunized mice with T cell-activating vaccines in combination with IL-10-neutralizing antibodies. Blocking IL-10 during vaccination enhanced effector T cell responses and improved bacterial clearance during subsequent systemic and subcutaneous infection. Taken together, these results reveal a potentially novel strategy for improving anti-S. aureus vaccine efficacy.


Subject(s)
Interleukin-10 , Staphylococcal Infections , Staphylococcal Vaccines , Staphylococcus aureus , Interleukin-10/metabolism , Interleukin-10/immunology , Animals , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Vaccines/immunology , Mice , Staphylococcus aureus/immunology , Female , Mice, Inbred C57BL , Th1 Cells/immunology , Immunization/methods , Humans , Antibodies, Neutralizing/immunology , Vaccine Efficacy , Vaccination/methods
7.
Nat Commun ; 15(1): 5800, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987276

ABSTRACT

Enhancing influenza vaccine cross-protection is imperative to alleviate the significant public health burden of influenza. Heterologous sequential immunization may synergize diverse vaccine formulations and routes to improve vaccine potency and breadth. Here we investigate the effects of immunization strategies on the generation of cross-protective immune responses in female Balb/c mice, utilizing mRNA lipid nanoparticle (LNP) and protein-based PHC nanoparticle vaccines targeting influenza hemagglutinin. Our findings emphasize the crucial role of priming vaccination in shaping Th bias and immunodominance hierarchies. mRNA LNP prime favors Th1-leaning responses, while PHC prime elicits Th2-skewing responses. We demonstrate that cellular and mucosal immune responses are pivotal correlates of cross-protection against influenza. Notably, intranasal PHC immunization outperforms its intramuscular counterpart in inducing mucosal immunity and conferring cross-protection. Sequential mRNA LNP prime and intranasal PHC boost demonstrate optimal cross-protection against antigenically drifted and shifted influenza strains. Our study offers valuable insights into tailoring immunization strategies to optimize influenza vaccine effectiveness.


Subject(s)
Administration, Intranasal , Cross Protection , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Female , Humans , Mice , Antibodies, Viral/immunology , Cross Protection/immunology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Immunity, Mucosal/immunology , Immunization/methods , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Lipids/chemistry , Liposomes , Nanoparticles/chemistry , Nanovaccines/administration & dosage , Nanovaccines/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology , Vaccination/methods
8.
Methods Mol Biol ; 2821: 111-127, 2024.
Article in English | MEDLINE | ID: mdl-38997484

ABSTRACT

Immune stimulants (adjuvants) enhance immune system recognition to provide an effective and individualized immune response when delivered with an antigen. Synthetic cyclic deca-peptides, co-administered with a toll-like receptor targeting lipopeptide, have shown self-adjuvant properties, dramatically boosting the immune response in a murine model as a subunit peptide-based vaccine containing group A Streptococcus peptide antigens.Here, we designed a novel peptide and lipid adjuvant system for the delivery of group A Streptococcus peptide antigen and a T helper peptide epitope. Following linear peptide synthesis on 2-chlorotrityl chloride resin, the linear peptide was cleaved and head-to-tail cyclized in solution. The selective arrangement of amino acids in the deca-peptide allowed for selective conjugation of lipids and/or peptide antigens following cyclisation. Using both solution-phase peptide chemistry and copper-catalyzed azide-alkyne cycloaddition reaction were covalently (and selectively) ligated lipid and/or peptide antigens onto the cyclic deca-peptide core. Subcutaneous administration of the vaccine design to mice resulted in the generation of a large number of serum immunoglobulin (Ig) G antibodies.


Subject(s)
Adjuvants, Immunologic , Immunization , Peptides, Cyclic , Vaccines, Conjugate , Animals , Mice , Peptides, Cyclic/immunology , Peptides, Cyclic/chemistry , Vaccines, Conjugate/immunology , Vaccines, Conjugate/chemistry , Vaccines, Conjugate/administration & dosage , Immunization/methods , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/administration & dosage , Injections, Subcutaneous , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Streptococcus pyogenes/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Protein Subunit Vaccines
9.
Methods Mol Biol ; 2824: 385-395, 2024.
Article in English | MEDLINE | ID: mdl-39039425

ABSTRACT

Rift Valley fever (RVF) caused by Rift Valley fever virus (RVFV) is a major health concern for both domesticated animals and humans in certain endemic areas of Africa. With changing environmental conditions and identification of vectors capable of transmitting the virus, there is high risk of RVFV spreading into other parts of the world. Furthermore, unavailability of effective vaccines in the event of an outbreak can be a major challenge as witnessed recently in case of SARS-CoV2 pandemic. Hence, identifying potential vaccines and testing their protective efficacy in preclinical models before clinical testing is the absolute need of the hour. Here, we describe methods used to quantify virus-specific T cell responses in mice that were immunized with RVFV strains or antigens.


Subject(s)
Rift Valley fever virus , T-Lymphocytes , Viral Vaccines , Animals , Mice , T-Lymphocytes/immunology , Rift Valley fever virus/immunology , Viral Vaccines/immunology , Rift Valley Fever/immunology , Rift Valley Fever/prevention & control , Immunization/methods , Vaccination/methods , Antigens, Viral/immunology
10.
Vaccine ; 42(21): 126141, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39033080

ABSTRACT

Amblyomma sculptum is widely distributed in Brazil and is the main vector of Rickettsia rickettsii, the causative agent of the Brazilian spotted fever (BSF). Tick gut proteins play an essential role in blood feeding, digestion, and protection of gut epithelium. Therefore, many of these were investigated as potential vaccine targets for tick-control strategies. The present study aimed to select transcripts corresponding to putative immunogenic proteins in the A. sculptum gut epithelial membrane, produce recombinant proteins and evaluate them as antigens against A. sculptum infestations. Three gut proteins - AsMucin, AsAPP, and AsLAMP - and a chimeric protein (rAsChimera) based on 22 peptides containing putative B cell epitopes from seven different gut proteins were evaluated as anti-A. sculptum antigens. Mice immunizations revealed that all recombinant targets elicited humoral response with significantly increased IgG levels compared to controls. For rAsChimera, IgG levels remained significantly higher than controls up to 75 days after the end of the immunization. Challenge trials revealed that vaccination with the chimeric protein was the most effective against A. sculptum, inducing 100 % nymph mortality and reaching 80.8 % efficacy against females. The other three proteins did not induce relevant protection, as AsAPP had only 26.6 % efficacy, whereas AsMucin and AsLAMP induced no protection. These data indicate that targeting gut protein immunogenic regions may be an effective strategy for a vaccine formulation againstA. sculptum.


Subject(s)
Amblyomma , Animals , Mice , Female , Amblyomma/immunology , Immunization/methods , Membrane Proteins/immunology , Membrane Proteins/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Tick Infestations/prevention & control , Tick Infestations/immunology , Rickettsia rickettsii/immunology , Brazil , Male , Mice, Inbred BALB C , Antigens/immunology
11.
FASEB J ; 38(11): e23721, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38822662

ABSTRACT

Schistosome infection and schistosome-derived products have been implicated in the prevention and alleviation of inflammatory bowel disease by manipulating the host immune response, whereas the role of gut microbiota in this protective effect remains poorly understood. In this study, we found that the intraperitoneal immunization with Schistosoma japonicum eggs prior to dextran sulfate sodium (DSS) application significantly ameliorated the symptoms of DSS-induced acute colitis, which was characterized by higher body weight, lower disease activity index score and macroscopic inflammatory scores. We demonstrated that the immunomodulatory effects of S. japonicum eggs were accompanied by an influence on gut microbiota composition, abundance, and diversity, which increased the abundance of genus Turicibacter, family Erysipelotrichaceae, phylum Firmicutes, and decreased the abundance of genus Odoribacter, family Marinifilaceae, order Bacteroidales, class Bacteroidia, phylum Bacteroidota. In addition, Lactobacillus was identified as a biomarker that distinguishes healthy control mice from DSS-induced colitis mice. The present study revealed the importance of the gut microbiota in S. japonicum eggs exerting protective effects in an experimental ulcerative colitis (UC) model, providing an alternative strategy for the discovery of UC prevention and treatment drugs.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Schistosoma japonicum , Animals , Gastrointestinal Microbiome/drug effects , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/immunology , Mice , Schistosoma japonicum/immunology , Dextran Sulfate/toxicity , Female , Immunization/methods , Ovum , Mice, Inbred C57BL
12.
Clin Obstet Gynecol ; 67(3): 605-619, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38899806

ABSTRACT

Maternal vaccines during pregnancy offer crucial protection against infections for both the pregnant person and their newborn. Vaccines against influenza, pertussis, coronavirus disease 2019, and respiratory syncytial virus are routinely recommended by the Centers for Disease Control and Prevention to safeguard pregnant women and their infants from potentially severe complications. Administering these vaccines during pregnancy helps transfer protective antibodies from the mother to the baby, enhancing immunity during the vulnerable early months of life. Extensive research supports the safety and efficacy of maternal vaccines, with numerous studies demonstrating their protective benefits for both pregnant people and newborns.


Subject(s)
Pregnancy Complications, Infectious , Humans , Female , Pregnancy , Pregnancy Complications, Infectious/prevention & control , Infant, Newborn , COVID-19/prevention & control , Immunization/methods , Immunization/trends , Influenza Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects
13.
Immunohorizons ; 8(6): 457-463, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38922287

ABSTRACT

The underlying contribution of immune complexes in modulating adaptive immunity in mucosal tissues remains poorly understood. In this report, we examined, in mice, the proinflammatory response elicited by intranasal delivery of the biothreat agent ricin toxin (RT) in association with two toxin-neutralizing mAbs, SylH3 and PB10. We previously demonstrated that ricin-immune complexes (RICs) induce the rapid onset of high-titer toxin-neutralizing Abs that persist for months. We now demonstrate that such responses are dependent on CD4+ T cell help, because treatment of mice with an anti-CD4 mAb abrogated the onset of RT-specific Abs following intranasal RICs exposure. To define the inflammatory environment associated with RIC exposure, we collected bronchoalveolar lavage fluid (BALF) and sera from mice 6, 12, and 18 h after they had received RT or RICs by the intranasal route. A 32-plex cytometric bead array revealed an inflammatory profile elicited by RT that was dominated by IL-6 (>1500-fold increase in BALF) and secondarily by KC (CXCL1), G-CSF, GM-CSF, and MCP-1. RICs induced inflammatory profiles in both BALF and serum response that were similar to RT, albeit at markedly reduced levels. These results demonstrate that RICs retain the capacity to induce local and systemic inflammatory cytokines/chemokines that, in turn, may influence Ag sampling and presentation in the lung mucosa and draining lymph nodes. A better understanding of the fate of immune complexes following intranasal delivery has implications for the development of mucosal vaccines for biothreats and emerging infectious diseases.


Subject(s)
Administration, Intranasal , Antigen-Antibody Complex , Bronchoalveolar Lavage Fluid , Ricin , Animals , Ricin/immunology , Ricin/administration & dosage , Mice , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/chemistry , Female , Antigen-Antibody Complex/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Immunization/methods , Inflammation/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/administration & dosage , Cytokines/metabolism , CD4-Positive T-Lymphocytes/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL
14.
Curr Pharm Des ; 30(13): 1031-1047, 2024.
Article in English | MEDLINE | ID: mdl-38898820

ABSTRACT

Vaccines are one of the most important medical advancements in human history. They have been successfully used to control and limit the spread of many of the lethal diseases that have plagued us, such as smallpox and polio. Previous vaccine design methodologies were based on the model of "isolate-inactivateinject", which amounts to giving the same vaccine dose to everyone susceptible to infection. In recent years, the importance of how the host genetic background alters vaccine response necessitated the introduction of vaccinomics, which is aimed at studying the variability of vaccine efficacy by associating genetic variability and immune response to vaccination. Despite the rapid developments in variant screening, data obtained from association studies is often inconclusive and cannot be used to guide the new generation of vaccines. This review aims to compile the polymorphisms in HLA and immune system genes and examine the link with their immune response to vaccination. The compiled data can be used to guide the development of new strategies for vaccination for vulnerable groups. Overall, the highly polymorphic HLA locus had the highest correlation with vaccine response variability for most of the studied vaccines, and it was linked to variation in multiple stages of the immune response to the vaccines for both humoral and cellular immunity. Designing new vaccine technologies and immunization regiments to accommodate for this variability is an important step for reaching a vaccinomics-based approach to vaccination.


Subject(s)
Precision Medicine , Vaccines , Humans , Precision Medicine/methods , Vaccines/immunology , Vaccines/administration & dosage , HLA Antigens/immunology , HLA Antigens/genetics , Immunization/methods , Vaccination/methods
15.
J Immunol ; 213(3): 373-383, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38884660

ABSTRACT

Conventionally, immune responses are studied in the context of inflamed tissues and their corresponding draining lymph nodes (LNs). However, little is known about the effects of systemic inflammatory signals generated during local inflammation on distal tissues and nondraining LNs. Using a mouse model of cutaneous immunization, we found that systemic inflammatory stimuli triggered a rapid and selective distal response in the small intestine and the mesenteric LN (mesLN). This consisted of increased permeability of intestinal blood vessels and lymphatic drainage of bloodborne solutes into the mesLN, enhanced activation and migration of intestinal dendritic cells, as well as amplified T cell responses in the mesLNs to systemic but not orally derived Ags. Mechanistically, we found that the small intestine endothelial cells preferentially expressed molecules involved in TNF-α signaling and that TNF-α blockade markedly diminished distal intestinal responses to cutaneous immunization. Together, these findings reveal that the intestinal immune system is rapidly and selectively activated in response to inflammatory cues regardless of their origin, thus identifying an additional layer of defense and enhanced surveillance of a key barrier organ at constant risk of pathogen encounter.


Subject(s)
Immunization , Lymph Nodes , Animals , Mice , Lymph Nodes/immunology , Immunization/methods , Mice, Inbred C57BL , Cytokines/immunology , Cytokines/metabolism , Intestine, Small/immunology , Dendritic Cells/immunology , Inflammation/immunology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , T-Lymphocytes/immunology , Intestinal Mucosa/immunology
16.
Viruses ; 16(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38932158

ABSTRACT

Humans continue to be at risk from the Zika virus. Although there have been significant research advancements regarding Zika, the absence of a vaccine or approved treatment poses further challenges for healthcare providers. In this study, we developed a microparticulate Zika vaccine using an inactivated whole Zika virus as the antigen that can be administered pain-free via intranasal (IN) immunization. These microparticles (MP) were formulated using a double emulsion method developed by our lab. We explored a prime dose and two-booster-dose vaccination strategy using MPL-A® and Alhydrogel® as adjuvants to further stimulate the immune response. MPL-A® induces a Th1-mediated immune response and Alhydrogel® (alum) induces a Th2-mediated immune response. There was a high recovery yield of MPs, less than 5 µm in size, and particle charge of -19.42 ± 0.66 mV. IN immunization of Zika MP vaccine and the adjuvanted Zika MP vaccine showed a robust humoral response as indicated by several antibodies (IgA, IgM, and IgG) and several IgG subtypes (IgG1, IgG2a, and IgG3). Vaccine MP elicited a balance Th1- and Th2-mediated immune response. Immune organs, such as the spleen and lymph nodes, exhibited a significant increase in CD4+ helper and CD8+ cytotoxic T-cell cellular response in both vaccine groups. Zika MP vaccine and adjuvanted Zika MP vaccine displayed a robust memory response (CD27 and CD45R) in the spleen and lymph nodes. Adjuvanted vaccine-induced higher Zika-specific intracellular cytokines than the unadjuvanted vaccine. Our results suggest that more than one dose or multiple doses may be necessary to achieve necessary immunological responses. Compared to unvaccinated mice, the Zika vaccine MP and adjuvanted MP vaccine when administered via intranasal route demonstrated robust humoral, cellular, and memory responses. In this pre-clinical study, we established a pain-free microparticulate Zika vaccine that produced a significant immune response when administered intranasally.


Subject(s)
Administration, Intranasal , Antibodies, Viral , Viral Vaccines , Zika Virus Infection , Zika Virus , Animals , Zika Virus Infection/prevention & control , Zika Virus Infection/immunology , Zika Virus/immunology , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Female , Immunization/methods , Adjuvants, Immunologic/administration & dosage , Disease Models, Animal , Adjuvants, Vaccine/administration & dosage , Vaccination/methods , Cytokines/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology
17.
Vaccine ; 42(15): 3379-3383, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38704250

ABSTRACT

The Immunization and Vaccine-related Implementation Research Advisory Committee (IVIR-AC) is the World Health Organization's key standing advisory body to conduct an independent review of research, particularly of transmission and economic modeling analyses that estimate the impact and value of vaccines. From 26th February-1st March 2024, at its first of two semi-annual meetings, IVIR-AC provided feedback and recommendations across four sessions; this report summarizes the proceedings and recommendations from that meeting. Session topics included modeling of the impact and cost-effectiveness of the R21/Matrix-M malaria vaccine, meta-analysis of economic evaluations of vaccines, a global analysis estimating the impact of vaccination over the last 50 years, and modeling the impact of different RTS,S malaria vaccine dose schedules in seasonal settings.


Subject(s)
Advisory Committees , Malaria Vaccines , World Health Organization , Humans , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Cost-Benefit Analysis , Vaccination/methods , Malaria/prevention & control , Immunization/methods
18.
STAR Protoc ; 5(2): 103047, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38691463

ABSTRACT

The tumor-associated mucin MUC1 is overexpressed in almost all types of epithelial tumor tissues, making it an attractive target antigen for cancer immunotherapy. Here we present a protocol to prepare MUC1 glycopeptide vaccines and to evaluate immunization effects in mice. We describe steps for synthesizing glycopeptide antigen and conjugating it with carrier protein to make vaccine candidates. We then detail procedures for mice immunization, antibody response evaluation, and cellular immune response. For complete details on the use and execution of this protocol, please refer to Cai et al.1,2.


Subject(s)
Cancer Vaccines , Glycopeptides , Mucin-1 , Animals , Mucin-1/immunology , Mice , Glycopeptides/immunology , Cancer Vaccines/immunology , Immunization/methods , Female
19.
STAR Protoc ; 5(2): 103087, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38795353

ABSTRACT

Here, we present a protocol for the development of mRNA-loaded lipid nanoparticle (LNP) vaccines for target antigen sequences of interest. We describe key steps required to design and synthesize mRNA constructs, their LNP encapsulation, and mouse immunization. We then detail quality control assays to determine RNA purity, guidelines to measure RNA immunogenicity using in vitro reporter systems, and a technique to evaluate antigen-specific T cell responses following immunization.


Subject(s)
Immunization , Lipids , Nanoparticles , RNA, Messenger , Animals , Mice , Nanoparticles/chemistry , RNA, Messenger/genetics , Lipids/chemistry , Immunization/methods , Vaccines/immunology , Vaccines/chemistry , Vaccines/administration & dosage , mRNA Vaccines/immunology , Nanovaccines , Liposomes
20.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38745461

ABSTRACT

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin G , Neisseria meningitidis , SARS-CoV-2 , Animals , Mice , Immunoglobulin G/blood , Neisseria meningitidis/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Meningococcal Infections/prevention & control , Meningococcal Infections/immunology , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Vaccine/administration & dosage , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/immunology , Immunization/methods , Antibody Affinity , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Meningococcal Vaccines/immunology , Meningococcal Vaccines/administration & dosage , Immunologic Memory , Th1 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL