Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.128
Filter
1.
Front Immunol ; 15: 1406794, 2024.
Article in English | MEDLINE | ID: mdl-38953030

ABSTRACT

Introduction: Equine asthma (EA) is a common lower airway disease in horses, but whether its pathogenesis is allergic is ambiguous. Extrinsic stimuli like hay dust induce acute exacerbation of clinical signs and sustained local neutrophilic inflammation in susceptible horses. Aspergillus fumigatus is an EA stimulus, but it is unclear if it merely acts as an IgE-provoking allergen. We aimed to comprehensively analyze immunoglobulin (Ig) isotypes in EA, elucidating their binding to different A. fumigatus antigens, and their quantities systemically in serum and locally in bronchoalveolar lavage fluid (BALF). Methods: Serum and BALF from healthy horses (HE, n = 18) and horses with mild-moderate asthma (MEA, n = 20) or severe asthma (SEA, n = 24) were compared. Ig isotype (IgG1, IgG3/5, IgG4/7, IgG6, IgA, and IgE) binding to nine antigens (A. fumigatus lysate, and recombinant Asp f 1, Asp f 7, Asp f 8, dipeptidyl-peptidase 5, class II aldolase/adducin domain protein, glucoamylase, beta-hexosaminidase, and peptide hydrolase) was compared by enzyme-linked immunosorbent assays. Total Ig isotype contents were determined by bead-based assays. Results: MEA and SEA differed from HE but hardly from each other. Compared to HE, asthmatic horses showed increased anti-A. fumigatus binding of IgG (BALF and serum) and IgA (BALF). Serum and BALF IgE binding and total IgE contents were similar between HE and EA. Single antigens, as well as A. fumigatus lysate, yielded similar Ig binding patterns. Serum and BALF IgG1 binding to all antigens was increased in SEA and to several antigens in MEA. Serum IgG4/7 binding to two antigens was increased in SEA. BALF IgA binding to all antigens was increased in SEA and MEA. Total BALF IgG1 and IgG4/7 contents were increased in SEA, and serum IgG4/7 content was increased in MEA compared to HE. Yet, total isotype contents differentiated EA and HE less clearly than antigen-binding Ig. Discussion: A. fumigatus immunogenicity was confirmed without identification of single dominant antigens here. A. fumigatus provoked elevated BALF IgG1 and IgA binding, and these isotypes appear relevant for neutrophilic EA, which does not support allergy. BALF Ig isotype differentiation beyond IgE is crucial for a comprehensive analysis of immune responses to fungi in EA pathogenesis.


Subject(s)
Antigens, Fungal , Aspergillus fumigatus , Asthma , Bronchoalveolar Lavage Fluid , Horse Diseases , Immunoglobulin A , Immunoglobulin G , Animals , Horses/immunology , Aspergillus fumigatus/immunology , Bronchoalveolar Lavage Fluid/immunology , Asthma/immunology , Asthma/microbiology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin A/metabolism , Horse Diseases/immunology , Horse Diseases/microbiology , Antigens, Fungal/immunology , Male , Neutrophils/immunology , Neutrophils/metabolism , Female , Immunoglobulin E/immunology , Immunoglobulin E/blood , Antibodies, Fungal/immunology , Antibodies, Fungal/blood
2.
Sci Transl Med ; 16(754): eadl3848, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959329

ABSTRACT

Autoantibodies to nuclear antigens are hallmarks of systemic lupus erythematosus (SLE) where they contribute to pathogenesis. However, there remains a gap in our knowledge regarding how different isotypes of autoantibodies contribute to this autoimmune disease, including the production of the critical type I interferon (IFN) cytokines by plasmacytoid dendritic cells (pDCs) in response to immune complexes (ICs). We focused on IgA, which is the second-most prevalent isotype in serum and, along with IgG, is deposited in glomeruli in individuals with lupus nephritis. We show that individuals with SLE have serum IgA autoantibodies against most nuclear antigens, correlating with IgG against the same antigen. We investigated whether IgA autoantibodies against a major SLE autoantigen, Smith ribonucleoprotein (Sm/RNP), played a role in IC activation of pDCs. We found that pDCs expressed the IgA-specific Fc receptor, FcαR, and IgA1 autoantibodies synergized with IgG in RNA-containing ICs to generate robust primary blood pDC IFN-α responses in vitro. pDC responses to these ICs required both FcαR and FcγRIIa, showing synergy between these Fc receptors. Sm/RNP IC binding to and internalization by pDCs were greater when ICs contained both IgA1 and IgG. Circulating pDCs from individuals with SLE had higher binding of IgA1-containing ICs and higher expression of FcαR than pDCs from healthy control individuals. Although pDC FcαR expression correlated with the blood IFN-stimulated gene signature in SLE, Toll-like receptor 7 agonists, but not IFN-α, up-regulated pDC FcαR expression in vitro. Together, we show a mechanism by which IgA1 autoantibodies contribute to SLE pathogenesis.


Subject(s)
Antigen-Antibody Complex , Autoantibodies , Dendritic Cells , Immunoglobulin A , Immunoglobulin G , Lupus Erythematosus, Systemic , Humans , Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin A/blood , Autoantibodies/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Antigen-Antibody Complex/immunology , Antigen-Antibody Complex/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/blood , RNA/metabolism , Female , Interferon-alpha/metabolism , Adult , Receptors, Fc/metabolism , Receptors, Fc/immunology , Toll-Like Receptor 7/metabolism , Male , Receptors, IgG/metabolism
3.
Front Immunol ; 15: 1386260, 2024.
Article in English | MEDLINE | ID: mdl-38975349

ABSTRACT

Introduction: Lrba is a cytoplasmic protein involved in vesicular trafficking. Lrba-deficient (Lrba-/-) mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor ß1 (TGFß1) and its receptors (TGFßR I and II) is essential for differentiating IgA+ B cells. Furthermore, increased IgA production suggests a potential connection between Lrba and the TGFßR signaling pathway in IgA production. However, the specific function of Lrba in B cell biology remains unknown. Aim: Given the increased IgA levels in Lrba-/- mice, the goal in this work was to explore the lymph organs where the switch to IgA occurs, and if TGFßR function is affected. Methods: Non-immunized Lrba-/- mice were compared with Lrba+/+ mice. IgA levels in the serum and feces, as well as during peripheral B cell development, were determined. IgA+ B cells and plasma cells were assessed in the small intestine and secondary lymphoid organs, such as the spleen, mesenteric lymph nodes, and Peyer's patches. The TGFßR signaling pathway was evaluated by determining the expression of TGFßR on B cells. Additionally, SMAD2 phosphorylation was measured under basal conditions and in response to recombinant TGFß. Finally, confocal microscopy was performed to investigate a possible interaction between Lrba and TGFßR in B cells. Results: Lrba-/- mice exhibited significantly higher levels of circulating IgA, IgA+ B, and plasma cells than in peripheral lymphoid organs those in WT mice. TGFßR expression on the membrane of B cells was similar in both Lrba-/- and Lrba+/+ mice. However, intracellular TGFßR expression was reduced in Lrba-/- mice. SMAD2 phosphorylation showed increased levels under basal conditions; stimulation with recombinant TGFß elicited a poorer response than in that in Lrba+/+ B cells. Finally, we found that Lrba colocalizes with TGFßR in B cells. Conclusion: Lrba is essential in controlling TGFßR signaling, subsequently regulating SMAD2 phosphorylation on B cells. This mechanism may explain the increased differentiation of IgA+ B cells and production of IgA-producing plasma cells.


Subject(s)
B-Lymphocytes , Cell Differentiation , Immunoglobulin A , Mice, Knockout , Signal Transduction , Animals , Immunoglobulin A/immunology , Mice , Cell Differentiation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Mice, Inbred C57BL , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Smad2 Protein/metabolism , Peyer's Patches/immunology , Peyer's Patches/metabolism
4.
Nat Commun ; 15(1): 5589, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961063

ABSTRACT

As the new SARS-CoV-2 Omicron variants and subvariants emerge, there is an urgency to develop intranasal, broadly protective vaccines. Here, we developed highly efficacious, intranasal trivalent SARS-CoV-2 vaccine candidates (TVC) based on three components of the MMR vaccine: measles virus (MeV), mumps virus (MuV) Jeryl Lynn (JL1) strain, and MuV JL2 strain. Specifically, MeV, MuV-JL1, and MuV-JL2 vaccine strains, each expressing prefusion spike (preS-6P) from a different variant of concern (VoC), were combined to generate TVCs. Intranasal immunization of IFNAR1-/- mice and female hamsters with TVCs generated high levels of S-specific serum IgG antibodies, broad neutralizing antibodies, and mucosal IgA antibodies as well as tissue-resident memory T cells in the lungs. The immunized female hamsters were protected from challenge with SARS-CoV-2 original WA1, B.1.617.2, and B.1.1.529 strains. The preexisting MeV and MuV immunity does not significantly interfere with the efficacy of TVC. Thus, the trivalent platform is a promising next-generation SARS-CoV-2 vaccine candidate.


Subject(s)
Administration, Intranasal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Cricetinae , Humans , Measles-Mumps-Rubella Vaccine/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles virus/immunology , Measles virus/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Mumps virus/immunology , Mumps virus/genetics , Mice, Knockout , Mesocricetus , Immunoglobulin A/immunology , Immunoglobulin A/blood
5.
Adv Exp Med Biol ; 1445: 151-156, 2024.
Article in English | MEDLINE | ID: mdl-38967757

ABSTRACT

Skin is the most prominent tissue and organ, as well as the first line of defence, of the body. Because it is situated on the body's surface, it is constantly exposed to microbial, chemical, and physical factors such as mechanical stimulation. Therefore, skin has evolved substantial immune defences, regenerative ability, and anti-injury capacity. Epidermal cells produce antibacterial peptides that play a role in immune defence under physiological conditions. Additionally, IgG or IgA in the skin also participates in local anti-infective immunity. However, based on the classical theory of immunology, Ig can only be produced by B cells which should be derived from local B cells. This year, thanks to the discovery of Ig derived from non B cells (non B-Ig), Ig has also been found to be expressed in epidermal cells and contributes to immune defence. Epidermal cell-derived IgG and IgA have been demonstrated to have potential antibody activity by binding to pathogens. However, these epidermal cell-derived Igs show different microbial binding characteristics. For instance, IgG binds to Staphylococcus aureus and IgA binds to Staphylococcus epidermidis. Epidermal cells producing IgG and IgA may serve as an effective defense mechanism alongside B cells, providing a novel insight into skin immunity.


Subject(s)
Immunoglobulin A , Skin , Humans , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Skin/immunology , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , B-Lymphocytes/immunology , Immunoglobulins/immunology , Immunoglobulins/metabolism , Staphylococcus aureus/immunology , Staphylococcus epidermidis/immunology , Epidermis/immunology , Epidermis/metabolism , Epidermal Cells/immunology , Epidermal Cells/metabolism
6.
Kaohsiung J Med Sci ; 40(7): 612-620, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38828518

ABSTRACT

Palpable purpura, gastrointestinal symptoms, joint involvement, and renal disease characterize immunoglobulin A vasculitis (IgAV). Renal involvement ranging from mild proteinuria to severe nephritic or nephrotic syndrome highlights the importance of monitoring kidney function in patients with IgAV. Recognizing these key features is crucial for early diagnosis and appropriate management to prevent long-term complications related to kidney disease. However, the pathogenesis of IgAV remains unclear. Disease mechanisms involve various factors, including the interplay of aberrantly glycosylated IgA, anti-endothelial cell antibodies, and neutrophils following infection triggers, which are the main pathogenic mechanisms of IgAV. Insights from cases of IgAV related to Coronavirus disease 2019 have offered additional understanding of the connection between infection and IgAV pathogenesis. This review provides a valuable resource for healthcare professionals and rheumatology researchers seeking a better understanding of the clinical features and pathophysiology of IgAV.


Subject(s)
COVID-19 , Immunoglobulin A , Humans , Immunoglobulin A/immunology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , COVID-19/complications , Vasculitis/immunology , Vasculitis/physiopathology , SARS-CoV-2/immunology , IgA Vasculitis/immunology , IgA Vasculitis/physiopathology , IgA Vasculitis/diagnosis , Autoantibodies/immunology , Neutrophils/immunology
7.
Pol J Microbiol ; 73(2): 123-130, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38905276

ABSTRACT

Serological testing can be a powerful complementary approach to achieve timely diagnosis of severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, along with nucleic acid detection. Immunoglobulin (Ig) A antibodies are less frequently utilized to detect SARS-CoV-2 infection than IgM and IgG antibodies, even though IgA antibodies play an important role in protective immunity against SARS-CoV-2. This review discusses the differences in kinetics and assay performance between IgA and IgM antibodies and the factors influencing antibody responses. It highlights the potential usefulness of analyzing IgA antibodies for the early detection of SARS-CoV-2 infection. The early appearance of IgA and the high sensitivity of IgA-based immunoassays can aid in diagnosing coronavirus disease 2019. However, because of cross-reactivity, it is important to recognize the only moderate specificity of the early detection of SARS-CoV-2 IgA antibodies against spike antigens. Either the analysis of antibodies targeting the nucleocapsid antigen or a combination of antibodies against the nucleocapsid and spike antigens may strengthen the accuracy of serological evaluation.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin A , Immunoglobulin M , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Early Diagnosis , COVID-19 Serological Testing/methods , Sensitivity and Specificity
8.
J Vet Med Sci ; 86(7): 801-808, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38839348

ABSTRACT

Immunoglobulin A (IgA) is notable for its broad specificity toward multiple bacteria. Phosphorylcholine (PC) plays a role in the infection of pathogenic bacteria carrying PC and in the induction of IgA responses in the host immune system. The commercially available mouse monoclonal IgA, TEPC15-IgA, is a distinctive antibody with specificity for PC, warranting further exploration of its response to PC-bearing enteric bacteria. In this study, using 17 different enteric bacteria, including 3 aerobic and 14 anerobic bacteria that could be cultured in vitro, we confirmed that TEPC15-IgA recognizes 4 bacterial species: Lactobacillus taiwanensis, Limosilactobacillus frumenti, Streptococcus infantis, and Escherichia coli, although reactivity varied. Interestingly, TEPC15-IgA did not react with four of six Lactobacillus species used. Moreover, distinct target molecules associated with PC in L. taiwanensis and L. frumenti were evident, differing in molecular weight. These findings suggest that the natural generation of PC-specific IgA could prevent PC-mediated infections and potentially facilitate the formation of a microflora rich in indigenous bacteria with PC, particularly in the gastrointestinal tract.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin A , Phosphorylcholine , Animals , Immunoglobulin A/immunology , Phosphorylcholine/immunology , Mice , Antibodies, Monoclonal/immunology , Antibody Specificity , Enterobacteriaceae/immunology , Mice, Inbred BALB C
9.
Front Immunol ; 15: 1386243, 2024.
Article in English | MEDLINE | ID: mdl-38835757

ABSTRACT

Introduction: Current vaccines against COVID-19 administered via parenteral route have limited ability to induce mucosal immunity. There is a need for an effective mucosal vaccine to combat SARS-CoV-2 virus replication in the respiratory mucosa. Moreover, sex differences are known to affect systemic antibody responses against vaccines. However, their role in mucosal cellular responses against a vaccine remains unclear and is underappreciated. Methods: We evaluated the mucosal immunogenicity of a booster vaccine regimen that is recombinant protein-based and administered intranasally in mice to explore sex differences in mucosal humoral and cellular responses. Results: Our results showed that vaccinated mice elicited strong systemic antibody (Ab), nasal, and bronchiole alveolar lavage (BAL) IgA responses, and local T cell immune responses in the lung in a sex-biased manner irrespective of mouse genetic background. Monocytes, alveolar macrophages, and CD103+ resident dendritic cells (DCs) in the lungs are correlated with robust mucosal Ab and T cell responses induced by the mucosal vaccine. Discussion: Our findings provide novel insights into optimizing next-generation booster vaccines against SARS-CoV-2 by inducing spike-specific lung T cell responses, as well as optimizing mucosal immunity for other respiratory infections, and a rationale for considering sex differences in future vaccine research and vaccination practice.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccines, Subunit , Animals , Female , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Male , Antibodies, Viral/immunology , Antibodies, Viral/blood , Lung/immunology , Lung/virology , T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Mice, Inbred C57BL , Administration, Intranasal , Sex Factors , Immunoglobulin A/immunology , Dendritic Cells/immunology , Immunization, Secondary , Immunity, Humoral
10.
PeerJ ; 12: e17498, 2024.
Article in English | MEDLINE | ID: mdl-38827305

ABSTRACT

Background: The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods: The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results: Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.


Subject(s)
Bacterial Proteins , Dysentery, Bacillary , Feces , Shigella flexneri , Humans , Feces/microbiology , Feces/chemistry , Dysentery, Bacillary/diagnosis , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Shigella flexneri/immunology , Shigella flexneri/isolation & purification , Bacterial Proteins/immunology , Bacterial Proteins/analysis , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/analysis , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Immunoglobulin A/immunology , Immunoglobulin A/blood , Immunoglobulin A/analysis
11.
Sci Rep ; 14(1): 12725, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830902

ABSTRACT

Humoral immunity in COVID-19 includes antibodies (Abs) targeting spike (S) and nucleocapsid (N) SARS-CoV-2 proteins. Antibody levels are known to correlate with disease severity, but titers are poorly reported in mild or asymptomatic cases. Here, we analyzed the titers of IgA and IgG against SARS-CoV-2 proteins in samples from 200 unvaccinated Hospital Workers (HWs) with mild COVID-19 at two time points after infection. We analyzed the relationship between Ab titers and patient characteristics, clinical features, and evolution over time. Significant differences in IgG and IgA titers against N, S1 and S2 proteins were found when samples were segregated according to time T1 after infection, seroprevalence at T1, sex and age of HWs and symptoms at infection. We found that IgM + samples had higher titers of IgG against N antigen and IgA against S1 and S2 antigens than IgM - samples. There were significant correlations between anti-S1 and S2 Abs. Interestingly, IgM + patients with dyspnea had lower titers of IgG and IgA against N, S1 and S2 than those without dyspnea. Comparing T1 and T2, we found that IgA against N, S1 and S2 but only IgG against certain Ag decreased significantly. In conclusion, an association was established between Ab titers and the development of infection symptoms.


Subject(s)
Antibodies, Viral , COVID-19 , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/virology , COVID-19/blood , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , SARS-CoV-2/immunology , Female , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunity, Humoral , Phosphoproteins/immunology
13.
J Immunol ; 213(2): 148-160, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38787053

ABSTRACT

Human IgA Abs engage neutrophils for cancer immunotherapy more effectively than IgG Abs. Previous studies demonstrated that engineering approaches improved biochemical and functional properties. In this study, we report a novel, to our knowledge, IgA2 Ab against the epidermal growth factor receptor generated by protein engineering and polymerization. The resulting molecule demonstrated a covalent linkage of L and H chains and an effective polymerization by the joining chain. The engineered dimer outperformed its monomeric variant in functional experiments on Fab-mediated modes of action and binding to the Fc receptor. The capacity to engage neutrophils for Ab-dependent cell-mediated cytotoxicity (ADCC) of adherent growing target cancer cells was cell line dependent. Although the engineered dimer displayed a long-term efficacy against the vulva carcinoma cell line A431, there was a notable in-efficacy against human papillomavirus (HPV)- head and neck squamous cell carcinoma (HNSCC) cell lines. However, the highly engineered IgA Abs triggered a neutrophil-mediated cytotoxicity against HPV+ HNSCC cell lines. Short-term ADCC efficacy correlated with the target cells' epidermal growth factor receptor expression and the ability of cancer cell-conditioned media to enhance the CD147 surface level on neutrophils. Notably, the HPV+ HNSCC cell lines demonstrated a significant increment in releasing soluble CD147 and a reduced induction of membranous CD147 on neutrophils compared with HPV- cells. Although membranous CD147 on neutrophils may impair proper IgA-Fc receptor binding, soluble CD147 enhanced the IgA-neutrophil-mediated ADCC in a dose-dependent manner. Thus, engineering IgA Abs and impedance-based ADCC assays provided valuable information regarding the target-effector cell interaction and identified CD147 as a putative critical parameter for neutrophil-mediated cytotoxicity.


Subject(s)
Antibody-Dependent Cell Cytotoxicity , Basigin , ErbB Receptors , Head and Neck Neoplasms , Immunoglobulin A , Neutrophils , Protein Engineering , Squamous Cell Carcinoma of Head and Neck , Humans , Neutrophils/immunology , ErbB Receptors/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Immunoglobulin A/immunology , Basigin/immunology , Squamous Cell Carcinoma of Head and Neck/immunology , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy
14.
Arch Dermatol Res ; 316(6): 268, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795175

ABSTRACT

Pyoderma gangrenosum (PG) is a neutrophilic dermatosis characterized by ulcerative painful lesions with violaceous undermined borders. Up to 75% of PG cases develop in association with an underlying systemic disease. Monoclonal gammopathy is reportedly a concomitant condition with PG, with studies indicating immunoglobulin (Ig) A gammopathy as the most common. Whether gammopathy is associated with PG or is an incidental finding has been debated. We sought to investigate the association and characteristics of gammopathy in patients with PG. We retrospectively identified PG patients at our institution from 2010 to 2022 who were screened for plasma cell dyscrasia. Of 106 patients identified, 29 (27%) had a gammopathy; subtypes included IgA (41%), IgG (28%), and biclonal (IgA and IgG) (14%). Mean age was similar between those with and without gammopathy (60.7 vs. 55.9 years; P = .26). In addition, hematologic or solid organ cancer developed in significantly more patients with vs. without gammopathy (8/29 [28%] vs. 5/77 [6%]; P = .003). Among the subtypes of gammopathy, IgG monoclonal gammopathy had the highest proportion of patients with subsequent cancer development (4 of 8 patients, 50%). Study limitations include a retrospective, single-institution design with a limited number of patients. Overall, our data show a high prevalence of gammopathy in patients with PG; those patients additionally had an increased incidence of cancer, especially hematologic cancer.


Subject(s)
Paraproteinemias , Pyoderma Gangrenosum , Humans , Pyoderma Gangrenosum/diagnosis , Pyoderma Gangrenosum/epidemiology , Retrospective Studies , Middle Aged , Female , Male , Paraproteinemias/complications , Paraproteinemias/diagnosis , Paraproteinemias/epidemiology , Paraproteinemias/immunology , Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , Adult , Immunoglobulin G/blood , Immunoglobulin G/immunology
15.
BMJ Case Rep ; 17(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38697686

ABSTRACT

A girl in middle childhood was referred to the paediatric surgical team with acute colicky abdominal pain and bile-stained vomiting. This was preceded by a viral illness. Investigations revealed raised inflammatory markers, and imaging of the abdomen demonstrated ileal and jejunal thickening. Concerns were raised regarding whether she had inflammatory bowel disease. Endoscopy revealed gastritis and duodenitis, and colonoscopy was unremarkable. Video capsule endoscopy demonstrated ulcers in the jejunum and ileum.On day 8 of admission, she developed a symmetrical purpuric rash over both ankles leading to the diagnosis of Henoch-Schonlein-related ileitis. Multidisciplinary team working led to appropriate management of the patient and avoided surgery. Video capsule endoscopy enabled visualisation of the small bowel. She was managed with 5 days of methylprednisolone followed by oral steroids. She made a good recovery with no sequelae. This case highlighted that terminal ileitis is a rare complication of IgA vasculitis with a good prognosis.


Subject(s)
IgA Vasculitis , Ileitis , Humans , Female , Ileitis/diagnosis , Ileitis/complications , Child , IgA Vasculitis/diagnosis , IgA Vasculitis/complications , Capsule Endoscopy , Methylprednisolone/therapeutic use , Immunoglobulin A/immunology
16.
J Immunother Cancer ; 12(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782540

ABSTRACT

BACKGROUND: Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS: To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS: In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION: These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.


Subject(s)
CD47 Antigen , Immunoglobulin A , Neuroblastoma , Neutrophils , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , CD47 Antigen/immunology , Humans , Neuroblastoma/immunology , Neuroblastoma/drug therapy , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Immunoglobulin A/immunology , Immunoglobulin A/pharmacology , Immunoglobulin A/metabolism , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Immunotherapy/methods , Female , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
17.
Immunity ; 57(6): 1428-1441.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38723638

ABSTRACT

Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.


Subject(s)
B-Lymphocytes , Animals , B-Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology , Lymphocyte Activation/immunology , Antigens, Bacterial/immunology , Somatic Hypermutation, Immunoglobulin , Peptide Library , Lymph Nodes/immunology , Cell Surface Display Techniques , Symbiosis/immunology , Immunoglobulin G/immunology , Immunoglobulin A/immunology
18.
Rheumatol Int ; 44(7): 1353-1357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38739223

ABSTRACT

IgA-associated vasculitis (IgAV) known as Henoch - Schönlein purpura (HSP) disease is an inflammatory disorder of small blood vessels. It's the most common type of systemic vasculitis in children which can be associated with the inflammatory process following infections. IgA vasculitis is a rare and poorly understood systemic vasculitis in adults. Coronavirus disease 2019 (COVID-19) has been associated with HSP in both adults and children. A 58-year-old woman was diagnosed with HSP, fulfilling the clinical criteria: palpable purpura, arthritis, hematuria. The disclosure of the HSP disease was preceded by a infection of the respiratory tract. COVID-19 infection was confirmed via the presence of IgM and IgG antibodies. This case indicates the possible role of SARS-CoV-2 in the development of HSP. The clinical course of IgAV in adults appears to be different from pediatric IgAV, especially due to higher risk of renal complications. Symptoms of the disease quickly resolved with low-dose of steroids.


Subject(s)
COVID-19 , IgA Vasculitis , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/immunology , IgA Vasculitis/immunology , IgA Vasculitis/diagnosis , IgA Vasculitis/complications , IgA Vasculitis/drug therapy , Female , Middle Aged , SARS-CoV-2/immunology , Immunoglobulin A/blood , Immunoglobulin A/immunology
19.
Vet Immunol Immunopathol ; 273: 110773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820947

ABSTRACT

Pemphigus foliaceus (PF) is an autoimmune skin disease of dogs characterized by intraepidermal pustules containing neutrophils and dissociated keratinocytes that develop in association with circulating and tissue-bound IgG autoantibodies. A subset of IgG autoantibodies in canine PF target desmocollin-1 (DSC1), a component of intercellular adhesion complexes within the epidermis. Passive transfer of IgG autoantibodies from canine PF sera to mice was previously shown to induce skin disease in the absence of infiltrating neutrophils. In attempts to identify a mechanism responsible for neutrophil recruitment, past studies evaluated the prevalence of IgA autoantibodies in canine PF sera where they were found in <20% of affected dogs. We re-evaluated the prevalence of anti-DSC1 IgA in canine PF due to concerns regarding the sensitivity of previously used methods. We hypothesized that anti-DSC1 IgA are present in most dogs with PF but have been under-detected due to competition with concurrent anti-DSC1 IgG for binding to their mutual antigenic target. Despite removing approximately 80% of IgG from patient sera using affinity chromatography, we did not detect an increase in anti-DSC1 IgA by performing indirect immunofluorescence on canine DSC1-transfected HEK293T cells. Taken together, our results do not support a role for pathogenic IgA in canine PF.


Subject(s)
Autoantibodies , Desmocollins , Dog Diseases , Immunoglobulin A , Pemphigus , Dogs , Animals , Pemphigus/immunology , Pemphigus/veterinary , Desmocollins/immunology , Dog Diseases/immunology , Immunoglobulin A/immunology , Immunoglobulin A/blood , Autoantibodies/immunology , Autoantibodies/blood , Humans , HEK293 Cells , Immunoglobulin G/immunology , Immunoglobulin G/blood , Fluorescent Antibody Technique, Indirect/veterinary
20.
Clin Immunol ; 263: 110232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701960

ABSTRACT

IgA nephropathy (IgAN), which has been confirmed as a complement mediated autoimmune disease, is also one form of glomerulonephritis associated with COVID-19. Here, we aim to investigate the clinical and immunological characteristics of patients with IgAN after COVID-19. The level of plasma level of C5a (p < 0.001), soluble C5b-9 (p = 0.018), FHR5 (p < 0.001) were all significantly higher in Group CoV (33 patients with renal biopsy-proven IgAN experienced COVID-19) compared with Group non-CoV (44 patients with IgAN without COVID-19), respectively. Compared with Group non-CoV, the intensity of glomerular C4d (p = 0.017) and MAC deposition (p < 0.001) and Gd-IgA1 deposition (p = 0.005) were much stronger in Group CoV. Our finding revealed that for IgAN after COVID-19, mucosal immune responses to SARS-CoV-2 infection may result in the overactivation of systemic and renal local complement system, and increased glomerular deposition of Gd-IgA1, which may lead to renal dysfunction and promote renal progression in IgAN patients.


Subject(s)
COVID-19 , Glomerulonephritis, IGA , SARS-CoV-2 , Humans , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/blood , COVID-19/immunology , COVID-19/complications , Female , Male , Adult , SARS-CoV-2/immunology , Middle Aged , Complement Activation/immunology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Immunoglobulin A/blood , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Complement C5a/immunology , Complement C5a/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...