Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 914
Filter
1.
Sci Rep ; 14(1): 14832, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937649

ABSTRACT

The structures of the Fc base of various IgG antibodies have been examined with a view to understanding how this region can be used to conjugate IgG to nanoparticles. The base structure is found to be largely consistent across a range of species and subtypes, comprising a hydrophobic region surrounded by hydrophilic residues, some of which are charged at physiological conditions. In addition, atomistic Molecular Dynamics simulations were performed to explore how model nanoparticles interact with the base using neutral and negatively charged gold nanoparticles. Both types of nanoparticle interacted readily with the base, leading to an adaptation of the antibody base surface to enhance the interactions. Furthermore, these interactions left the rest of the domain at the base of the Fc region structurally intact. This implies that coupling nanoparticles to the base of an IgG molecule is both feasible and desirable, since it leaves the antibody free to interact with its surroundings so that antigen-binding functionality can be retained. These results will therefore help guide future attempts to develop new nanotechnologies that exploit the unique properties of both antibodies and nanoparticles.


Subject(s)
Gold , Immunoglobulin Fc Fragments , Immunoglobulin G , Metal Nanoparticles , Molecular Dynamics Simulation , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Immunoglobulin Fc Fragments/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Nanoparticles/chemistry , Hydrophobic and Hydrophilic Interactions , Animals
2.
Anal Methods ; 16(24): 3917-3926, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38832468

ABSTRACT

The titer of recombinant proteins is one of the key parameters in biopharmaceutical manufacturing processes. The fluorescence polarization (FP)-based assay, a homogeneous, high-throughput and real-time analytical method, had emerged as a powerful tool for biochemical analysis and environmental monitoring. In this study, an FP-based bioassay was utilized to quantify antibody fragment crystallizable (Fc)-containing proteins, such as recombinant monoclonal antibodies (mAbs) and mAb derivatives, in the cell culture supernatant, and the impacts of tracer molecular weight and FITC-coupling conditions on fluorescence polarization were methodically examined. Distinct from the fluorescence polarization potency calculated by classical formula, we for the first time proposed a new concept and calculation of fluorescence polarization intensity, based on which an analytical method with broader detection range and analysis window was established for quantifying Fc-containing proteins. This provided new ideas for the practical application of fluorescence polarization theory. The established method could detect 96 samples within 30 minutes, with dynamic titer range of 2.5-400 mg L-1, and a linear fitting R2 between the measured and actual concentration reaching 0.99. The method had great application prospects in determining the titer of recombinant proteins with Fc fragments, especially when applied to large-scale screening of high-yield and stable expression CHO cell lines commonly used in biopharmaceutical industry.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Fluorescence Polarization , High-Throughput Screening Assays , Immunoglobulin Fc Fragments , Recombinant Proteins , Recombinant Proteins/chemistry , Recombinant Proteins/analysis , CHO Cells , Fluorescence Polarization/methods , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , High-Throughput Screening Assays/methods , Immunoglobulin Fc Fragments/chemistry , Biological Assay/methods , Animals
3.
Anal Chem ; 96(24): 10003-10012, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38853531

ABSTRACT

Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.


Subject(s)
Immunoglobulin Fc Fragments , Mass Spectrometry , Protein Unfolding , Recombinant Fusion Proteins , Immunoglobulin Fc Fragments/chemistry , Recombinant Fusion Proteins/chemistry , Mass Spectrometry/methods , Interleukin-10/chemistry , Interleukin-10/metabolism , Ion Mobility Spectrometry/methods , Protein Stability , Humans , Immunoglobulin G/chemistry
4.
Antiviral Res ; 227: 105901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734211

ABSTRACT

Growing concerns regarding the emergence of highly transmissible viral diseases highlight the urgent need to expand the repertoire of antiviral therapeutics. For this reason, new strategies for neutralizing and inhibiting these viruses are necessary. A promising approach involves targeting the glycans present on the surfaces of enveloped viruses. Lectins, known for their ability to recognize specific carbohydrate molecules, offer the potential for glycan-targeted antiviral strategies. Indeed, numerous studies have reported the antiviral effects of various lectins of both endogenous and exogenous origins. However, many lectins in their natural forms, are not suitable for use as antiviral therapeutics due to toxicity, other unfavorable pharmacological effects, and/or unreliable manufacturing sources. Therefore, improvements are crucial for employing lectins as effective antiviral therapeutics. A novel approach to enhance lectins' suitability as pharmaceuticals could be the generation of recombinant lectin-Fc fusion proteins, termed "lectibodies." In this review, we discuss the scientific rationale behind lectin-based antiviral strategies and explore how lectibodies could facilitate the development of new antiviral therapeutics. We will also share our perspective on the potential of these molecules to transcend their potential use as antiviral agents.


Subject(s)
Antiviral Agents , Lectins , Antiviral Agents/pharmacology , Humans , Lectins/pharmacology , Animals , Virus Diseases/drug therapy , Polysaccharides/chemistry , Polysaccharides/pharmacology , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/chemistry , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/chemistry , Viruses/drug effects
5.
J Chromatogr A ; 1726: 464947, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38724406

ABSTRACT

Monoclonal antibodies (mAbs) are large and highly heterogeneous species typically characterized using a plethora of analytical methodologies. There is a trend within the biopharmaceutical industry to combine several of these methods in one analytical platform to simultaneously assess multiple structural attributes. Here, a protein analyzer for the fully automated middle-up and bottom-up liquid chromatography-mass spectrometry (LC-MS) analysis of charge, size and hydrophobic variants is described. The multidimensional set-up combines a multi-method option in the first dimension (1D) (choice between size exclusion - SEC, cation exchange - CEX or hydrophobic interaction chromatography - HIC) with second dimension (2D) on-column reversed-phase (RPLC) based desalting, denaturation and reduction prior to middle-up LC-MS analysis of collected 1D peaks and parallel on-column trypsin digestion of denatured and reduced peaks in the third dimension (3D) followed by bottom-up LC-MS analysis in the fourth dimension (4D). The versatile and comprehensive workflow is applied to the characterization of charge, hydrophobic and size heterogeneities associated with an engineered Fc fragment and is complemented with hydrogen-deuterium exchange (HDX) MS and FcRn affinity chromatography - native MS to explain observations in a structural/functional context.


Subject(s)
Antibodies, Monoclonal , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Antibodies, Monoclonal/chemistry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Immunoglobulin Fc Fragments/chemistry , Humans , Chromatography, Gel/methods , Liquid Chromatography-Mass Spectrometry
6.
Antiviral Res ; 227: 105917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782067

ABSTRACT

The Fc-fused receptor binding domain (RBD-Fc) vaccine for SARS-CoV-2 has garnered significant attention for its capacity to provide effective and specific immune protection. However, its immunogenicity is limited, highlighting the need for improvement in clinical application. Nanoparticle delivery has been shown to be an effective method for enhancing antigen immunogenicity. In this study, we developed bivalent nanoparticle recombinant protein vaccines by assembling the RBD-Fc of SARS-CoV-2 and Fc-binding homo-oligomers o42.1 and i52.3 into octahedral and icosahedral nanoparticles. The formation of RBD-Fc nanoparticles was confirmed through structural characterization and cell binding experiments. Compared to RBD-Fc dimers, the nanoparticle vaccines induced more potent neutralizing antibodies (nAb) and stronger cellular immune responses. Therefore, using bivalent nanoparticle vaccines based on RBD-Fc presents a promising vaccination strategy against SARS-CoV-2 and offers a universal approach for enhancing the immunogenicity of Fc fusion protein vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin Fc Fragments , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Nanoparticles/chemistry , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/chemistry , COVID-19/prevention & control , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Animals , Mice , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Female , Protein Multimerization , Mice, Inbred BALB C , Vaccine Development , Protein Binding , Immunogenicity, Vaccine , Immunity, Cellular , Nanovaccines
7.
Protein Expr Purif ; 220: 106503, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759705

ABSTRACT

Protein A affinity chromatography has been widely used for initial product capture in recombinant antibody/Fc-fusion purification. However, in general Protein A lacks the capability of separating aggregates (unless the aggregates are too large to enter the pores of resin beads or have their Protein A binding sites buried, in which case the aggregates do not bind). In the current work, we demonstrated that CaptureSelect FcXP affinity medium exhibited strong aggregate separation capability and effectively removed aggregates under pH or conductivity gradient elution in two bispecific antibody (bsAb) cases. For these two cases, aggregate contents were reduced from >16% and >22% (in the feed) to <1% and <5% (in the eluate) for the first and second bsAbs, respectively. While more case studies are required to further demonstrate FcXP's superiority in aggregate removal, findings from the current study suggest that FcXP can potentially be a better alternative than Protein A for product capture in cases where aggregate content is high.


Subject(s)
Antibodies, Bispecific , Chromatography, Affinity , Staphylococcal Protein A , Chromatography, Affinity/methods , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Staphylococcal Protein A/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/genetics , Protein Aggregates , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification
8.
J Biol Chem ; 300(5): 107245, 2024 May.
Article in English | MEDLINE | ID: mdl-38569940

ABSTRACT

The IgG-specific endoglycosidases EndoS and EndoS2 from Streptococcus pyogenes can remove conserved N-linked glycans present on the Fc region of host antibodies to inhibit Fc-mediated effector functions. These enzymes are therefore being investigated as therapeutics for suppressing unwanted immune activation, and have additional application as tools for antibody glycan remodeling. EndoS and EndoS2 differ in Fc glycan substrate specificity due to structural differences within their catalytic glycosyl hydrolase domains. However, a chimeric EndoS enzyme with a substituted glycosyl hydrolase from EndoS2 loses catalytic activity, despite high structural homology between the two enzymes, indicating either mechanistic divergence of EndoS and EndoS2, or improperly-formed domain interfaces in the chimeric enzyme. Here, we present the crystal structure of the EndoS2-IgG1 Fc complex determined to 3.0 Å resolution. Comparison of complexed and unliganded EndoS2 reveals relative reorientation of the glycosyl hydrolase, leucine-rich repeat and hybrid immunoglobulin domains. The conformation of the complexed EndoS2 enzyme is also different when compared to the earlier EndoS-IgG1 Fc complex, and results in distinct contact surfaces between the two enzymes and their Fc substrate. These findings indicate mechanistic divergence of EndoS2 and EndoS. It will be important to consider these differences in the design of IgG-specific enzymes, developed to enable customizable antibody glycosylation.


Subject(s)
Bacterial Proteins , Glycoside Hydrolases , Immunoglobulin G , Models, Molecular , Streptococcus pyogenes , Humans , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Streptococcus pyogenes/enzymology , Substrate Specificity , Protein Structure, Quaternary
9.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678029

ABSTRACT

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Subject(s)
COVID-19 , Immunoglobulin Fc Fragments , Immunoglobulin G , SARS-CoV-2 , Streptococcus pyogenes , Animals , Humans , Mice , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice, Inbred BALB C , Phagocytosis , Protein Engineering/methods , SARS-CoV-2/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/immunology
10.
PLoS One ; 19(4): e0300964, 2024.
Article in English | MEDLINE | ID: mdl-38557973

ABSTRACT

Human immunoglobulin G (IgG) exists as four subclasses IgG1-4, each of which has two Fab subunits joined by two hinges to a Fc subunit. IgG4 has the shortest hinge with 12 residues. The Fc subunit has two glycan chains, but the importance of glycosylation is not fully understood in IgG4. Here, to evaluate the stability and structure of non-glycosylated IgG4, we performed a multidisciplinary structural study of glycosylated and deglycosylated human IgG4 A33 for comparison with our similar study of human IgG1 A33. After deglycosylation, IgG4 was found to be monomeric by analytical ultracentrifugation; its sedimentation coefficient of 6.52 S was reduced by 0.27 S in reflection of its lower mass. X-ray and neutron solution scattering showed that the overall Guinier radius of gyration RG and its cross-sectional values after deglycosylation were almost unchanged. In the P(r) distance distribution curves, the two M1 and M2 peaks that monitor the two most common distances within IgG4 were unchanged following deglycosylation. Further insight from Monte Carlo simulations for glycosylated and deglycosylated IgG4 came from 111,382 and 117,135 possible structures respectively. Their comparison to the X-ray and neutron scattering curves identified several hundred best-fit models for both forms of IgG4. Principal component analyses showed that glycosylated and deglycosylated IgG4 exhibited different conformations from each other. Within the constraint of unchanged RG and M1-M2 values, the glycosylated IgG4 models showed more restricted Fc conformations compared to deglycosylated IgG4, but no other changes. Kratky plots supported this interpretation of greater disorder upon deglycosylation, also observed in IgG1. Overall, these more variable Fc conformations may demonstrate a generalisable impact of deglycosylation on Fc structures, but with no large conformational changes in IgG4 unlike those seen in IgG1.


Subject(s)
Immunoglobulin Fc Fragments , Immunoglobulin G , Humans , Immunoglobulin G/chemistry , Cross-Sectional Studies , Models, Molecular , Immunoglobulin Fc Fragments/chemistry
11.
J Pharm Biomed Anal ; 244: 116120, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38547650

ABSTRACT

Charge heterogeneity is inherent to all therapeutic antibodies and arises from post-translational modifications (PTMs) and/or protein degradation events that may occur during manufacturing. Among therapeutic antibodies, the bispecific antibody (bsAb) containing two unique Fab arms directed against two different targets presents an additional layer of complexity to the charge profile. In the context of a bsAb, a single domain-specific PTM within one of the Fab domains may be sufficient to compromise target binding and could potentially impact the stability, safety, potency, and efficacy of the drug product. Therefore, characterization and routine monitoring of domain-specific modifications is critical to ensure the quality of therapeutic bispecific antibody products. We developed a Digestion-assisted imaged Capillary isoElectric focusing (DiCE) method to detect and quantitate domain-specific charge variants of therapeutic bispecific antibodies (bsAbs). The method involves enzymatic digestion using immunoglobulin G (IgG)-degrading enzyme of S. pyogenes (IdeS) to generate F(ab)2 and Fc fragments, followed by imaged capillary isoelectric focusing (icIEF) under reduced, denaturing conditions to separate the light chains (LCs) from the Fd domains. Our results suggest that DiCE is a highly sensitive method that is capable of quantitating domain-specific PTMs of a bsAb. In one case study, DiCE was used to quantitate unprocessed C-terminal lysine and site-specific glycation of Lys98 in the complementarity-determining region (CDR) of a bsAb that could not be accurately quantitated using conventional, platform-based charge variant analysis, such as intact icIEF. Quantitation of these PTMs by DiCE was comparable to results from peptide mapping, demonstrating that DiCE is a valuable orthogonal method for ensuring product quality. This method may also have potential applications for characterizing fusion proteins, antibody-drug conjugates, and co-formulated antibody cocktails.


Subject(s)
Antibodies, Bispecific , Isoelectric Focusing , Protein Processing, Post-Translational , Antibodies, Bispecific/immunology , Isoelectric Focusing/methods , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/chemistry , Humans , Immunoglobulin G/immunology , Immunoglobulin Fc Fragments/chemistry
12.
Nat Protoc ; 19(6): 1887-1909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38383719

ABSTRACT

Immunoglobulin G (IgG) fragment crystallizable (Fc) glycosylation modulates effector functions such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Consequently, assessing IgG Fc glycosylation is important for understanding the role of antibodies in infectious, alloimmune and autoimmune diseases. GlYcoLISA determines the Fc glycosylation of antigen-specific IgG by an immunosorbent assay with a liquid chromatography-mass spectrometry (LC-MS) readout. Detection of antigen-specific IgG glycosylation in a subclass- and site-specific manner is realized by LC-MS-based glycopeptide analysis after proteolytic cleavage. GlYcoLISA addresses challenges related to the low abundance of specific IgG and the high background of total IgG by using well-established immunosorbent assays for purifying antibodies of the desired specificity using immobilized antigen. Alternative methods with sufficient glycan resolution lack these important specificities. GlYcoLISA is performed in a 96-well plate format, and the analysis of 160 samples takes ~5 d, with 1 d for sample preparation, 2 d of LC-MS measurement and 2 d for partially automated data processing. GlYcoLISA requires expertise in LC-MS operation and data processing.


Subject(s)
Immunoglobulin Fc Fragments , Immunoglobulin G , Mass Spectrometry , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Glycosylation , Chromatography, Liquid/methods , Mass Spectrometry/methods , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Humans , Enzyme-Linked Immunosorbent Assay/methods , Antigens/immunology , Liquid Chromatography-Mass Spectrometry , Glycoproteins
13.
J Chem Inf Model ; 64(3): 785-798, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38262973

ABSTRACT

The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.


Subject(s)
Immunoglobulin Fc Fragments , Molecular Dynamics Simulation , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Isotypes , Molecular Conformation , Polysaccharides
14.
J Biomol NMR ; 78(1): 9-18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37989910

ABSTRACT

Despite the prevalence and importance of glycoproteins in human biology, methods for isotope labeling suffer significant limitations. Common prokaryotic platforms do not produce mammalian post-translation modifications that are essential to the function of many human glycoproteins, including immunoglobulin G1 (IgG1). Mammalian expression systems require complex media and thus introduce significant costs to achieve uniform labeling. Expression with Pichia is available, though expertise and equipment requirements surpass E. coli culture. We developed a system utilizing Saccharomyces cerevisiae, [13C]-glucose, and [15N]-ammonium chloride with complexity comparable to E. coli. Here we report two vectors for expressing the crystallizable fragment (Fc) of IgG1 for secretion into the culture medium, utilizing the ADH2 or DDI2 promoters. We also report a strategy to optimize the expression yield using orthogonal Taguchi arrays. Lastly, we developed two different media formulations, a standard medium which provides 86-92% 15N and 30% 13C incorporation into the polypeptide, or a rich medium which provides 98% 15N and 95% 13C incorporation as determined by mass spectrometry. This advance represents an expression and optimization strategy accessible to experimenters with the capability to grow and produce proteins for NMR-based experiments using E. coli.


Subject(s)
Escherichia coli , Saccharomyces cerevisiae , Animals , Humans , Nuclear Magnetic Resonance, Biomolecular/methods , Glycoproteins/chemistry , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Mammals
15.
J Phys Chem B ; 127(39): 8344-8357, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37751332

ABSTRACT

Monoclonal antibodies (mAbs) make up a major class of biotherapeutics with a wide range of clinical applications. Their physical stability can be affected by various environmental factors. For instance, an acidic pH can be encountered during different stages of the mAb manufacturing process, including purification and storage. Therefore, understanding the behavior of flexible mAb molecules in acidic solution environments will benefit the development of stable mAb products. This study used small-angle X-ray scattering (SAXS) and complementary biophysical characterization techniques to investigate the conformational flexibility and protein-protein interactions (PPI) of a model mAb molecule under near-neutral and acidic conditions. The study also characterized the interactions between Fab and Fc fragments under the same buffer conditions to identify domain-domain interactions. The results suggest that solution pH significantly influences mAb flexibility and thus could help mAbs remain physically stable by maximizing local electrostatic repulsions when mAbs become crowded in solution. Under acidic buffer conditions, both Fab and Fc contribute to the repulsive PPI observed among the full mAb at a low ionic strength. However, as ionic strength increases, hydrophobic interactions lead to the self-association of Fc fragments and, subsequently, could affect the aggregation state of the mAb.


Subject(s)
Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Monoclonal/chemistry , Scattering, Small Angle , Immunoglobulin G/chemistry , X-Ray Diffraction , Sodium Chloride , Acids , Immunoglobulin Fc Fragments/chemistry , Hydrogen-Ion Concentration
16.
MAbs ; 15(1): 2231128, 2023.
Article in English | MEDLINE | ID: mdl-37405954

ABSTRACT

Antibody-mediated effector functions are widely considered to unfold according to an associative model of IgG-Fcγ receptor (FcγR) interactions. The associative model presupposes that Fc receptors cannot discriminate antigen-bound IgG from free IgG in solution and have equivalent affinities for each. Therefore, the clustering of Fcγ receptors (FcγR) in the cell membrane, cross-activation of intracellular signaling domains, and the formation of the immune synapse are all the result of avid interactions between the Fc region of IgG and FcγRs that collectively overcome the individually weak, transient interactions between binding partners. Antibody allostery, specifically conformational allostery, is a competing model in which antigen-bound antibody molecules undergo a physical rearrangement that causes them to stand out from the background of free IgG by virtue of greater FcγR affinity. Various evidence exists in support of this model of antibody allostery, but it remains controversial. We report observations from multiplexed, label-free kinetic experiments in which the affinity values of FcγR were characterized for covalently immobilized, captured, and antigen-bound IgG. Across the strategies tested, receptors had greater affinity for the antigen-bound mode of IgG presentation. This phenomenon was observed across multiple FcγRs and generalized to multiple antigens, antibody specificities, and subclasses. Furthermore, the thermodynamic signatures of FcγR binding to free or immune-complexed IgG in solution differed when measured by an orthogonal label-free method, but the failure to recapitulate the trend in overall affinity leaves open questions as to what additional factors may be at play.


Subject(s)
Immunoglobulin G , Receptors, IgG , Humans , Immunoglobulin G/chemistry , Protein Binding , Immunoglobulin Fc Fragments/chemistry , Cell Membrane/metabolism
17.
Cell Rep ; 42(7): 112734, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37421619

ABSTRACT

Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures. How this influences effector responses has not been examined. Here, we measure Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a continuum between pure cases and quantitatively matches a mechanistic model, except for several low-affinity interactions mostly involving IgG2. We find that the binding model provides refined estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable binding through avidity, though it is insufficient to induce effector responses. Overall, this work demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.


Subject(s)
Antigen-Antibody Complex , Receptors, IgG , Animals , Mice , Receptors, IgG/metabolism , Antigen-Antibody Complex/metabolism , Immunoglobulin G , Immunoglobulin Fc Fragments/chemistry , Glycosylation , Receptors, Fc/metabolism
18.
Appl Biochem Biotechnol ; 195(11): 7075-7085, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36976505

ABSTRACT

Antibody drugs have been widely used to treat many diseases and are the fastest-growing drug class. IgG1 is the most common type of antibody because of its good serum stability; however, effective methods for the rapid detection of IgG1-type antibodies are lacking. In this study, we designed two aptamer molecules derived from the reported aptamer probe that has been proven to bind to the Fc fragment of the IgG1 antibody. The results showed that Fc-1S could specifically bind to the human IgG1 Fc proteins. In addition, we modified the structure of Fc-1S and constructed three aptamer molecular beacons that could quantitatively detect IgG1-type antibodies within a short time. Furthermore, we unveiled that the Fc-1S37R beacon has the highest sensitivity for IgG1-type antibodies with a detection limit of 48.82813 ng/mL and can accurately detect serum antibody concentrations in vivo with consistent results to ELISA. Therefore, Fc-1S37R is an efficient method for the production monitoring and quality control of IgG1-type antibodies to enable the large-scale production and application of antibody drugs.


Subject(s)
Immunoglobulin Fc Fragments , Immunoglobulin G , Humans , Immunoglobulin G/chemistry , Immunoglobulin Fc Fragments/chemistry
19.
J Immunol Methods ; 516: 113461, 2023 05.
Article in English | MEDLINE | ID: mdl-36963561

ABSTRACT

In the process of a solid-phase immunoassay, the stability and binding orientation between the antibody and the solid matrix can substantially influence the results. ZZ protein is a modified peptide of the B domain of Staphylococcus aureus protein A, which can bind to the Fc fragment of an antibody. It is often used for oriented immobilization of antibodies during solid-phase immunoassay. However, the conjugate is often not retained during the process, for example during washing steps. The resulting low stability detracts from reproducibility and sensitivity. Mfp-5 protein comes from mussel, is one of the components of mussel foot silk protein, and has good adhesion and biocompatibility. In this paper, the fusion protein of ZZ and Mfp-5 was constructed and expressed in Escherichia coli. In this method, the ZZ domain was firmly attached to the solid-phase support by Mfp-5, the directional fixation of IgG was realized by binding the ZZ protein to an Fc fragment, and then a Fab fragment was bound to the antigen to realize the solid-phase immunoassay. In addition, a protein adsorption assay confirmed that the adhesion of ZZ-Mfp-5 was significantly higher than that of ZZ protein, and the presence of Mfp-5 improved the ability of ZZ protein to capture antibodies. In conclusion, compared with the passively immobilized ZZ protein, the ZZ-Mfp-5 protein had stronger immobilization and antibody capture, a 10-fold increase in sensitivity and wider linear range, and better stability of detection. This may be an attractive strategy for solid-phase immunoassays or biosensing assays.


Subject(s)
Antibodies , Immunoglobulin Fc Fragments , Reproducibility of Results , Antibodies/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Immunoassay , Immunoglobulin Fc Fragments/chemistry
20.
Anal Bioanal Chem ; 415(12): 2239-2247, 2023 May.
Article in English | MEDLINE | ID: mdl-36914840

ABSTRACT

Breast milk immunoglobulin G (IgG) plays an important role in the transfer of passive immunity in early life and in shaping the neonatal immune system through N-glycan-mediated effector functions. Currently, there are no protocols available to analyze breast milk IgG-Fc glycosylation in mouse models. Therefore, we developed and validated a glycoproteomic workflow for the medium-throughput subclass-specific nano-LC-MS analysis of IgG enriched from small milk volumes of lactating mice. With the established methods, the IgG glycopatterns in a mouse model of antibiotic use during pregnancy and increased asthma susceptibility in the offspring were analyzed. Pregnant BALB/c mice were treated with vancomycin during gestation days 8-17 and IgG1F, IgG2, and IgG3-Fc glycosylation was subsequently analyzed in maternal serum, maternal breast milk, and offspring serum on postnatal day 15. The IgG glycosylation profiles of mouse maternal milk and serum revealed no significant differences within the glycoforms quantified across subclasses. However, vancomycin use during pregnancy was associated with changes in IgG-Fc glycosylation in offspring serum, shown by the decreased relative abundance of the IgG1F-G1 and IgG3-G0 glycoforms, together with the increased relative abundance of the IgG3-G2 and S1 glycoforms. The workflow presented will aid in the emerging integrative multi-omics- and glycomics-oriented milk analyses both in rodent models and human cohorts for a better understanding of mother-infant immunological interactions.


Subject(s)
Mass Spectrometry , Animals , Mice , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Vancomycin/pharmacology , Glycosylation , Chromatography, High Pressure Liquid , Mass Spectrometry/methods , Pregnancy , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Milk/immunology , Female , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...