Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Immunol ; 213(5): 678-689, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39018495

ABSTRACT

Substantial evidence supports that Fc-mediated effector functions of anti-spike Abs contribute to anti-SARS-Cov-2 protection. We have previously shown that two non-neutralizing but opsonic mAbs targeting the receptor-binding domain and N-terminal domain (NTD), Ab81 and Ab94, respectively, are protective against lethal Wuhan SARS-CoV-2 infection in K18-hACE2 mice. In this article, we investigated whether these protective non-neutralizing Abs maintain Fc-mediated function and Ag binding against mutated SARS-CoV-2 variants. Ab81 and Ab94 retained their nanomolar affinity and Fc-mediated function toward Omicron and its subvariants, such as BA.2, BA.4, BA.5, XBB, XBB1.5, and BQ1.1. However, when encountering the more heavily mutated BA.2.86, Ab81 lost its function, whereas the 10 new mutations in the NTD did not affect Ab94. In vivo experiments with Ab94 in K18-hACE2 mice inoculated with a stringent dose of 100,000 PFU of the JN.1 variant revealed unexpected results. Surprisingly, this variant exhibited low disease manifestation in this animal model with no weight loss or death in the control group. Still, assessment of mice using a clinical scoring system showed better protection for Ab94-treated mice, indicating that Fc-mediated functions are still beneficial. Our work shows that a protective anti-receptor-binding domain non-neutralizing mAb lost reactivity when BA.2.86 emerged, whereas the anti-NTD mAb was still functional. Finally, this work adds new insight into the evolution of the SARS-CoV-2 virus by reporting that JN.1 is substantially less virulent in vivo than previous strains.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Mice , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Humans , Virulence/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Female , Mice, Inbred BALB C
2.
J Immunol ; 213(5): 663-668, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39018496

ABSTRACT

Fentanyl and other synthetic opioids are the leading cause of drug-related deaths in the United States. mAbs that selectively target fentanyl and fentanyl analogues offer a promising strategy for treating both opioid-related overdoses and opioid use disorders. To increase the duration of efficacy of a candidate mAb against fentanyl, we selected three sets of mutations in the Fc region of an IgG1 anti-fentanyl mAb (HY6-F9DF215, HY6-F9DHS, HY6-F9YTE) to increase binding to the neonatal Fc receptor (FcRn). The mAb mutants were compared against unmodified (wild-type [WT], HY6-F9WT) anti-fentanyl mAb for fentanyl binding, thermal stability, and FcRn affinity in vitro, and for efficacy against fentanyl and mAb half-life in vivo in mice. Biolayer interferometry showed a >10-fold increase in the affinity for recombinant FcRn of the three mutant mAbs compared with HY6-F9WT. During an acute fentanyl challenge in mice, all FcRn-mutated mAbs provided equal protection against fentanyl-induced effects, and all mAbs reduced brain fentanyl levels compared with the saline group. Serum persistence of the mutant mAbs was tested in Tg276 transgenic mice expressing human FcRn. After administration of 40 mg/kg HY6-F9WT, HY6-F9DF215, HY6-F9DHS, and HY6-F9YTE, the mAbs showed half-lives of 6.3, 26.4, 14.7, and 6.9 d, respectively. These data suggest that modification of mAbs against fentanyl to bind to FcRn with higher affinity can increase their half-life relative to WT mAbs while maintaining efficacy against the toxic effects of fentanyl, further supporting their potential role as a therapeutic treatment option for opioid use disorder and overdose.


Subject(s)
Antibodies, Monoclonal , Fentanyl , Histocompatibility Antigens Class I , Immunoglobulin Fc Fragments , Mutation , Receptors, Fc , Fentanyl/immunology , Animals , Mice , Receptors, Fc/genetics , Receptors, Fc/metabolism , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/immunology , Analgesics, Opioid , Half-Life , Protein Engineering , Immunoglobulin G/immunology
3.
Trends Immunol ; 45(8): 609-624, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39034185

ABSTRACT

Recent studies show an important role for non-neutralizing anti-spike antibodies, including monoclonal antibodies (mAbs), in robustly protecting against SARS-CoV-2 infection. These mAbs use Fc-mediated functions such as complement activation, phagocytosis, and cellular cytotoxicity. There is an untapped potential for using non-neutralizing mAbs in durable antibody treatments; because of their available conserved epitopes, they may not be as sensitive to virus mutations as neutralizing mAbs. Here, we discuss evidence of non-neutralizing mAb-mediated protection against SARS-CoV-2 infection. We explore how non-neutralizing mAb Fc-mediated functions can be enhanced via novel antibody-engineering techniques. Important questions remain to be answered regarding the characteristics of protective non-neutralizing mAbs, including the models and assays used for study, the risks of ensuing detrimental inflammation, as well as the durability and mechanisms of protection.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , COVID-19/immunology , Antibodies, Viral/immunology , Animals , Antibodies, Neutralizing/immunology , Spike Glycoprotein, Coronavirus/immunology , Epitopes/immunology , Immunoglobulin Fc Fragments/immunology
4.
J Virol ; 98(7): e0070724, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38953655

ABSTRACT

Human norovirus was discovered more than five decades ago and is a widespread cause of outbreaks of acute gastroenteritis. There are no approved vaccines or antivirals currently available. However, norovirus inhibitors, including capsid-specific monoclonal antibodies (Mabs) and nanobodies, have recently shown promising results. Several Mabs and nanobodies were found to inhibit norovirus replication using a human intestinal enteroid (HIE) culture system and/or could block norovirus attachment to histo-blood group antigen (HBGA) co-factors. In our pursuit to develop a single broad-spectrum norovirus therapeutic, we continued our analysis and development of a cross-reactive and HBGA interfering nanobody (NB26). To improve NB26 binding capacity and therapeutic potential, we conjugated NB26 onto a human IgG Fc domain (Fc-NB26). We confirmed that Fc-NB26 cross-reacts with genetically diverse GII genotype capsid protruding (P) domains (GII.8, GII.14, GII.17, GII.24, GII.26, and GII.NA1) using a direct enzyme-linked immunosorbent assay. Furthermore, X-ray crystallography structures of these P domains and structures of other GII genotypes reveal that the NB26 binding site is largely conserved, validating its broad reactivity. We showed that Fc-NB26 has ~100-fold higher affinity toward the norovirus P domain compared to native NB26. We also found that both NB26 and Fc-NB26 neutralize human norovirus replication in the HIE culture system. Furthermore, the mode of inhibition confirmed that like NB26, Fc-NB26 caused norovirus particle disassembly and aggregation. Overall, these new findings demonstrate that structural modifications to nanobodies can improve their therapeutic potential.IMPORTANCEDeveloping vaccines and antivirals against norovirus remains a challenge, mainly due to the constant genetic and antigenic evolution. Moreover, re-infection with genetically related and/or antigenic variants is not uncommon. We further developed our leading norovirus nanobody (NB26) that indirectly interfered with norovirus binding to HBGAs, by converting NB26 into a dimeric Fc-linked Nanobody (Fc-NB26). We found that Fc-NB26 had improved binding affinity and neutralization capacity compared with native NB26. Using X-ray crystallography, we showed this nanobody engaged highly conserved capsid residues among genetically diverse noroviruses. Development of such broadly reactive potent therapeutic nanobodies delivered as a slow-releasing prophylactic could be of exceptional value for norovirus outbreaks, especially for the prevention or treatment of severe acute gastroenteritis in high-risk groups such as the young, elderly, and immunocompromised.


Subject(s)
Caliciviridae Infections , Capsid Proteins , Norovirus , Single-Domain Antibodies , Norovirus/genetics , Norovirus/drug effects , Norovirus/immunology , Humans , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/chemistry , Capsid Proteins/immunology , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Caliciviridae Infections/immunology , Caliciviridae Infections/virology , Caliciviridae Infections/therapy , Antiviral Agents/pharmacology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/chemistry , Antibodies, Viral/immunology , Cross Reactions , Capsid/metabolism , Capsid/immunology , Blood Group Antigens/metabolism , Virus Replication/drug effects , Gastroenteritis/virology , Immunoglobulin G/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology
5.
Front Immunol ; 15: 1402000, 2024.
Article in English | MEDLINE | ID: mdl-38827747

ABSTRACT

Sialic acids as terminal sugar residues on cell surface or secreted proteins have many functional roles. In particular, the presence or absence of α2,6-linked sialic acid residues at the immunoglobulin G (IgG) Fc fragment can switch IgG effector functions from pro- to anti-inflammatory activity. IgG glycosylation is considered to take place inside the plasma blast/plasma cell while the molecule travels through the endoplasmic reticulum and Golgi apparatus before being secreted. However, more recent studies have suggested that IgG sialylation may occur predominantly post-antibody secretion. To what extent this extracellular IgG sialylation process contributes to overall IgG sialylation remains unclear, however. By generating bone marrow chimeric mice with a B cell-specific deletion of ST6Gal1, the key enzyme required for IgG sialylation, we now show that sialylation of the IgG Fc fragment exclusively occurs within B cells pre-IgG secretion. We further demonstrate that B cells expressing ST6Gal1 have a developmental advantage over B cells lacking ST6Gal1 expression and thus dominate the plasma cell pool and the resulting serum IgG population in mouse models in which both ST6Gal1-sufficient and -deficient B cells are present.


Subject(s)
B-Lymphocytes , Immunoglobulin G , Sialyltransferases , Animals , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Mice , Sialyltransferases/metabolism , Sialyltransferases/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Mice, Knockout , Glycosylation , Mice, Inbred C57BL , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/genetics , beta-D-Galactoside alpha 2-6-Sialyltransferase , Plasma Cells/immunology , Plasma Cells/metabolism , Antibody Formation
6.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38851397

ABSTRACT

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Immunoglobulin Fc Fragments , Virion , Animals , Mice , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Virion/metabolism , Virion/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Cell Line , Leukemia Virus, Murine/genetics , Phagocytosis , Humans
7.
PLoS Pathog ; 20(6): e1011569, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900807

ABSTRACT

Antibodies perform both neutralizing and non-neutralizing effector functions that protect against certain pathogen-induced diseases. A human antibody directed at the SARS-CoV-2 Spike N-terminal domain (NTD), DH1052, was recently shown to be non-neutralizing, yet it protected mice and cynomolgus macaques from severe disease. The mechanisms of NTD non-neutralizing antibody-mediated protection are unknown. Here we show that Fc effector functions mediate NTD non-neutralizing antibody (non-nAb) protection against SARS-CoV-2 MA10 viral challenge in mice. Though non-nAb prophylactic infusion did not suppress infectious viral titers in the lung as potently as neutralizing antibody (nAb) infusion, disease markers including gross lung discoloration were similar in nAb and non-nAb groups. Fc functional knockout substitutions abolished non-nAb protection and increased viral titers in the nAb group. Fc enhancement increased non-nAb protection relative to WT, supporting a positive association between Fc functionality and degree of protection from SARS-CoV-2 infection. For therapeutic administration of antibodies, non-nAb effector functions contributed to virus suppression and lessening of lung discoloration, but the presence of neutralization was required for optimal protection from disease. This study demonstrates that non-nAbs can utilize Fc-mediated mechanisms to lower viral load and prevent lung damage due to coronavirus infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , SARS-CoV-2/immunology , Mice , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Immunoglobulin Fc Fragments/immunology , Spike Glycoprotein, Coronavirus/immunology , Humans , Female , Protein Domains/immunology , Viral Load , Lung/virology , Lung/immunology , Lung/pathology
8.
Front Immunol ; 15: 1401471, 2024.
Article in English | MEDLINE | ID: mdl-38938560

ABSTRACT

TRIM21 is a pivotal effector in the immune system, orchestrating antibody-mediated responses and modulating immune signaling. In this comprehensive study, we focus on the interaction of TRIM21 with Fc engineered antibodies and subsequent implications for viral neutralization. Through a series of analytical techniques, including biosensor assays, mass photometry, and electron microscopy, along with structure predictions, we unravel the intricate mechanisms governing the interplay between TRIM21 and antibodies. Our investigations reveal that the TRIM21 capacity to recognize, bind, and facilitate the proteasomal degradation of antibody-coated viruses is critically dependent on the affinity and avidity interplay of its interactions with antibody Fc regions. We suggest a novel binding mechanism, where TRIM21 binding to one Fc site results in the detachment of PRYSPRY from the coiled-coil domain, enhancing mobility due to its flexible linker, thereby facilitating the engagement of the second site, resulting in avidity due to bivalent engagement. These findings shed light on the dual role of TRIM21 in antiviral immunity, both in recognizing and directing viruses for intracellular degradation, and demonstrate its potential for therapeutic exploitation. The study advances our understanding of intracellular immune responses and opens new avenues for the development of antiviral strategies and innovation in tailored effector functions designed to leverage TRIM21s unique binding mode.


Subject(s)
Antibodies, Neutralizing , Immunoglobulin Fc Fragments , Protein Binding , Ribonucleoproteins , Humans , Ribonucleoproteins/immunology , Ribonucleoproteins/metabolism , Antibodies, Neutralizing/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Protein Engineering , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Antibody Affinity/immunology , Animals
9.
Front Immunol ; 15: 1382619, 2024.
Article in English | MEDLINE | ID: mdl-38779671

ABSTRACT

Introduction: Antibodies against the SARS-CoV-2 spike protein are a critical immune determinant for protection against the virus. While virus neutralization is a key function of spike-specific antibodies, antibodies also mediate Fc-dependent activities that can play a role in protection or pathogenesis. Methods: This study characterized serum antibody responses elicited after two doses of heterologous adenovirus-vectored (Ad26/ Ad5) vaccines. Results: Vaccine-induced antibody binding titers and Fc-mediated functions decreased over six months, while neutralization titers remained stable. Comparison of antibody isotypes elicited after Ad26/Ad5 vs. LNP-mRNA vaccination and after infection showed that anti-spike IgG1 were dominant and produced to high levels in all groups. The Ad26/Ad5 vaccines also induced IgG4 but not IgG2 and IgG3, whereas the LNP-mRNA vaccines elicited a full Ig spectrum (IgM, IgG1-4, IgA1-2). Convalescent COVID-19 patients had mainly IgM and IgA1 alongside IgG1. Despite these differences, the neutralization potencies against early variants were similar. However, both vaccine groups had antibodies with greater Fc potencies of binding complement and Fcg receptors than the COVID-19 group. The Ad26/Ad5 group also displayed a greater potency of RBD-specific antibody-mediated cellular phagocytosis. Discussion: Antibodies with distinctive quality were induced by different vaccines and infection. The data imply the utility of different vaccine platforms to elicit antibody responses with fine-tuned Fc activities.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Female , Immunoglobulin G/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Male , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Ad26COVS1/immunology , Adult , Middle Aged , Adenoviridae/immunology , Adenoviridae/genetics , Genetic Vectors , Immunoglobulin A/immunology , Immunoglobulin A/blood
10.
Immunity ; 57(6): 1215-1224.e6, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38788711

ABSTRACT

Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.


Subject(s)
Antibodies, Protozoan , Malaria Vaccines , Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Adult , Immunoglobulin Fc Fragments/immunology , Merozoites/immunology , Erythrocytes/parasitology , Erythrocytes/immunology , Female , Male , Young Adult
11.
Antiviral Res ; 227: 105917, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38782067

ABSTRACT

The Fc-fused receptor binding domain (RBD-Fc) vaccine for SARS-CoV-2 has garnered significant attention for its capacity to provide effective and specific immune protection. However, its immunogenicity is limited, highlighting the need for improvement in clinical application. Nanoparticle delivery has been shown to be an effective method for enhancing antigen immunogenicity. In this study, we developed bivalent nanoparticle recombinant protein vaccines by assembling the RBD-Fc of SARS-CoV-2 and Fc-binding homo-oligomers o42.1 and i52.3 into octahedral and icosahedral nanoparticles. The formation of RBD-Fc nanoparticles was confirmed through structural characterization and cell binding experiments. Compared to RBD-Fc dimers, the nanoparticle vaccines induced more potent neutralizing antibodies (nAb) and stronger cellular immune responses. Therefore, using bivalent nanoparticle vaccines based on RBD-Fc presents a promising vaccination strategy against SARS-CoV-2 and offers a universal approach for enhancing the immunogenicity of Fc fusion protein vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunoglobulin Fc Fragments , Nanovaccines , Spike Glycoprotein, Coronavirus , Animals , Female , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , Immunity, Cellular , Immunogenicity, Vaccine , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/chemistry , Mice, Inbred BALB C , Protein Binding , Protein Multimerization , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccine Development , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/chemistry
12.
Front Immunol ; 15: 1341013, 2024.
Article in English | MEDLINE | ID: mdl-38655263

ABSTRACT

Recombinant Factor VIII-Fc fusion protein (rFVIIIFc) is an enhanced half-life therapeutic protein product used for the management of hemophilia A. Recent studies have demonstrated that rFVIIIFc interacts with Fc gamma receptors (FcγR) resulting in the activation or inhibition of various FcγR-expressing immune cells. We previously demonstrated that rFVIIIFc, unlike recombinant Factor IX-Fc (rFIXFc), activates natural killer (NK) cells via Fc-mediated interactions with FcγRIIIA (CD16). Additionally, we showed that rFVIIIFc activated CD16+ NK cells to lyse a FVIII-specific B cell clone. Here, we used human NK cell lines and primary NK cells enriched from peripheral blood leukocytes to study the role of the FVIII moiety in rFVIIIFc-mediated NK cell activation. Following overnight incubation of NK cells with rFVIIIFc, cellular activation was assessed by measuring secretion of the inflammatory cytokine IFNγ by ELISA or by cellular degranulation. We show that anti-FVIII, anti-Fc, and anti-CD16 all inhibited indicating that these molecules were involved in rFVIIIFc-mediated NK cell activation. To define which domains of FVIII were involved, we used antibodies that are FVIII domain-specific and demonstrated that blocking FVIII C1 or C2 domain-mediated membrane binding potently inhibited rFVIIIFc-mediated CD16+ NK cell activation, while targeting the FVIII heavy chain domains did not. We also show that rFVIIIFc binds CD16 with about five-fold higher affinity than rFIXFc. Based on our results we propose that FVIII light chain-mediated membrane binding results in tethering of the fusion protein to the cell surface, and this, together with increased binding affinity for CD16, allows for Fc-CD16 interactions to proceed, resulting in NK cellular activation. Our working model may explain our previous results where we observed that rFVIIIFc activated NK cells via CD16, whereas rFIXFc did not despite having identical IgG1 Fc domains.


Subject(s)
Factor VIII , GPI-Linked Proteins , Immunoglobulin Fc Fragments , Killer Cells, Natural , Lymphocyte Activation , Receptors, IgG , Recombinant Fusion Proteins , Humans , Cell Degranulation/immunology , Factor VIII/chemistry , Factor VIII/immunology , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Hemophilia A/immunology , Hemophilia A/drug therapy , Immunoglobulin Fc Fragments/immunology , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Lymphocyte Activation/drug effects , Protein Binding , Receptors, IgG/metabolism , Receptors, IgG/immunology
13.
Clin Transl Sci ; 17(4): e13775, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651744

ABSTRACT

This study aimed to evaluate the pharmacokinetics (PKs), safety, and immunogenicity of the biosimilar HEC14028 compared to reference Trulicity® (dulaglutide) in healthy male Chinese subjects. This study was a single-center, randomized, open, single-dose, parallel-controlled comparative Phase I clinical trial, including a screening period of up to 14 days, a 17-day observation period after administration, and a 7-day safety follow-up period. A total of 68 healthy male subjects were randomly assigned (1:1) to the test group (HEC14028) and the reference group (dulaglutide) (single 0.75 mg abdominal subcutaneous dose). The primary objective was to evaluate the pharmacokinetic characteristics of HEC14028 and compare the pharmacokinetic similarities between HEC14028 and dulaglutide. The primary PK endpoints were maximum plasma concentration (Cmax) and area under the blood concentration-time curve from zero time to the estimated infinite time (AUC0-∞). The study results showed that HEC14028 and dulaglutide were pharmacokinetically equivalent: 90% confidence interval (CI) of Cmax and AUC0-∞ geometric mean ratios were 102.9%-122.0% and 97.1%-116.9%, respectively, which were both within the range of 80.00%-125.00%. No grade 3 or above treatment emergent adverse events (TEAEs), serious adverse events (SAEs), TEAEs leading to withdrawal from the trial, or TEAEs leading to death were reported in this study. Both HEC14028 and dulaglutide showed good and similar safety profiles, and no incremental immunogenicity was observed in subjects receiving HEC14028 and dulaglutide.


Subject(s)
Biosimilar Pharmaceuticals , Glucagon-Like Peptides , Healthy Volunteers , Immunoglobulin Fc Fragments , Recombinant Fusion Proteins , Adolescent , Adult , Humans , Male , Middle Aged , Young Adult , Area Under Curve , Asian People , Biosimilar Pharmaceuticals/pharmacokinetics , Biosimilar Pharmaceuticals/administration & dosage , Biosimilar Pharmaceuticals/adverse effects , China , East Asian People , Glucagon-Like Peptides/pharmacokinetics , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/administration & dosage , Glucagon-Like Peptides/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Immunoglobulin Fc Fragments/administration & dosage , Immunoglobulin Fc Fragments/adverse effects , Immunoglobulin Fc Fragments/immunology , Injections, Subcutaneous , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects , Therapeutic Equivalency
14.
Nat Commun ; 15(1): 3600, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678029

ABSTRACT

Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.


Subject(s)
COVID-19 , Immunoglobulin Fc Fragments , Immunoglobulin G , SARS-CoV-2 , Streptococcus pyogenes , Animals , Humans , Mice , Antibodies, Bacterial/immunology , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Mice, Inbred BALB C , Phagocytosis , Protein Engineering/methods , SARS-CoV-2/immunology , Streptococcal Infections/immunology , Streptococcal Infections/microbiology , Streptococcus pyogenes/immunology
15.
J Med Virol ; 96(5): e29638, 2024 May.
Article in English | MEDLINE | ID: mdl-38682662

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused more than 676 million cases in the global human population with approximately 7 million deaths and vaccination has been proved as the most effective countermeasure in reducing clinical complications and mortality rate of SARS-CoV-2 infection in people. However, the protective elements and correlation of protection induced by vaccination are still not completely understood. Various antibodies with multiple protective mechanisms can be induced simultaneously by vaccination in vivo, thereby complicating the identification and characterization of individual correlate of protection. Recently, an increasing body of observations suggests that antibody-induced Fc-effector functions play a crucial role in combating SARS-CoV-2 infections, including neutralizing antibodies-escaping variants. Here, we review the recent progress in understanding the impact of Fc-effector functions in broadly disarming SARS-CoV-2 infectivity and discuss various efforts in harnessing this conserved antibody function to develop an effective SARS-CoV-2 vaccine that can protect humans against infections by SARS-CoV-2 virus and its variants of concern.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin Fc Fragments , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Immunoglobulin Fc Fragments/immunology , Animals , Vaccination
16.
J Clin Invest ; 134(11)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530369

ABSTRACT

Antibodies can initiate lung injury in a variety of disease states such as autoimmunity, in reactions to transfusions, or after organ transplantation, but the key factors determining in vivo pathogenicity of injury-inducing antibodies are unclear. Harmful antibodies often activate the complement cascade. A model for how IgG antibodies trigger complement activation involves interactions between IgG Fc domains driving the assembly of IgG hexamer structures that activate C1 complexes. The importance of IgG hexamers in initiating injury responses was not clear, so we tested their relevance in a mouse model of alloantibody- and complement-mediated acute lung injury. We used 3 approaches to block alloantibody hexamerization (antibody carbamylation, the K439E Fc mutation, or treatment with domain B from staphylococcal protein A), all of which reduced acute lung injury. Conversely, Fc mutations promoting spontaneous hexamerization made a harmful alloantibody into a more potent inducer of acute lung injury and rendered an innocuous alloantibody pathogenic. Treatment with a recombinant Fc hexamer "decoy" therapeutic protected mice from lung injury, including in a model with transgenic human FCGR2A expression that exacerbated pathology. These results indicate an in vivo role of IgG hexamerization in initiating acute lung injury and the potential for therapeutics that inhibit or mimic hexamerization to treat antibody-mediated diseases.


Subject(s)
Acute Lung Injury , Immunoglobulin G , Receptors, IgG , Animals , Mice , Acute Lung Injury/immunology , Acute Lung Injury/pathology , Immunoglobulin G/immunology , Humans , Receptors, IgG/immunology , Receptors, IgG/genetics , Receptors, IgG/metabolism , Complement Activation/immunology , Mice, Transgenic , Isoantibodies/immunology , Mutation, Missense , Disease Models, Animal , Amino Acid Substitution , Immunoglobulin Fc Fragments/immunology , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism
17.
Trends Microbiol ; 32(8): 756-768, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38365562

ABSTRACT

Major efforts were deployed to study the antibody response against SARS-CoV-2. Antibodies neutralizing SARS-CoV-2 have been extensively studied in the context of infections, vaccinations, and breakthrough infections. Antibodies, however, are pleiotropic proteins that have many functions in addition to neutralization. These include Fc-effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Although important to combat viral infections, these Fc-effector functions were less studied in the context of SARS-CoV-2 compared with binding and neutralization. This is partly due to the difficulty in developing reliable assays to measure Fc-effector functions compared to antibody binding and neutralization. Multiple assays have now been developed and can be used to measure different Fc-effector functions. Here, we review these assays and what is known regarding anti-SARS-CoV-2 Fc-effector functions. Overall, this review summarizes and updates our current state of knowledge regarding anti-SARS-CoV-2 Fc-effector functions.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , COVID-19 , Immunoglobulin Fc Fragments , Phagocytosis , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Phagocytosis/immunology , Immunoglobulin Fc Fragments/immunology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL