Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.103
1.
World J Microbiol Biotechnol ; 40(6): 196, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722368

During the epoch of sustainable development, leveraging cellular systems for production of diverse chemicals via fermentation has garnered attention. Industrial fermentation, extending beyond strain efficiency and optimal conditions, necessitates a profound understanding of microorganism growth characteristics. Specific growth rate (SGR) is designated as a key variable due to its influence on cellular physiology, product synthesis rates and end-product quality. Despite its significance, the lack of real-time measurements and robust control systems hampers SGR control strategy implementation. The narrative in this contribution delves into the challenges associated with the SGR control and presents perspectives on various control strategies, integration of soft-sensors for real-time measurement and control of SGR. The discussion highlights practical and simple SGR control schemes, suggesting their seamless integration into industrial fermenters. Recommendations provided aim to propose new algorithms accommodating mechanistic and data-driven modelling for enhanced progress in industrial fermentation in the context of sustainable bioprocessing.


Batch Cell Culture Techniques , Bioreactors , Fermentation , Industrial Microbiology , Bioreactors/microbiology , Industrial Microbiology/methods , Algorithms , Bacteria/metabolism , Bacteria/growth & development
2.
World J Microbiol Biotechnol ; 40(7): 214, 2024 May 24.
Article En | MEDLINE | ID: mdl-38789837

Levan, a ß-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.


Fermentation , Fructans , Fructans/biosynthesis , Fructans/metabolism , Bacteria/metabolism , Bacteria/genetics , Protein Engineering/methods , Sucrose/metabolism , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , Industrial Microbiology/methods
3.
Biotechnol Adv ; 73: 108373, 2024.
Article En | MEDLINE | ID: mdl-38704106

Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.


Surface-Active Agents , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Fermentation , Bacteria/metabolism , Biotechnology/methods , Lignin/metabolism , Lignin/chemistry , Industrial Microbiology/methods , Amino Acids/metabolism
4.
BMC Microbiol ; 23(1): 309, 2023 10 26.
Article En | MEDLINE | ID: mdl-37884896

BACKGROUND: Stress-tolerant yeasts are highly desirable for cost-effective bioprocessing. Several strategies have been documented to develop robust yeasts, such as genetic and metabolic engineering, artificial selection, and natural selection strategies, among others. However, the significant drawbacks of such techniques have motivated the exploration of naturally occurring stress-tolerant yeasts. We previously explored the biodiversity of non-conventional dung beetle-associated yeasts from extremophilic and pristine environments in Botswana (Nwaefuna AE et.al., Yeast, 2023). Here, we assessed their tolerance to industrially relevant stressors individually, such as elevated concentrations of osmolytes, organic acids, ethanol, and oxidizing agents, as well as elevated temperatures. RESULTS: Our findings suggest that these dung beetle-associated yeasts tolerate various stresses comparable to those of the robust bioethanol yeast strain, Saccharomyces cerevisiae (Ethanol Red™). Fifty-six percent of the yeast isolates were tolerant of temperatures up to 42 °C, 12.4% of them could tolerate ethanol concentrations up to 9% (v/v), 43.2% of them were tolerant to formic acid concentrations up to 20 mM, 22.7% were tolerant to acetic acid concentrations up to 45 mM, 34.0% of them could tolerate hydrogen peroxide up to 7 mM, and 44.3% of the yeasts could tolerate osmotic stress up to 1.5 M. CONCLUSION: The ability to tolerate multiple stresses is a desirable trait in the selection of novel production strains for diverse biotechnological applications, such as bioethanol production. Our study shows that the exploration of natural diversity in the search for stress-tolerant yeasts is an appealing approach for the development of robust yeasts.


Saccharomyces cerevisiae , Yeasts , Saccharomyces cerevisiae/metabolism , Yeasts/genetics , Yeasts/metabolism , Ethanol/metabolism , Osmotic Pressure , Temperature , Industrial Microbiology/methods , Fermentation
5.
Microb Cell Fact ; 22(1): 64, 2023 Apr 04.
Article En | MEDLINE | ID: mdl-37016390

BACKGROUND: Icaritin is an aglycone of flavonoid glycosides from Herba Epimedii. It has good performance in the treatment of hepatocellular carcinoma in clinical trials. However, the natural icaritin content of Herba Epimedii is very low. At present, the icaritin is mainly prepared from flavonoid glycosides by α-L-rhamnosidases and ß-glucosidases in two-step catalysis process. However, one-pot icaritin production required reported enzymes to be immobilized or bifunctional enzymes to hydrolyze substrate with long reaction time, which caused complicated operations and high costs. To improve the production efficiency and reduce costs, we explored α-L-rhamnosidase SPRHA2 and ß-glucosidase PBGL to directly hydrolyze icariin to icaritin in one-pot, and developed the whole-cell catalytic method for efficient icaritin production. RESULTS: The SPRHA2 and PBGL were expressed in Escherichia coli, respectively. One-pot production of icaritin was achieved by co-catalysis of SPRHA2 and PBGL. Moreover, whole-cell catalysis was developed for icariin hydrolysis. The mixture of SPRHA2 cells and PBGL cells transformed 200 g/L icariin into 103.69 g/L icaritin (yield 95.23%) in 4 h in whole-cell catalysis under the optimized reaction conditions. In order to further increase the production efficiency and simplify operations, we also constructed recombinant E. coli strains that co-expressed SPRHA2 and PBGL. Crude icariin extracts were also efficiently hydrolyzed by the whole-cell catalytic system. CONCLUSIONS: Compared to previous reports on icaritin production, in this study, whole-cell catalysis showed higher production efficiency of icaritin. This study provides promising approach for industrial production of icaritin in the future.


Drug Industry , Drugs, Chinese Herbal , Flavonoids , Industrial Microbiology , Catalysis , Drugs, Chinese Herbal/chemical synthesis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Escherichia coli/genetics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , Sphingomonadaceae/enzymology , Sphingomonadaceae/genetics , Paenibacillus/enzymology , Paenibacillus/genetics , Industrial Microbiology/methods , Drug Industry/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Flavonoids/biosynthesis , Hydrolysis
6.
Sheng Wu Gong Cheng Xue Bao ; 39(3): 993-1008, 2023 Mar 25.
Article Zh | MEDLINE | ID: mdl-36994567

The development of synthetic biology has greatly promoted the construction of microbial cell factories, providing an important strategy for green and efficient chemical production. However, the bottleneck of poor tolerance to harsh industrial environments has become the key factor hampering the productivity of microbial cells. Adaptive evolution is an important method to domesticate microorganisms for a certain period by applying targeted selection pressure to obtain desired phenotypic or physiological properties that are adapted to a specific environment. Recently, with the development of technologies such as microfluidics, biosensors, and omics analysis, adaptive evolution has laid the foundation for efficient productivity of microbial cell factories. Herein, we discuss the key technologies of adaptive evolution and their important applications in improvement of environmental tolerance and production efficiency of microbial cell factories. Moreover, we looked forward to the prospects of adaptive evolution to realize industrial production by microbial cell factories.


Industrial Microbiology , Metabolic Engineering , Industrial Microbiology/methods , Synthetic Biology , Environment , Industry
7.
Chinese Journal of Biotechnology ; (12): 993-1008, 2023.
Article Zh | WPRIM | ID: wpr-970418

The development of synthetic biology has greatly promoted the construction of microbial cell factories, providing an important strategy for green and efficient chemical production. However, the bottleneck of poor tolerance to harsh industrial environments has become the key factor hampering the productivity of microbial cells. Adaptive evolution is an important method to domesticate microorganisms for a certain period by applying targeted selection pressure to obtain desired phenotypic or physiological properties that are adapted to a specific environment. Recently, with the development of technologies such as microfluidics, biosensors, and omics analysis, adaptive evolution has laid the foundation for efficient productivity of microbial cell factories. Herein, we discuss the key technologies of adaptive evolution and their important applications in improvement of environmental tolerance and production efficiency of microbial cell factories. Moreover, we looked forward to the prospects of adaptive evolution to realize industrial production by microbial cell factories.


Metabolic Engineering , Industrial Microbiology/methods , Synthetic Biology , Environment , Industry
8.
Methods Mol Biol ; 2513: 255-270, 2022.
Article En | MEDLINE | ID: mdl-35781210

Evolutionary engineering of microbes provides a powerful tool for untargeted optimization of (engineered) cell factories and identification of genetic targets for further research. Directed evolution is an intrinsically time-intensive effort, and automated methods can significantly reduce manual labor. Here, design considerations for various evolutionary engineering methods are described, and generic workflows for batch-, chemostat-, and accelerostat-based evolution in automated bioreactors are provided. These methods can be used to evolve yeast cultures for >1000 generations and are designed to require minimal manual intervention.


Industrial Microbiology , Yeasts , Bioreactors , Industrial Microbiology/methods , Metabolic Engineering/methods , Yeasts/genetics
9.
Curr Pharm Des ; 28(41): 3325-3336, 2022.
Article En | MEDLINE | ID: mdl-35388747

Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via ß-1,4-glycosidic bonds, which are broken down by cellulase. A great deal of biodiversity resides in the ocean, and marine systems produce a wide range of distinct, new bioactive compounds that remain available but dormant for many years. The marine environment is filled with biomass from known and unknown vertebrates and invertebrate microorganisms, with much potential for use in medicine and biotechnology. Hence, complex polysaccharides derived from marine sources are a rich resource of microorganisms equipped with enzymes for polysaccharides degradation. Marine cellulases' extracts from the isolates are tested for their functional role in degrading seaweed and modifying wastes to low molecular fragments. They purify and renew environments by eliminating possible feedstocks of pollution. This review aims to examine the various types of marine cellulase producers and assess the ability of these microorganisms to produce these enzymes and their subsequent biotechnological applications.


Cellulase , Cellulases , Bacterial Proteins/chemistry , Biomass , Biotechnology/methods , Cellulase/metabolism , Cellulases/metabolism , Industrial Microbiology/methods , Polysaccharides/chemistry
10.
Nat Rev Microbiol ; 20(1): 35-48, 2022 01.
Article En | MEDLINE | ID: mdl-34341566

Metabolic engineering can have a pivotal role in increasing the environmental sustainability of the transportation and chemical manufacturing sectors. The field has already developed engineered microorganisms that are currently being used in industrial-scale processes. However, it is often challenging to achieve the titres, yields and productivities required for commercial viability. The efficiency of microbial chemical production is usually dependent on the physiological traits of the host organism, which may either impose limitations on engineered biosynthetic pathways or, conversely, boost their performance. In this Review, we discuss different aspects of microbial physiology that often create obstacles for metabolic engineering, and present solutions to overcome them. We also describe various instances in which natural or engineered physiological traits in host organisms have been harnessed to benefit engineered metabolic pathways for chemical production.


Bacteria/genetics , Metabolic Engineering/methods , Metabolic Engineering/standards , Metabolic Networks and Pathways , Bacterial Physiological Phenomena , Biosynthetic Pathways , Industrial Microbiology/methods , Industrial Microbiology/standards
11.
Folia Microbiol (Praha) ; 67(2): 253-264, 2022 Apr.
Article En | MEDLINE | ID: mdl-34743285

Production of amylases by fungi under solid-state fermentation is considered the best methodology for commercial scaling that addresses the ever-escalating needs of the worldwide enzyme market. Here response surface methodology (RSM) was used for the optimization of process variables for α-amylase enzyme production from Trichoderma virens using watermelon rinds (WMR) under solid-state fermentation (SSF). The statistical model included four variables, each detected at two levels, followed by model development with partial purification and characterization of α-amylase. The partially purified α-amylase was characterized with regard to optimum pH, temperature, kinetic constant, and substrate specificity. The results indicated that both pH and moisture content had a significant effect (P < 0.05) on α-amylase production (880 U/g) under optimized process conditions at a 3-day incubation time, moisture content of 50%, 30 °C, and pH 6.98. Statistical optimization using RSM showed R2 values of 0.9934, demonstrating the validity of the model. Five α-amylases were separated by using DEAE-Sepharose and characterized with a wide range of optimized pH values (pH 4.5-9.0), temperature optima (40-60 °C), low Km values (2.27-3.3 mg/mL), and high substrate specificity toward large substrates. In conclusion, this study presents an efficient and green approach for utilization of agro-waste for production of the valuable α-amylase enzyme using RSM under SSF. RSM was particularly beneficial for the optimization and analysis of the effective process parameters.


Citrullus , Hypocrea , Amylases , Citrullus/metabolism , Fermentation , Hydrogen-Ion Concentration , Hypocrea/metabolism , Industrial Microbiology/methods , Temperature , alpha-Amylases/chemistry , alpha-Amylases/metabolism
12.
ACS Synth Biol ; 10(11): 2796-2807, 2021 11 19.
Article En | MEDLINE | ID: mdl-34738786

Chromosomal integration of exogenous genes is preferred for industrially related fermentation, as plasmid-mediated fermentation leads to extra metabolic burden and genetic instability. Moreover, with the development and advancement of genome engineering and gene editing technologies, inserting genes into chromosomes has become more convenient; integration expression is extensively utilized in microorganisms for industrial bioproduction and expected to become the trend of recombinant protein expression. However, in actual research and application, it is important to enhance the expression of heterologous genes at the host genome level. Herein, we summarized the basic principles and characteristics of genomic integration; furthermore, we highlighted strategies to improve the expression of chromosomal integration of genes and pathways in host strains from three aspects, including chassis cell optimization, regulation of expression elements in gene expression cassettes, optimization of gene dose level and integration sites on chromosomes. Moreover, we reviewed and summarized the relevant studies on the application of integrated expression in the exploration of gene function and the various types of industrial microorganism production. Consequently, this review would serve as a reference for the better application of integrated expression.


Gene Expression/genetics , Microbiota/genetics , Chromosomes/genetics , Fermentation/genetics , Humans , Industrial Microbiology/methods , Recombinant Proteins/genetics
13.
Microb Cell Fact ; 20(1): 214, 2021 Nov 18.
Article En | MEDLINE | ID: mdl-34794448

BACKGROUND: Microbially induced calcite precipitation (MICP) is an ancient property of bacteria, which has recently gained considerable attention for biotechnological applications. It occurs as a by-product of bacterial metabolism and involves a combination of chemical changes in the extracellular environment, e.g. pH increase, and presence of nucleation sites on the cell surface or extracellular substances produced by the bacteria. However, the molecular mechanisms underpinning MICP and the interplay between the contributing factors remain poorly understood, thus placing barriers to the full biotechnological and synthetic biology exploitation of bacterial biomineralisation. RESULTS: In this study, we adopted a bottom-up approach of systematically engineering Bacillus subtilis, which has no detectable intrinsic MICP activity, for biomineralisation. We showed that heterologous production of urease can induce MICP by local increases in extracellular pH, and this can be enhanced by co-expression of urease accessory genes for urea and nickel uptake, depending on environmental conditions. MICP can be strongly enhanced by biofilm-promoting conditions, which appeared to be mainly driven by production of exopolysaccharide, while the protein component of the biofilm matrix was dispensable. Attempts to modulate the cell surface charge of B. subtilis had surprisingly minor effects, and our results suggest this organism may intrinsically have a very negative cell surface, potentially predisposing it for MICP activity. CONCLUSIONS: Our findings give insights into the molecular mechanisms driving MICP in an application-relevant chassis organism and the genetic elements that can be used to engineer de novo or enhanced biomineralisation. This study also highlights mutual influences between the genetic drivers and the chemical composition of the surrounding environment in determining the speed, spatial distribution and resulting mineral crystals of MICP. Taken together, these data pave the way for future rational design of synthetic precipitator strains optimised for specific applications.


Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Biomineralization , Calcium Carbonate/metabolism , Polysaccharides, Bacterial/metabolism , Urease/metabolism , Biofilms , Calcium Carbonate/chemistry , Chemical Precipitation , DNA, Bacterial , Genetic Engineering , Hydrogen-Ion Concentration , Industrial Microbiology/methods , Nickel/metabolism , Sequence Deletion , Urea/metabolism
14.
Nat Commun ; 12(1): 6693, 2021 11 18.
Article En | MEDLINE | ID: mdl-34795278

Bioleaching of rare earth elements (REEs), using microorganisms such as Gluconobacter oxydans, offers a sustainable alternative to environmentally harmful thermochemical extraction, but is currently not very efficient. Here, we generate a whole-genome knockout collection of single-gene transposon disruption mutants for G. oxydans B58, to identify genes affecting the efficacy of REE bioleaching. We find 304 genes whose disruption alters the production of acidic biolixiviant. Disruption of genes underlying synthesis of the cofactor pyrroloquinoline quinone (PQQ) and the PQQ-dependent membrane-bound glucose dehydrogenase nearly eliminates bioleaching. Disruption of phosphate-specific transport system genes enhances bioleaching by up to 18%. Our results provide a comprehensive roadmap for engineering the genome of G. oxydans to further increase its bioleaching efficiency.


Bacterial Proteins/genetics , Gene Knockout Techniques/methods , Genome, Bacterial/genetics , Gluconobacter oxydans/genetics , Glucose Dehydrogenases/genetics , PQQ Cofactor/genetics , Bacterial Proteins/metabolism , Genetic Engineering/methods , Gluconobacter oxydans/metabolism , Glucose Dehydrogenases/metabolism , Industrial Microbiology/methods , Metals, Rare Earth/metabolism , PQQ Cofactor/metabolism , Reproducibility of Results
15.
Int J Biol Macromol ; 192: 978-998, 2021 Dec 01.
Article En | MEDLINE | ID: mdl-34656544

Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One­carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.


Biopolymers/biosynthesis , Industrial Microbiology/methods , Plastics/chemistry , Polyhydroxyalkanoates/biosynthesis , Bioengineering/methods , Biopolymers/chemistry , Bioreactors , Carbon/chemistry , Carbon/metabolism , Fermentation , Metabolic Networks and Pathways , Polyhydroxyalkanoates/chemistry
16.
Biochem J ; 478(20): 3685-3721, 2021 10 29.
Article En | MEDLINE | ID: mdl-34673920

Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.


Bacterial Proteins/genetics , Directed Molecular Evolution/methods , Fungal Proteins/genetics , Metabolic Engineering/methods , Protein Engineering/methods , Bacterial Proteins/metabolism , Biotechnology/methods , Epistasis, Genetic , Fungal Proteins/metabolism , Genetic Association Studies , Genome, Bacterial , Genome, Fungal , Industrial Microbiology/methods , Metabolic Networks and Pathways/genetics , Metabolomics/methods , Protein Biosynthesis , Proteomics/methods , Transcription, Genetic
17.
Molecules ; 26(20)2021 Oct 14.
Article En | MEDLINE | ID: mdl-34684778

Biohydrometallurgy recovers metals through microbially mediated processes and has been traditionally applied for the extraction of base metals from low-grade sulfidic ores. New investigations explore its potential for other types of critical resources, such as rare earth elements. In recent times, the interest in rare earth elements (REEs) is growing due to of their applications in novel technologies and green economy. The use of biohydrometallurgy for extracting resources from waste streams is also gaining attention to support innovative mining and promote a circular economy. The increase in wastes containing REEs turns them into a valuable alternative source. Most REE ores and industrial residues do not contain sulfides, and bioleaching processes use autotrophic or heterotrophic microorganisms to generate acids that dissolve the metals. This review gathers information towards the recycling of REE-bearing wastes (fluorescent lamp powder, spent cracking catalysts, e-wastes, etc.) using a more sustainable and environmentally friendly technology that reduces the impact on the environment.


Industrial Waste/analysis , Metallurgy/methods , Metals, Rare Earth/isolation & purification , Industrial Microbiology/methods , Mining , Recycling/methods
18.
Vet Microbiol ; 262: 109240, 2021 Nov.
Article En | MEDLINE | ID: mdl-34600200

Because contaminated livestock trailers are a significant risk for transmitting viruses between herds, various methods of washing, disinfecting, and thermo-assisted drying and decontamination (TADD) have been evaluated for their effectiveness in inactivating porcine reproductive and respiratory syndrome virus (PRRSV) on contaminated surfaces. Information on when to expect negative qRT-PCR results after adequate trailer sanitation is lacking. The objective of this study was to evaluate whether there are conditions associated with washing-disinfectant-TADD procedures that will consistently produce a negative qRT-PCR result for the purpose of monitoring compliance with trailer sanitation and decontamination protocols for PRRSV on metal surfaces. 144 diamond plate aluminum coupons were spiked with PRRSV or phosphate-buffered saline (PBS) and treated with a designated disinfectant protocol. Disinfectants evaluated included multiple accelerated® hydrogen peroxide (AHP) disinfectants and a quaternary ammonium and glutaraldehyde combination disinfectant. Disinfectant was applied for 5 or 60 minutes of contact time at either 20 °C or -10 °C in a matrix of feces or PBS. All coupons were heated until the surface temperature of the coupon reached 71 °C and then held for 10 minutes to simulate TADD under field conditions. Post-treatment swabs for all treatment groups, except negative control groups, were positive by PRRSV qRT-PCR. Under the conditions evaluated in this study, consistently negative qRT-PCR results after treatments were not found. Therefore, for the purpose of monitoring compliance with trailer sanitation and decontamination protocols for PRRSV, alternatives to qRT-PCR should be explored.


Decontamination , Disinfection , Industrial Microbiology , Metals , Porcine respiratory and reproductive syndrome virus , Reverse Transcriptase Polymerase Chain Reaction , Animals , Decontamination/standards , Desiccation , Disinfectants/pharmacology , Disinfection/standards , Hot Temperature , Industrial Microbiology/methods , Industrial Microbiology/standards , Porcine respiratory and reproductive syndrome virus/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine
19.
J Microbiol Biotechnol ; 31(12): 1722-1731, 2021 Dec 28.
Article En | MEDLINE | ID: mdl-34489377

The genus Streptomyces is intensively studied due to its excellent ability to produce secondary metabolites with diverse bioactivities. In particular, adequate precursors of secondary metabolites as well as sophisticated post modification systems make some high-yield industrial strains of Streptomyces the promising chassis for the heterologous production of natural products. However, lack of efficient genetic tools for the manipulation of industrial strains, especially the episomal vector independent tools suitable for large DNA fragment deletion, makes it difficult to remold the metabolic pathways and streamline the genomes in these strains. In this respect, we developed an efficient deletion system independent of the episomal vector for large DNA fragment deletion. Based on this system, four large segments of DNA, ranging in length from 10 kb to 200 kb, were knocked out successfully from three industrial Streptomyces strains without any marker left. Notably, compared to the classical deletion system used in Streptomyces, this deletion system takes about 25% less time in our cases. This work provides a very effective tool for further genetic engineering of the industrial Streptomyces.


Genetic Engineering/methods , Industrial Microbiology/methods , Streptomyces/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , Multigene Family/genetics , Piperidones/metabolism , Sequence Deletion , Streptomyces/metabolism
20.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34536471

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Anabaena/metabolism , Hydroxybutyrates/metabolism , Industrial Microbiology/methods , Polyesters/metabolism , Anabaena/growth & development , Biomass , Phosphorus/metabolism
...