Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.151
Filter
1.
BMC Vet Res ; 20(1): 285, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956597

ABSTRACT

Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 virus was detected in the South American sea lions found dead in Santa Catarina, Brazil, in October 2023. Whole genome sequencing and comparative phylogenetic analysis were conducted to investigate the origin, genetic diversity, and zoonotic potentials of the H5N1 viruses. The H5N1 viruses belonged to the genotype B3.2 of clade 2.3.4.4b H5N1 virus, which was identified in North America and disseminated to South America. They have acquired new amino acid substitutions related to mammalian host affinity. Our study provides insights into the genetic landscape of HPAI H5N1 viruses in Brazil, highlighting the continuous evolutionary processes contributing to their possible adaptation to mammalian hosts.


Subject(s)
Influenza A Virus, H5N1 Subtype , Phylogeny , Sea Lions , Whole Genome Sequencing , Animals , Sea Lions/virology , Brazil , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/classification , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Genome, Viral , Genotype , Genetic Variation
2.
J Gen Virol ; 105(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38922678

ABSTRACT

Highly pathogenic avian influenza (HPAI) H5N1 viruses are responsible for disease outbreaks in wild birds and poultry, resulting in devastating losses to the poultry sector. Since 2020, an increasing number of outbreaks of HPAI H5N1 was seen in wild birds. Infections in mammals have become more common, in most cases in carnivores after direct contact with infected birds. Although ruminants were previously not considered a host species for HPAI viruses, in March 2024 multiple outbreaks of HPAI H5N1 were detected in goats and cattle in the United States. Here, we have used primary bronchus-derived well-differentiated bovine airway epithelial cells (WD-AECs) cultured at air-liquid interface to assess the susceptibility and permissiveness of bovine epithelial cells to infection with European H5N1 virus isolates. We inoculated bovine WD-AECs with three low-passage HPAI clade 2.3.4.4b H5N1 virus isolates and detected rapid increases in viral genome loads and infectious virus during the first 24 h post-inoculation, without substantial cytopathogenic effects. Three days post-inoculation infected cells were still detectable by immunofluorescent staining. These data indicate that multiple lineages of HPAI H5N1 may have the propensity to infect the respiratory tract of cattle and support extension of avian influenza surveillance efforts to ruminants. Furthermore, this study underscores the benefit of WD-AEC cultures for pandemic preparedness by providing a rapid and animal-free assessment of the host range of an emerging pathogen.


Subject(s)
Epithelial Cells , Influenza A Virus, H5N1 Subtype , Virus Replication , Animals , Cattle , Epithelial Cells/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/physiology , Influenza A Virus, H5N1 Subtype/isolation & purification , Cells, Cultured
5.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848854

ABSTRACT

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Subject(s)
Antigenic Variation , Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Glycosylation , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Chickens/virology , Influenza in Birds/immunology , Influenza in Birds/virology , Influenza in Birds/prevention & control , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza Vaccines/immunology , Epitopes/immunology , Epitopes/chemistry , Antigens, Viral/immunology , Antigens, Viral/genetics
7.
Sci Total Environ ; 943: 173692, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38825193

ABSTRACT

Despite its popularity for water activities, such as swimming, surfing, fishing, and rafting, inland and coastal bathing areas occasionally experience outbreaks of highly pathogenic avian influenza virus (HPAI), including A(H5N1) clade 2.3.4.4b. Asymptomatic infections and symptomatic outbreaks often impact many aquatic birds, which increase chances of spill-over events to mammals and pose concerns for public health. This review examined the existing literature to assess avian influenza virus (AIV) transmission risks to beachgoers and the general population. A comprehensive understanding of factors governing such crossing of the AIV host range is currently lacking. There is limited knowledge on key factors affecting risk, such as species-specific interactions with host cells (including binding, entry, and replication via viral proteins hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic protein 2), overcoming host restrictions, and innate immune response. AIV efficiently transmits between birds and to some extent between marine scavenger mammals in aquatic environments via consumption of infected birds. However, the current literature lacks evidence of zoonotic AIV transmission via contact with the aquatic environment or consumption of contaminated water. The zoonotic transmission risk of the circulating A(H5N1) clade 2.3.4.4b virus to the general population and beachgoers is currently low. Nevertheless, it is recommended to avoid direct contact with sick or dead birds and to refrain from bathing in locations where mass bird mortalities are reported. Increasing reports of AIVs spilling over to non-human mammals have raised valid concerns about possible virus mutations that lead to crossing the species barrier and subsequent risk of human infections and outbreaks.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Humans , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Animals , Influenza, Human/epidemiology , Influenza, Human/transmission , Environmental Monitoring , Bathing Beaches , One Health
11.
Med Sci Monit ; 30: e945315, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822579

ABSTRACT

Highly pathogenic avian influenza (HPAI) virus subtypes have been increasingly identified in poultry and wild birds since 2021. Between 2020-2023, 26 countries have reported that the H5N1 virus had infected more than 48 mammalian species. On 1 April 2024, a public health alert was issued in Texas when the first confirmed case of human infection with the H5N1 influenza virus was reported in a dairy worker. Cases of H5N1, clade 2.3.4.4b in dairy cows have been reported in several states in the US but were unexpected, even though H5N1 was previously identified in mammalian species, including cats, dogs, bears, foxes, tigers, coyotes, goats, and seals. On 29 April 2024, almost one month after the first reported cases of H5N1 infection in dairy cows, measures were to be implemented by the US Department of Agriculture (USDA) to prevent the progression of H5N1 viral transmission. This editorial summarizes what is currently known about the epidemiology, transmission, and surveillance of the HPAI virus of the H5N1 subtype in birds, mammals, and dairy cows, and why there are concerns regarding transmission to humans.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Cattle , Influenza A Virus, H5N1 Subtype/pathogenicity , Humans , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza, Human/virology , Influenza, Human/epidemiology , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/epidemiology , Birds/virology , Mammals/virology , Dairying
13.
Emerg Microbes Infect ; 13(1): 2361792, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38828793

ABSTRACT

Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.


Subject(s)
Animals, Wild , Influenza A Virus, H5N1 Subtype , Orthomyxoviridae Infections , Animals , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , United Kingdom/epidemiology , Animals, Wild/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/transmission , Canidae , Influenza in Birds/virology , Influenza in Birds/mortality , Influenza in Birds/transmission
15.
Sci Rep ; 14(1): 14199, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902400

ABSTRACT

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Subject(s)
Animals, Wild , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Poultry , Animals , Influenza in Birds/epidemiology , Influenza in Birds/virology , Influenza in Birds/transmission , Animals, Wild/virology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Disease Outbreaks/veterinary , Poultry/virology , Birds/virology , United States/epidemiology , Phylogeny , Animal Migration
17.
Euro Surveill ; 29(25)2024 Jun.
Article in English | MEDLINE | ID: mdl-38904109

ABSTRACT

Highly pathogenic avian influenza (HPAI) has caused widespread mortality in both wild and domestic birds in Europe 2020-2023. In July 2023, HPAI A(H5N1) was detected on 27 fur farms in Finland. In total, infections in silver and blue foxes, American minks and raccoon dogs were confirmed by RT-PCR. The pathological findings in the animals include widespread inflammatory lesions in the lungs, brain and liver, indicating efficient systemic dissemination of the virus. Phylogenetic analysis of Finnish A(H5N1) strains from fur animals and wild birds has identified three clusters (Finland I-III), and molecular analyses revealed emergence of mutations known to facilitate viral adaptation to mammals in the PB2 and NA proteins. Findings of avian influenza in fur animals were spatially and temporally connected with mass mortalities in wild birds. The mechanisms of virus transmission within and between farms have not been conclusively identified, but several different routes relating to limited biosecurity on the farms are implicated. The outbreak was managed in close collaboration between animal and human health authorities to mitigate and monitor the impact for both animal and human health.


Subject(s)
Animals, Wild , Charadriiformes , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Phylogeny , Animals , Influenza in Birds/virology , Influenza in Birds/epidemiology , Finland/epidemiology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/isolation & purification , Animals, Wild/virology , Charadriiformes/virology , Disease Outbreaks/veterinary , Farms , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/epidemiology , Foxes/virology , Birds/virology , Mink/virology
19.
Vopr Virusol ; 69(2): 101-118, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38843017

ABSTRACT

The family Orthomyxoviridae consists of 9 genera, including Alphainfluenza virus, which contains avian influenza viruses. In two subtypes H5 and H7 besides common low-virulent strains, a specific type of highly virulent avian virus have been described to cause more than 60% mortality among domestic birds. These variants of influenza virus are usually referred to as «avian influenza virus¼. The difference between high (HPAI) and low (LPAI) virulent influenza viruses is due to the structure of the arginine-containing proteolytic activation site in the hemagglutinin (HA) protein. The highly virulent avian influenza virus H5 was identified more than 100 years ago and during this time they cause outbreaks among wild and domestic birds on all continents and only a few local episodes of the disease in humans have been identified in XXI century. Currently, a sharp increase in the incidence of highly virulent virus of the H5N1 subtype (clade h2.3.4.4b) has been registered in birds on all continents, accompanied by the transmission of the virus to various species of mammals. The recorded global mortality rate among wild, domestic and agricultural birds from H5 subtype is approaching to the level of 1 billion cases. A dangerous epidemic factor is becoming more frequent outbreaks of avian influenza with high mortality among mammals, in particular seals and marine lions in North and South America, minks and fur-bearing animals in Spain and Finland, domestic and street cats in Poland. H5N1 avian influenza clade h2.3.4.4b strains isolated from mammals have genetic signatures of partial adaptation to the human body in the PB2, NP, HA, NA genes, which play a major role in regulating the aerosol transmission and the host range of the virus. The current situation poses a real threat of pre-adaptation of the virus in mammals as intermediate hosts, followed by the transition of the pre-adapted virus into the human population with catastrophic consequences.


Subject(s)
Birds , Disease Outbreaks , Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Birds/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/virology , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza, Human/mortality , Virulence
20.
Emerg Microbes Infect ; 13(1): 2364732, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832658

ABSTRACT

Recently, an outbreak of highly pathogenic avian influenza A (H5N1), which carries the clade 2.3.4.4b hemagglutinin (HA) gene and has been prevalent among North American bird populations since the winter of 2021, was reported in dairy cows in the United States. As of 24 May 2024, the virus has affected 63 dairy herds across nine states and has resulted in two human infections. The virus causes unusual symptoms in dairy cows, including an unexpected drop in milk production, and thick colostrum-like milk. Notably, The US Food and Drug Administration reported that around 20% of tested retail milk samples contained H5N1 viruses, with a higher percentage of positive results from regions with infected cattle herds. Data are scant regarding how effectively pasteurization inactivates the H5N1 virus in milk. Therefore, in this study, we evaluated the thermal stability of the H5 clade 2.3.4.4b viruses, along with one human H3N2 virus and other influenza subtype viruses, including H1, H3, H7, H9, and H10 subtype viruses. We also assessed the effectiveness of pasteurization in inactivating these viruses. We found that the avian H3 virus exhibits the highest thermal stability, whereas the H5N1 viruses that belong to clade 2.3.4.4b display moderate thermal stability. Importantly, our data provide direct evidence that the standard pasteurization methods used by dairy companies are effective in inactivating all tested subtypes of influenza viruses in raw milk. Our findings indicate that thermally pasteurized milk products do not pose a safety risk to consumers.


Subject(s)
Milk , Pasteurization , Animals , Pasteurization/methods , Milk/virology , Cattle , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/isolation & purification , Humans , Influenza in Birds/virology , Influenza in Birds/transmission , Influenza in Birds/prevention & control , Influenza in Birds/epidemiology , Virus Inactivation , United States , Influenza, Human/virology , Influenza, Human/transmission , Influenza, Human/prevention & control , Influenza A virus/genetics , Influenza A virus/isolation & purification , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...