Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.068
2.
J Med Virol ; 96(5): e29678, 2024 May.
Article En | MEDLINE | ID: mdl-38751128

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Anti-Inflammatory Agents , Antiviral Agents , Disease Models, Animal , Orthomyxoviridae Infections , Oxazines , Syk Kinase , Animals , Humans , Syk Kinase/antagonists & inhibitors , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Oxazines/pharmacology , Oxazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Imidazoles/pharmacology , Imidazoles/therapeutic use , Lung/pathology , Lung/virology , Lung/drug effects , Lung/immunology , A549 Cells , Influenza A virus/drug effects , Mice, Inbred BALB C , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/immunology , THP-1 Cells , Female , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
3.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38753503

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Antiviral Agents , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Influenza, Human/drug therapy , Influenza, Human/virology , Crystallography, X-Ray/methods , Click Chemistry/methods , Animals , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry , Dogs
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732151

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Antiviral Agents , Biological Products , Molecular Docking Simulation , Viral Nonstructural Proteins , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Biological Products/pharmacology , Biological Products/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Influenza A virus/drug effects , Animals , Madin Darby Canine Kidney Cells , Dogs
5.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38692139

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Guanidine , Influenza A virus , RNA, Viral , SARS-CoV-2 , Specimen Handling , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Influenza A virus/drug effects , Influenza A virus/genetics , Guanidine/pharmacology , Guanidine/chemistry , RNA, Viral/genetics , Humans , Specimen Handling/methods , Genome, Viral , COVID-19/virology , COVID-19/diagnosis , Chlorocebus aethiops , Vero Cells , Virus Inactivation/drug effects , Animals , RNA Stability/drug effects , Containment of Biohazards , Guanidines/pharmacology , Guanidines/chemistry , Salts/pharmacology , Salts/chemistry
6.
Mar Drugs ; 22(5)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38786581

Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future.


Antiviral Agents , Influenza A virus , Mycophenolic Acid , Orthomyxoviridae Infections , Virus Replication , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mycophenolic Acid/pharmacology , Mice , Virus Replication/drug effects , Humans , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Mice, Inbred BALB C , Dogs , Female , Madin Darby Canine Kidney Cells , A549 Cells , Aquatic Organisms , Influenza, Human/drug therapy , Influenza, Human/virology
7.
Eur J Med Chem ; 272: 116469, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704939

Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.


Antiviral Agents , Gold , Nanotubes , Gold/chemistry , Nanotubes/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Humans , Metal Nanoparticles/chemistry , Molecular Structure , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Microbial Sensitivity Tests , Dogs , Animals , Dose-Response Relationship, Drug , Structure-Activity Relationship
8.
Phytomedicine ; 129: 155680, 2024 Jul.
Article En | MEDLINE | ID: mdl-38728923

OBJECTIVE: Influenza, a viral respiratory illness, leads to seasonal epidemics and occasional pandemics. Given the rising resistance and adverse reactions associated with anti-influenza drugs, Traditional Chinese Medicine (TCM) emerges as a promising approach to counteract the influenza virus. Specifically, Haoqin Qingdan Tang (HQQDT), a TCM formula, has been employed as an adjuvant treatment for influenza in China. However, the active compounds and underlying mechanisms of HQQDT remain unknown. AIM: The aim of this study was to investigate HQQDT's antiviral and anti-inflammatory activities in both in vivo and in vitro, and further reveal its active ingredients and mechanism. METHODS: In vivo and in vitro experiments were conducted to verify the antiviral and anti-inflammatory activities of HQQDT. Subsequently, the active ingredients and mechanism of HQQDT were explored through combining high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS) analysis and network pharmacology. Finally, the examinations of cell cytokines and signaling pathways aimed to elucidate the predicted mechanisms. RESULTS: The results indicated that HQQDT exhibited inhibitory effects on influenza viruses A/PR/8/34 (H1N1), A/HK/1/68 (H3N2), and A/California/4/2009 (H1N1) in vitro. Furthermore, HQQDT enhanced the survival rate of influenza-infected mice, reduced the lung index and lung virus titer, and mitigated lung tissue damage in vivo. The proinflammatory cytokine expression levels upon influenza virus infection in PR8-induced A549 cells or mice were suppressed by HQQDT, including IL-6, IL-1ß, CCL2, CCL4, IP-10, interferon ß1 (IFN-ß1), the interferon regulatory factor 3 (IRF3), and hemagglutinin (HA). Twenty-two active components of HQQDT against influenza were identified using HPLC-Q-TOF-MS analysis. Based on network pharmacological predictions, the JAK/STAT signaling pathway is considered the most relevant for HQQDT's action against influenza. Finally, western blot assays revealed that HQQDT regulated the protein level of the JAK/STAT signaling pathway in PR8-infected A549 cells and lung tissue. CONCLUSION: These findings verified the antiviral and anti-inflammatory effects of HQQDT through JAK-STAT signaling pathway in influenza infections, laying the foundation for its further development.


Antiviral Agents , Drugs, Chinese Herbal , Influenza A virus , Janus Kinases , Orthomyxoviridae Infections , Signal Transduction , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Antiviral Agents/pharmacology , Mice , Signal Transduction/drug effects , Orthomyxoviridae Infections/drug therapy , Janus Kinases/metabolism , Influenza A virus/drug effects , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Mice, Inbred BALB C , Humans , Influenza A Virus, H1N1 Subtype/drug effects , STAT Transcription Factors/metabolism , Dogs , Male , Chromatography, High Pressure Liquid , Lung/drug effects , Lung/virology , Madin Darby Canine Kidney Cells , Network Pharmacology , Female , A549 Cells
9.
mBio ; 15(5): e0074124, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587427

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.


Antiviral Agents , COVID-19 , Coinfection , Influenza A virus , Plant Lectins , SARS-CoV-2 , Virus Internalization , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mice , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , Coinfection/drug therapy , Coinfection/virology , Plant Lectins/pharmacology , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , COVID-19 Drug Treatment , Dogs , Mice, Inbred BALB C , Female , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells
10.
Viruses ; 16(4)2024 03 28.
Article En | MEDLINE | ID: mdl-38675866

Gu-Sui-Bu, the dried rhizome of Davallia mariesii, is a traditional Chinese herbal remedy with a significant history of treating osteoporosis and inflammatory conditions. However, its potential as an anti-influenza agent and its underlying mechanisms of action remain unexplored. To obtain a more potent extract from D. mariesii and gain insights into its mechanism of action against influenza A virus (IAV), we utilized a partitioning process involving organic solvents and water, resulting in the isolation of butanolic subfractions of the D. mariesii extract (DMBE). DMBE exhibited a broad anti-viral spectrum, effectively inhibiting IAV, with an EC50 of 24.32 ± 6.19 µg/mL and a selectivity index of 6.05. We subsequently conducted a series of in vitro assays to evaluate the antiviral effects of DMBE and to uncover its mechanisms of action. DMBE was found to inhibit IAV during the early stages of infection by hindering the attachment of the virus onto and its penetration into host cells. Importantly, DMBE was observed to hinder IAV-mediated cell-cell fusion. It also inhibited neuraminidase activity, plaque size, and the expression levels of phospho-AKT. In summary, this study provides evidence for the effectiveness of D. mariesii as a complementary and alternative herbal remedy against IAV. Specifically, our data highlight DMBE's capabilities in inhibiting viral entry and the release of virions.


Antiviral Agents , Influenza A virus , Plant Extracts , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Influenza A virus/physiology , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Animals , Madin Darby Canine Kidney Cells , Dogs , Virus Internalization/drug effects , Sapindaceae/chemistry , Virus Replication/drug effects , Virus Attachment/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Neuraminidase/metabolism , A549 Cells , Cell Line
11.
Antimicrob Agents Chemother ; 68(5): e0172723, 2024 May 02.
Article En | MEDLINE | ID: mdl-38587392

Antiviral susceptibility of influenza viruses was assessed using a high-content imaging-based neutralization test. Cap-dependent endonuclease inhibitors, baloxavir and AV5116, were superior to AV5115 against type A viruses, and AV5116 was most effective against PA mutants tested. However, these three inhibitors displayed comparable activity (EC50 8-22 nM) against type C viruses from six lineages. Banana lectin and a monoclonal antibody, YA3, targeting the hemagglutinin-esterase protein effectively neutralized some, but not all, type C viruses.


Antiviral Agents , Dibenzothiepins , Triazines , Antiviral Agents/pharmacology , Humans , Triazines/pharmacology , Dibenzothiepins/pharmacology , Gammainfluenzavirus/drug effects , Gammainfluenzavirus/genetics , Morpholines/pharmacology , Pyridones/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Madin Darby Canine Kidney Cells , Dogs , Cyclopropanes/pharmacology , Influenza A virus/drug effects , Neutralization Tests , Pyridines/pharmacology
12.
Nature ; 628(8009): 835-843, 2024 Apr.
Article En | MEDLINE | ID: mdl-38600381

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Lung Injury , Necroptosis , Orthomyxoviridae Infections , Protein Kinase Inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases , Animals , Female , Humans , Male , Mice , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Influenza A virus/classification , Influenza A virus/drug effects , Influenza A virus/immunology , Influenza A virus/pathogenicity , Lung Injury/complications , Lung Injury/pathology , Lung Injury/prevention & control , Lung Injury/virology , Mice, Inbred C57BL , Necroptosis/drug effects , Orthomyxoviridae Infections/complications , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/prevention & control , Respiratory Distress Syndrome/virology
13.
Proc Natl Acad Sci U S A ; 121(18): e2319566121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38648490

Respiratory virus infections in humans cause a broad-spectrum of diseases that result in substantial morbidity and mortality annually worldwide. To reduce the global burden of respiratory viral diseases, preventative and therapeutic interventions that are accessible and effective are urgently needed, especially in countries that are disproportionately affected. Repurposing generic medicine has the potential to bring new treatments for infectious diseases to patients efficiently and equitably. In this study, we found that intranasal delivery of neomycin, a generic aminoglycoside antibiotic, induces the expression of interferon-stimulated genes (ISGs) in the nasal mucosa that is independent of the commensal microbiota. Prophylactic or therapeutic administration of neomycin provided significant protection against upper respiratory infection and lethal disease in a mouse model of COVID-19. Furthermore, neomycin treatment protected Mx1 congenic mice from upper and lower respiratory infections with a highly virulent strain of influenza A virus. In Syrian hamsters, neomycin treatment potently mitigated contact transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In healthy humans, intranasal application of neomycin-containing Neosporin ointment was well tolerated and effective at inducing ISG expression in the nose in a subset of participants. These findings suggest that neomycin has the potential to be harnessed as a host-directed antiviral strategy for the prevention and treatment of respiratory viral infections.


Administration, Intranasal , Antiviral Agents , Neomycin , SARS-CoV-2 , Animals , Neomycin/pharmacology , Neomycin/administration & dosage , Mice , Humans , Antiviral Agents/pharmacology , Antiviral Agents/administration & dosage , SARS-CoV-2/immunology , SARS-CoV-2/drug effects , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/immunology , Nasal Mucosa/virology , Nasal Mucosa/drug effects , Disease Models, Animal , COVID-19 Drug Treatment , Mesocricetus , Female , Influenza A virus/drug effects , Influenza A virus/immunology
14.
ChemMedChem ; 19(9): e202400057, 2024 May 02.
Article En | MEDLINE | ID: mdl-38385828

A 1H-isoindol-3-amine was identified as suitable P1 group for the proprotein convertase furin using a crystallographic screening with a set of 20 fragments known to occupy the S1 pocket of trypsin-like serine proteases. Its binding mode is very similar to that observed for the P1 group of benzamidine-derived peptidic furin inhibitors suggesting an aminomethyl substitution of this fragment to obtain a couplable P1 residue for the synthesis of substrate-analogue furin inhibitors. The obtained inhibitors possess a slightly improved picomolar inhibitory potency compared to their benzamidine-derived analogues. The crystal structures of two inhibitors in complex with furin revealed that the new P1 group is perfectly suited for incorporation in peptidic furin inhibitors. Selected inhibitors were tested for antiviral activity against respiratory syncytial virus (RSV) and a furin-dependent influenza A virus (SC35M/H7N7) in A549 human lung cells and demonstrated an efficient inhibition of virus activation and replication at low micromolar or even submicromolar concentrations. First results suggest that the Mas-related G-protein coupled receptor GPCR-X2 could be a potential off-target for certain benzamidine-derived furin inhibitors.


Antiviral Agents , Drug Design , Furin , Furin/antagonists & inhibitors , Furin/metabolism , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Structure-Activity Relationship , A549 Cells , Influenza A virus/drug effects , Crystallography, X-Ray , Indoles/pharmacology , Indoles/chemistry , Indoles/chemical synthesis , Molecular Structure , Models, Molecular , Respiratory Syncytial Viruses/drug effects , Dose-Response Relationship, Drug
15.
J Virol ; 98(2): e0139823, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38179944

Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) has been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations 1-20-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking-either on the surface of the infected cell, between the viral and cell membrane, or both-plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines and that can be extended to other viral families and antibody isotypes.IMPORTANCEAntibodies against influenza A virus provide multifaceted protection against infection. Although sensitive and quantitative assays are widely used to measure inhibition of viral attachment and entry, the ability of diverse antibodies to inhibit viral egress is less clear. We address this challenge by developing an imaging-based approach to measure antibody inhibition of virus release across a panel of monoclonal antibodies targeting the influenza A virus surface proteins. Using this approach, we find that inhibition of viral egress is common and can have similar potency to the ability of an antibody to inhibit viral entry. Insights into this understudied aspect of antibody function may help guide the development of improved countermeasures.


Antibodies, Monoclonal , Antibodies, Neutralizing , Influenza A virus , Influenza, Human , Virus Assembly , Humans , Antibodies, Monoclonal/administration & dosage , Antibodies, Neutralizing/administration & dosage , Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus/drug effects , Influenza Vaccines , Influenza, Human/drug therapy , Influenza, Human/virology , Membrane Proteins , Neuraminidase/metabolism , Virus Assembly/drug effects
16.
J Virol Methods ; 323: 114838, 2024 Jan.
Article En | MEDLINE | ID: mdl-37914041

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac). This probe is designed to be cleaved by sialidase activity, resulting in the release of a hydrophobic fluorescent compound, 2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenol (BTP9). BTP9-Neu5Ac makes the location of sialidase activity visually detectable by the BTP9 fluorescence that results from the action of sialidase activity. In this study, we established a protocol to visualize the sialidase activity of intracellular NA at the Golgi of influenza A virus-infected cells using BTP9-Neu5Ac. Furthermore, we employed this fluorescence imaging protocol to elucidate the intracellular inhibition of laninamivir octanoate, an anti-influenza drug. At approximately 7 h after infection, newly synthesized viral NAs localized at the Golgi. Using our developed protocol, we successfully histochemically stained the sialidase activity of intracellular viral NAs localized at the Golgi. Importantly, we observed that laninamivir octanoate effectively inhibited the intracellular viral NA, in contrast to drugs like zanamivir or laninamivir. Our study establishes a visualization protocol for intracellular viral NA sialidase activity and visualizes the inhibitory effect of laninamivir octanoate on Golgi-localized intracellular viral NA in infected cells.


Antiviral Agents , Enzyme Inhibitors , Influenza A virus , Neuraminidase , Viral Proteins , Humans , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Influenza A virus/enzymology , Neuraminidase/analysis , Neuraminidase/antagonists & inhibitors , Optical Imaging/methods , Zanamivir/pharmacology , Viral Proteins/analysis , Viral Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology
17.
Article En | MEDLINE | ID: mdl-37817300

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a record total of 12,073 human influenza positive samples during 2022. Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. In 2022, influenza A(H3N2) viruses predominated over influenza A(H1N1)pdm09 and B viruses, accounting for 77% of all viruses analysed. The majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically and genetically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2022. Of 3,372 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir, two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir.


Influenza A virus , Influenza Vaccines , Influenza, Human , Animals , Female , Humans , Australia/epidemiology , Chickens , Drug Resistance, Viral/genetics , Drug Resistance, Viral/immunology , Influenza A virus/drug effects , Influenza A virus/genetics , Influenza A virus/immunology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/immunology , Influenza, Human/prevention & control , Oseltamivir/pharmacology , World Health Organization , Zanamivir/pharmacology , Antiviral Agents/pharmacology
18.
Curr Pharm Des ; 29(16): 1266-1273, 2023.
Article En | MEDLINE | ID: mdl-37190805

BACKGROUND: Neuraminidase is a pathogenic protein of the avian influenza virus. Previous studies have shown that silibinin has the potential to inhibit neuraminidase activity. OBJECTIVE: This study aims to explore the interaction between silibinin and neuraminidase and the effect of silibinin on the structure and activity of neuraminidase. METHODS: In this study, two-dimensional fluorescence spectrum, three-dimensional fluorescence spectrometry, Uv-vis spectroscopy, and circular dichroism analysis were used. RESULTS: Silibinin alters the secondary structure of neuraminidase and inhibits the activity of neuraminidase. CONCLUSION: Silibinin can interact with neuraminidase and inhibit its activity.


Antiviral Agents , Influenza A virus , Neuraminidase , Silybin , Animals , Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A virus/drug effects , Neuraminidase/antagonists & inhibitors , Silybin/pharmacology
19.
Appl Environ Microbiol ; 89(6): e0023723, 2023 06 28.
Article En | MEDLINE | ID: mdl-37184410

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), and norovirus are global threats to human health. The application of effective virucidal agents, which contribute to the inactivation of viruses on hands and environmental surfaces, is important to facilitate robust virus infection control measures. Naturally derived virucidal disinfectants have attracted attention owing to their safety and eco-friendly properties. In this study, we showed that multiple Japanese Saxifraga species-derived fractions demonstrated rapid, potent virucidal activity against the SARS-CoV-2 ancestral strain and multiple variant strains, IAV, and two human norovirus surrogates: feline calicivirus (FCV) and murine norovirus (MNV). Condensed tannins were identified as active chemical constituents that play a central role in the virucidal activities of these fractions. At a concentration of 25 µg/mL, the purified condensed tannin fraction Sst-2R induced significant reductions in the viral titers of the SARS-CoV-2 ancestral strain, IAV, and FCV (reductions of ≥3.13, ≥3.00, and 2.50 log10 50% tissue culture infective doses [TCID50]/mL, respectively) within 10 s of reaction time. Furthermore, at a concentration of 100 µg/mL, Sst-2R induced a reduction of 1.75 log10 TCID50/mL in the viral titers of MNV within 1 min. Western blotting and transmission electron microscopy analyses revealed that Sst-2R produced structural abnormalities in viral structural proteins and envelopes, resulting in the destruction of viral particles. Furthermore, Saxifraga species-derived fraction-containing cream showed virucidal activity against multiple viruses within 10 min. Our findings indicate that Saxifraga species-derived fractions containing condensed tannins can be used as disinfectants against multiple viruses on hands and environmental surfaces. IMPORTANCE SARS-CoV-2, IAV, and norovirus are highly contagious pathogens. The use of naturally derived components as novel virucidal/antiviral agents is currently attracting attention. We showed that fractions from extracts of Saxifraga species, in the form of a solution as well as a cream, exerted potent, rapid virucidal activities against SARS-CoV-2, IAV, and surrogates of human norovirus. Condensed tannins were found to play a central role in this activity. The in vitro cytotoxicity of the purified condensed tannin fraction at a concentration that exhibited some extent of virucidal activity was lower than that of 70% ethanol or 2,000 ppm sodium hypochlorite solution, which are popular virucidal disinfectants. Our study suggests that Saxifraga species-derived fractions containing condensed tannins can be used on hands and environmental surfaces as safe virucidal agents against multiple viruses.


Disinfectants , Influenza A virus , Norovirus , Proanthocyanidins , SARS-CoV-2 , Saxifragaceae , Disinfectants/pharmacology , Influenza A virus/drug effects , Norovirus/drug effects , Proanthocyanidins/pharmacology , SARS-CoV-2/drug effects , Saxifragaceae/chemistry , Tannins
20.
J Med Virol ; 95(2): e28499, 2023 02.
Article En | MEDLINE | ID: mdl-36653877

Owing to the emergence of drug resistance and high morbidity and mortality, the need for novel anti-influenza A virus (IAV) drugs with divergent targets is highly sought after. Herein, a novel quinolone alkaloid (QLA) derived from marine fungus was discovered with broad-spectrum anti-IAV activities with low toxicity. Distinct from current anti-IAV drugs, QLA may block virus replication and viral RNA (vRNA) export from the nucleus by targeting virus nucleoprotein (NP). QLA can block the binding of chromosome region maintenance 1 to nuclear export signal 3 of NP to inhibit the nuclear export of NP and vRNP. QLA may also affect vRNP assembly by interfering with the binding of NP to RNA rather than NP oligomerization. Arg305 and Phe488-Gly490 may be required for the interaction between QLA and NP, and the binding pocket around these amino acids may be a promising target for anti-IAV drugs. Importantly, oral administration of QLA can protect the mice against IAV-induced death and weight loss, superior to the effects of the clinical drug oseltamivir. In summary, the marine derived compound QLA has the potential to be developed into a novel anti-IAV agent targeting virus NP protein in the future.


Alkaloids , Influenza A virus , Quinolones , Virus Replication , Animals , Mice , Alkaloids/pharmacology , Influenza A virus/drug effects , Influenza A virus/physiology , Nucleoproteins , Quinolones/pharmacology , Viral Core Proteins/metabolism , Virus Replication/drug effects
...