Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.498
1.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702709

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Carbocyanines , Mitochondria , Neoplasm Recurrence, Local , Photothermal Therapy , Prostatic Neoplasms , Male , Prostatic Neoplasms/diagnostic imaging , Photothermal Therapy/methods , Humans , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Carbocyanines/chemistry , Optical Imaging/methods , Mice , Surgery, Computer-Assisted/methods , Fluorescent Dyes/chemistry , Mice, Nude , Mice, Inbred BALB C , Infrared Rays , Indocyanine Green/chemistry , Indocyanine Green/therapeutic use , Indocyanine Green/pharmacology
2.
Anal Chim Acta ; 1309: 342673, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38772656

BACKGROUND: Over-consumption of drugs can result in drug-induced liver damage (DILI), which can worsen liver failure. Numerous studies have shown the significant role ferroptosis plays in the pathophysiology of DILI, which is typified by a marked imbalance between the generation and breakdown of lipid reactive oxygen species (ROS). The content of peroxynitrite (ONOO-) rapidly increased during this process and was thought to be a significant marker of early liver injury. Therefore, the construction of fluorescence probe for the detection and imaging of ONOO- holds immense importance in the early diagnosis and treatment of ferroptosis-mediated DILI. RESULTS: We designed a probe DILI-ONOO based on the ICT mechanism for the purpose of measuring and visualizing ONOO- in ferroptosis-mediated DILI processes and associated studies. This probe exhibited significant fluorescence changes with good sensitivity, selectivity, and can image exogenous and endogenous ONOO- in cells with low cytotoxicity. Using this probe, we were able to show changes in ONOO- content in ferroptosis-mediated DILI cells and mice models induced by the intervention of acetaminophen (APAP) and isoniazid (INH). By measuring the concentration of ferroptosis-related indicators in mice liver tissue, we were able to validate the role of ferroptosis in DILI. It is worth mentioning that compared to existing alanine transaminase (ALT) and aspartate aminotransferase (AST) detection methods, this probe can achieve early identification of DILI prior to serious liver injury. SIGNIFICANCE: This work has significant reference value in researching the relationship between ferroptosis and DILI and visualizing research. The results indicate a strong correlation between the progression of DILI and ferroptosis. Additionally, the use of DILI-ONOO shows promise in investigating the DILI process and assessing the effectiveness of medications in treating DILI.


Acetaminophen , Chemical and Drug Induced Liver Injury , Ferroptosis , Fluorescent Dyes , Peroxynitrous Acid , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/diagnostic imaging , Ferroptosis/drug effects , Animals , Peroxynitrous Acid/metabolism , Mice , Fluorescent Dyes/chemistry , Humans , Acetaminophen/toxicity , Optical Imaging , Mice, Inbred C57BL , Male , Isoniazid/chemistry , Infrared Rays
3.
J Bodyw Mov Ther ; 38: 60-66, 2024 Apr.
Article En | MEDLINE | ID: mdl-38763614

The use of routine ionizing imaging in identify and classify patients with dislocation or infection after surgery has some medical contraindication, in addition to risks associated with the ionizing load and elevated costs. A novel, less expensive and non-ionizing imaging technique, called infrared thermal imaging, can be proposed as a complementary method to routinely evaluate hip prosthesis patients and track their inflammation response following serious complications. Here we report a case of a total hip prosthesis which was dislocated during inpatient rehabilitation, and ultimately reduced without surgical procedure. During the process, routine clinical and radiographic diagnosis was complemented with an infrared examination. The infrared images were easy to take bedside, without direct contact with the area of surgery, and well tolerated. After the dislocation reduction, the thermal imaging procedure provided important feedbacks on the local inflammation, helping to exclude other complications such as the infections.


Hip Prosthesis , Humans , Thermography/methods , Arthroplasty, Replacement, Hip/rehabilitation , Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Hip/adverse effects , Female , Prosthesis Failure , Male , Hip Dislocation , Infrared Rays , Aged , Middle Aged
4.
Breast Cancer Res ; 26(1): 80, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773552

BACKGROUND: Cancer-related fatigue (CRF) is a pervasive, persistent, and distressing symptom experienced by cancer patients, for which few treatments are available. We investigated the efficacy and safety of infrared laser moxibustion (ILM) for improving fatigue in breast cancer survivors. METHODS: A three-arm, randomized, sham-controlled clinical trial (6-week intervention plus 12-week observational follow-up) was conducted at a tertiary hospital in Shanghai, China. The female breast cancer survivors with moderate to severe fatigue were randomized 2:2:1 to ILM (n = 56) sham ILM (n = 56), and Waitlist control (WLC)(n = 28) groups. Patients in the ILM and sham ILM (SILM) groups received real or sham ILM treatment, 2 sessions per week for 6 weeks, for a total of 12 sessions. The primary outcome was change in the Brief Fatigue Inventory (BFI) score from baseline to week 6 with follow-up until week 18 assessed in the intention-to-treat population. RESULTS: Between June 2018 and July 2021, 273 patients were assessed for eligibility, and 140 patients were finally enrolled and included in the intention-to-treat analysis. Compared with WLC, ILM reduced the average BFI score by 0.9 points (95% CI, 0.3 to 1.6, P = .007) from baseline to week 6, with a difference between the groups of 1.1 points (95% CI, 0.4 to 1.8, P = .002) at week 18. Compared with SILM, ILM treatment resulted in a non-significant reduction in the BFI score (0.4; 95% CI, -0.2 to 0.9, P = .206) from baseline to week 6, while the between-group difference was significant at week 18 (0.7; 95% CI, 0.2 to 1.3, P = .014). No serious adverse events were reported. CONCLUSION: While ILM was found to be safe and to significantly reduce fatigue compared with WLC, its promising efficacy against the sham control needs to be verified in future adequately powered trials. TRIAL REGISTRATION: Clinicaltrials.gov: NCT04144309. Registered 12 June 2018.


Breast Neoplasms , Cancer Survivors , Fatigue , Moxibustion , Humans , Female , Moxibustion/methods , Moxibustion/adverse effects , Breast Neoplasms/complications , Breast Neoplasms/therapy , Fatigue/etiology , Fatigue/therapy , Middle Aged , Treatment Outcome , Adult , Quality of Life , China/epidemiology , Aged , Infrared Rays/therapeutic use
5.
J Therm Biol ; 121: 103867, 2024 Apr.
Article En | MEDLINE | ID: mdl-38744026

Infrared thermography (IRT) has become more accessible due to technological advancements, making thermal cameras more affordable. Infrared thermal cameras capture the infrared rays emitted by objects and convert it into temperature representations. IRT has emerged as a promising and non-invasive approach for examining the human eye. Ocular surface temperature assessment based on IRT is vital for the diagnosis and monitoring of various eye conditions like dry eye, diabetic retinopathy, glaucoma, allergic conjunctivitis, and inflammatory diseases. A collective sum of 192 articles was sourced from various databases, and through adherence to the PRISMA guidelines, 29 articles were ultimately chosen for systematic analysis. This systematic review article seeks to provide readers with a thorough understanding of IRT's applications, advantages, limitations, and recent developments in the context of eye examinations. It covers various aspects of IRT-based eye analysis, including image acquisition, processing techniques, ocular surface temperature measurement, three different approaches to identifying abnormalities, and different evaluation metrics used. Our review also delves into recent advancements, particularly the integration of machine learning and deep learning algorithms into IRT-based eye examinations. Our systematic review not only sheds light on the current state of research but also outlines promising future prospects for the integration of infrared thermography in advancing eye health diagnostics and care.


Eye Diseases , Infrared Rays , Thermography , Humans , Thermography/methods , Eye Diseases/diagnosis , Eye Diseases/diagnostic imaging , Eye/diagnostic imaging , Machine Learning , Body Temperature
6.
Luminescence ; 39(5): e4755, 2024 May.
Article En | MEDLINE | ID: mdl-38689564

The ultimate goal of this work is the study of the effect of luminescence stimulations and signals reading modes combinations on the thermoluminescence intensity and glow curve behaviour for the same X-ray irradiation dose. Three interesting stimulating and reading modes are considered, namely, infrared stimulated luminescence (IRSL), blue light-emitting diode stimulated luminescence (BLSL) and thermally stimulated luminescence (TSL). The studied stimulation and reading modes combination protocols are (Protocol 1) IRSL-TSL, (Protocol 2) IRSL-BLSL-TSL and (Protocol 3) BLSL-IRSL-TSL. Experiments are performed on beryllium oxide (BeO) dosimeter. Results demonstrate well that the combination of reading modes have direct impact on the TL signal in terms of intensity and glow curve shape. It was also found that when reading modes are correctly combined, particularly when IRSL is applied first, then BLSL and TL, it is possible to collect two or more exploitable signals of different stimulation types for the same irradiation that can be used for different purposes and final applications.


Beryllium , Thermoluminescent Dosimetry , Beryllium/chemistry , Luminescence , Infrared Rays , Luminescent Measurements , Temperature
7.
Gac Med Mex ; 160(1): 23-31, 2024.
Article En | MEDLINE | ID: mdl-38753572

BACKGROUND: Endothelial dysfunction (ED) suspicion will allow to prevent accelerated atherosclerosis and premature death. OBJECTIVE: To establish the usefulness of thermography for endothelial function screening in adults with cardiovascular risk factors. MATERIAL AND METHODS: Cross-sectional, analytical diagnostic test. A brachial arterial diameter (BAD) increase < 11% at one-minute post-ischemia meant probable ED and was confirmed if BAD was ≥ 11% post-sublingual nitroglycerin. Thermographic photographs of the palmar region were obtained at one minute. Descriptive statistics, ROC curve, Mann-Whitney's U-test, chi-square test, or Fisher's exact test were used. RESULTS: Thirty-eight subjects with a median age of 50 years, and with 624 thermographic measurements were included. Nine had ED (flow-mediated vasodilation [FMV]: 2.5%). The best cutoff point for normal endothelial function in subjects with cardiovascular risk factors was ≥ 36 °C at one minute of ischemia, with 85% sensitivity, 70% specificity, positive and negative predictive values of 78 and 77%, area under the curve of 0.796, LR+ 2.82, LR- 0.22. CONCLUSION: An infrared thermography-measured temperature in the palmar region greater than or equal to 36 °C after one minute of ischemia is practical, non-invasive, and inexpensive for normal endothelial function screening in adults with cardiovascular risk factors.


ANTECEDENTES: La sospecha de disfunción endotelial (DE) permitirá prevenir la aterosclerosis acelerada y la muerte prematura. OBJETIVO: Establecer la utilidad de la termografía en el cribado de la función endotelial en adultos con factores de riesgo cardiovascular. MATERIAL Y MÉTODOS: Estudio transversal analítico de prueba diagnóstica. El incremento del diámetro de la arteria braquial < 11 % a un minuto posisquemia significó probable DE, confirmada si el diámetro fue ≥ 11 % posnitroglicerina sublingual. Se obtuvieron fotografías termográficas al minuto de la región palmar. Se aplicó estadística descriptiva, curva ROC, pruebas U de Mann-Whitney, chi cuadrada o exacta de Fisher. RESULTADOS: Se incluyeron 38 sujetos, mediana de edad de 50 años, con 624 mediciones termográficas; nueve presentaron DE (vasodilatación mediada por flujo de 2.5 %). El mejor punto de corte para la función endotelial normal en sujetos con factores de riesgo cardiovascular fue ≥ 36 °C al minuto de isquemia, con sensibilidad de 85%, especificidad de 70%, valores predictivos positivo y negativo de 78 y 77%, área bajo la curva de 0.796, razón de verisimilitud positiva de 2.82 y razón de verisimilitud negativa de 0.22. CONCLUSIÓN: La medición de la temperatura en la región palmar mediante termografía infrarroja ≥ 36 °C tras un minuto de isquemia es práctica, no invasiva y económica para el cribado de la función endotelial normal en adultos con factores de riesgo cardiovascular.


Endothelium, Vascular , Thermography , Humans , Thermography/methods , Middle Aged , Male , Female , Cross-Sectional Studies , Endothelium, Vascular/physiopathology , Adult , Aged , Heart Disease Risk Factors , Sensitivity and Specificity , Infrared Rays , Brachial Artery/physiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/physiopathology , Vasodilation/physiology , Predictive Value of Tests
8.
Anal Chem ; 96(19): 7687-7696, 2024 May 14.
Article En | MEDLINE | ID: mdl-38693877

Smart theranostic nanoprobes with the integration of multiple therapeutic modalities are preferred for precise diagnosis and efficient therapy of tumors. However, it remains a big challenge to arrange the imaging and two or more kinds of therapeutic agents without weakening the intended performances. In addition, most existing fluorescence (FL) imaging agents suffer from low spatiotemporal resolution due to the short emission wavelength (<900 nm). Here, novel three-in-one Ag2S quantum dot (QD)-based smart theranostic nanoprobes were proposed for in situ ratiometric NIR-II FL imaging-guided ion/gas combination therapy of tumors. Under the acidic tumor microenvironment, three-in-one Ag2S QDs underwent destructive degradation, generating toxic Ag+ and H2S. Meanwhile, their FL emission at 1270 nm was weakened. Upon introduction of a downconversion nanoparticle (DCNP) as the delivery carrier and NIR-II FL reference signal unit, the formed Ag2S QD-based theranostic nanoprobes could achieve precise diagnosis of tumors through ratiometric NIR-II FL signals. Also, the generated Ag+ and H2S enabled specific ion/gas combination therapy toward tumors. By combining the imaging and therapeutic functions, three-in-one Ag2S QDs may open a simple yet reliable avenue to design theranostic nanoprobes.


Optical Imaging , Quantum Dots , Silver Compounds , Quantum Dots/chemistry , Silver Compounds/chemistry , Humans , Animals , Mice , Infrared Rays , Theranostic Nanomedicine , Hydrogen Sulfide/analysis , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration
9.
Anal Chem ; 96(19): 7550-7557, 2024 May 14.
Article En | MEDLINE | ID: mdl-38706132

Developing precise tumor cell-specific mitochondrial ferroptosis-related inhibition miRNA imaging methods holds enormous potential for anticancer drug screening and cancer treatment. Nevertheless, traditional amplification methods still tolerated the limited tumor specificity because of the "off-tumor" signal leakage resulting from their "always-active" sensing mode. To overcome this limitation, we herein developed a dual (exogenous 808 nm NIR light and endogenous APE1) activated nanoladder for precise imaging of mitochondrial ferroptosis-related miRNA with tumor cell specificity and improved imaging resolution. Exogenous NIR light-activation can regulate the ferroptosis-related inhibition miRNA imaging signals within mitochondria, and endogenous enzyme-activation can confine signals to tumor cells. Based on this dual activation design, off-tumor signals were greatly reduced and tumor-to-background contrast was enhanced with an improved tumor/normal discrimination ratio, realizing tumor cell-specific precise imaging of mitochondrial ferroptosis-related inhibition miRNA.


Ferroptosis , MicroRNAs , Mitochondria , Ferroptosis/drug effects , Humans , MicroRNAs/metabolism , MicroRNAs/analysis , Mitochondria/metabolism , Animals , Mice , Optical Imaging , Cell Line, Tumor , Infrared Rays , Nanoparticles/chemistry
10.
Biomacromolecules ; 25(5): 3153-3162, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693895

A photoacoustic (PA) imaging technique using the second near-infrared (NIR-II) window has attracted more and more attention because of its merits of deeper penetration depth and higher signal-to-noise (S/N) ratio than that using the first near-infrared (NIR-I) one. However, the design and development of high-performance PA imaging contrast agents in the NIR-II window is still a challenge. A semiconducting polymer, constructed by asymmetric units, exhibits regiorandom characteristics that effectively increase the distortion of the backbone. This increase in the degree of twist can regulate the twisted intramolecular charge transfer (TICT) effect, resulting in an enhancement of the PA signal. In this paper, an asymmetric structural acceptor strategy is developed to improve the PA signals of the resulting semiconducting polymer (PATQ-MP) in the NIR-II window with improved brightness, higher S/N ratio, and better photothermal conversion efficiency compared to polymers with the same main-chain structure containing a symmetric acceptor. DFT analysis showed that PATQ-MP containing an asymmetric acceptor monomer had a larger dihedral angle, which effectively improved the PA signal intensity by enhancing the TICT effect. The PEG-encapsulated PATQ-MP nanoparticles exhibit promising performance in the PA imaging of mouse tumors in vivo, demonstrating the clear identification of microvessels as small as 100 µm along with rapid metabolism within a span of 5 h. Therefore, this work provides a unique molecular design strategy for improving the signal intensity of PA imaging in the NIR-II window.


Photoacoustic Techniques , Polymers , Semiconductors , Photoacoustic Techniques/methods , Animals , Mice , Polymers/chemistry , Quinoxalines/chemistry , Female , Humans , Thiadiazoles/chemistry , Infrared Rays , Mice, Nude , Mice, Inbred BALB C , Contrast Media/chemistry
11.
J Photochem Photobiol B ; 255: 112923, 2024 Jun.
Article En | MEDLINE | ID: mdl-38692166

Accurately visualizing the intracellular trafficking of upconversion nanoparticles (UCNPs) loaded with phthalocyanines and achieving precise photodynamic therapy (PDT) using near-infrared (NIR) laser irradiation still present challenges. In this study, a novel NIR laser-triggered upconversion luminescence (UCL) imaging-guided nanoparticle called FA@TPA-NH-ZnPc@UCNPs (FTU) was developed for PDT. FTU consisted of UCNPs, folic acid (FA), and triphenylamino-phenylaniline zinc phthalocyanine (TPA-NH-ZnPc). Notably, TPA-NH-ZnPc showcases aggregation-induced emission (AIE) characteristic and NIR absorption properties at 741 nm, synthesized initially via molybdenum-catalyzed condensation reaction. The UCL emitted by FTU enable real-time visualization of their subcellular localization and intracellular trafficking within ovarian cancer HO-8910 cells. Fluorescence images revealed that FTU managed to escape from lysosomes due to the "proton sponge" effect of TPA-NH-ZnPc. The FA ligands on the surface of FTU further directed their transport and accumulation within mitochondria. When excited by a 980 nm laser, FTU exhibited UCL and activated TPA-NH-ZnPc, consequently generating cytotoxic singlet oxygen (1O2), disrupted mitochondrial function and induced apoptosis in cancer cells, which demonstrated great potential for tumor ablation.


Indoles , Infrared Rays , Isoindoles , Lysosomes , Mitochondria , Nanoparticles , Organometallic Compounds , Photochemotherapy , Zinc Compounds , Zinc Compounds/chemistry , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lysosomes/metabolism , Humans , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Nanoparticles/chemistry , Cell Line, Tumor , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Singlet Oxygen/metabolism , Female , Folic Acid/chemistry
12.
Rep Prog Phys ; 87(6)2024 May 20.
Article En | MEDLINE | ID: mdl-38701769

Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.


Infrared Rays , Animals , Humans
13.
ACS Appl Bio Mater ; 7(5): 3190-3201, 2024 May 20.
Article En | MEDLINE | ID: mdl-38709861

We report an near-infrared (NIR)-trackable and therapeutic liposome with skin tumor specificity. Liposomes with a hydrodynamic diameter of ∼20 nm are tracked under the vein visualization imaging system in the presence of loaded paclitaxel and NIR-active agents. The ability to track liposome nanocarriers is recorded on the tissue-mimicking phantom model and in vivo mouse veins after intravenous administration. The trackable liposome delivery provides in vitro and in vivo photothermal heat (∼40 °C) for NIR-light-triggered area-specific chemotherapeutic release. This approach can be linked with a real-time vein-imaging system to track and apply area-specific local heat, which hitchhikes liposomes from the vein and finally releases them at the tumor site. We conducted studies on mice skin tumors that indicated the disappearance of tumors visibly and histologically (H&E stains). The ability of nanocarriers to monitor after administration is crucial for improving the effectiveness and specificity of cancer therapy, which could be achieved in the trackable delivery system.


Infrared Rays , Liposomes , Paclitaxel , Precision Medicine , Skin Neoplasms , Liposomes/chemistry , Animals , Mice , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/therapy , Paclitaxel/chemistry , Paclitaxel/administration & dosage , Paclitaxel/pharmacology , Materials Testing , Biocompatible Materials/chemistry , Particle Size , Humans , Drug Delivery Systems , Drug Screening Assays, Antitumor
14.
J Mater Chem B ; 12(20): 4785-4808, 2024 May 22.
Article En | MEDLINE | ID: mdl-38690723

This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.


Antineoplastic Agents , Drug Carriers , Infrared Rays , Photothermal Therapy , Humans , Drug Carriers/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Animals , Neoplasms/drug therapy , Drug Liberation , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Drug Delivery Systems
16.
ACS Appl Mater Interfaces ; 16(20): 25879-25891, 2024 May 22.
Article En | MEDLINE | ID: mdl-38718301

Biological imaging-guided targeted tumor therapy has been a soughtafter goal in the field of cancer diagnosis and treatment. To this end, we proposed a strategy to modulate surface plasmon resonance and endow WO3-x nanoparticles (NPs) with enzyme-like catalytic properties by doping Fe2+ in the structure of the NPs. Doping of the Fe2+ introduced oxygen vacancies into the structure of the NPs, inducing a red shift of the maximum absorption wavelength into the near-infrared II (NIR-II) region and enhancing the photoacoustic (PA) and photothermal properties of the NPs for more effective imaging-guided cancer therapy. Under NIR-II laser irradiation, the Fe-WO3-x NPs produced very strong NIR-II PA and photothermal effects, which significantly enhanced the PA imaging and photothermal treatment effects. On the other hand, Fe2+ in Fe-WO3-x could undergo Fenton reactions with H2O2 in the tumor tissue to generate ·OH for chemodynamic therapy. In addition, Fe-WO3-x can also catalyze the above reactions to produce more reactive oxygen species (ROS) and induce the oxidation of NADH to interfere with intracellular adenosine triphosphate (ATP) synthesis, thereby further improving the efficiency of cancer therapy. Specific imaging of tumor tissue and targeted synergistic therapy was achieved after ligation of a MUC1 aptamer to the surface of the Fe-WO3-x NPs by the complexing of -COOH in MUC1 with tungsten ions on the surface of the NPs. These results demonstrated that Fe-WO3-x NPs could be a promising diagnosis and therapeutic agent for cancer. Such a study opens up new avenues into the rational design of nanodiagnosis and treatment agents for NIR-II PA imaging and cancer therapy.


Photoacoustic Techniques , Surface Plasmon Resonance , Tungsten , Animals , Humans , Mice , Tungsten/chemistry , Infrared Rays , Oxides/chemistry , Neoplasms/diagnostic imaging , Neoplasms/therapy , Neoplasms/drug therapy , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Cell Line, Tumor , Reactive Oxygen Species/metabolism
17.
Invest Ophthalmol Vis Sci ; 65(5): 27, 2024 May 01.
Article En | MEDLINE | ID: mdl-38758638

Purpose: To demonstrate the first near-infrared adaptive optics fluorescence lifetime imaging ophthalmoscopy (NIR-AOFLIO) measurements in vivo of the human retinal pigment epithelial (RPE) cellular mosaic and to visualize lifetime changes at different retinal eccentricities. Methods: NIR reflectance and autofluorescence were captured using a custom adaptive optics scanning light ophthalmoscope in 10 healthy subjects (23-64 years old) at seven eccentricities and in two eyes with retinal abnormalities. Repeatability was assessed across two visits up to 8 weeks apart. Endogenous retinal fluorophores and hydrophobic whole retinal extracts of Abca4-/- pigmented and albino mice were imaged to probe the fluorescence origin of NIR-AOFLIO. Results: The RPE mosaic was resolved at all locations in five of seven younger subjects (<35 years old). The mean lifetime across near-peripheral regions (8° and 12°) was longer compared to near-foveal regions (0° and 2°). Repeatability across two visits showed moderate to excellent correlation (intraclass correlation: 0.88 [τm], 0.75 [τ1], 0.65 [τ2], 0.98 [a1]). The mean lifetime across drusen-containing eyes was longer than in age-matched healthy eyes. Fluorescence was observed in only the extracts from pigmented Abca4-/- mouse. Conclusions: NIR-AOFLIO was repeatable and allowed visualization of the RPE cellular mosaic. An observed signal in only the pigmented mouse extract infers the fluorescence signal originates predominantly from melanin. Variations observed across the retina with intermediate age-related macular degeneration suggest NIR-AOFLIO may act as a functional measure of a biomarker for in vivo monitoring of early alterations in retinal health.


Ophthalmoscopy , Optical Imaging , Retinal Pigment Epithelium , Humans , Retinal Pigment Epithelium/diagnostic imaging , Retinal Pigment Epithelium/metabolism , Ophthalmoscopy/methods , Adult , Middle Aged , Animals , Female , Mice , Male , Young Adult , Optical Imaging/methods , Reproducibility of Results , Infrared Rays , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Fluorescein Angiography/methods
18.
Sensors (Basel) ; 24(10)2024 May 12.
Article En | MEDLINE | ID: mdl-38793931

The process of image fusion is the process of enriching an image and improving the image's quality, so as to facilitate the subsequent image processing and analysis. With the increasing importance of image fusion technology, the fusion of infrared and visible images has received extensive attention. In today's deep learning environment, deep learning is widely used in the field of image fusion. However, in some applications, it is not possible to obtain a large amount of training data. Because some special organs of snakes can receive and process infrared information and visible information, the fusion method of infrared and visible light to simulate the visual mechanism of snakes came into being. Therefore, this paper takes into account the perspective of visual bionics to achieve image fusion; such methods do not need to obtain a significant amount of training data. However, most of the fusion methods for simulating snakes face the problem of unclear details, so this paper combines this method with a pulse coupled neural network (PCNN). By studying two receptive field models of retinal nerve cells, six dual-mode cell imaging mechanisms of rattlesnakes and their mathematical models and the PCNN model, an improved fusion method of infrared and visible images was proposed. For the proposed fusion method, eleven groups of source images were used, and three non-reference image quality evaluation indexes were compared with seven other fusion methods. The experimental results show that the improved algorithm proposed in this paper is better overall than the comparison method for the three evaluation indexes.


Image Processing, Computer-Assisted , Neural Networks, Computer , Snakes , Animals , Image Processing, Computer-Assisted/methods , Algorithms , Deep Learning , Infrared Rays
19.
J Med Primatol ; 53(3): e12711, 2024 Jun.
Article En | MEDLINE | ID: mdl-38790083

BACKGROUND: This study used infrared thermography (IRT) for mapping the facial and ocular temperatures of howler monkeys, to determine parameters for the diagnosis of febrile processes. There are no published IRT study in this species. METHODS: Were evaluated images of a group of monkeys kept under human care at Sorocaba Zoo (São Paulo, Brazil). The images were recorded during 1 year, in all seasons. Face and eye temperatures were evaluated. RESULTS: There are statistically significant differences in face and eye temperatures. Mean values and standard deviations for facial and ocular temperature were respectively: 33.0°C (2.1) and 36.5°C (1.9) in the summer; 31.5°C (4.5) and 35.3°C (3.6) in the autumn; 30.0°C (4.3) and 35.6°C (3.9) in the winter; 30.8°C (2.9) and 35.5°C (2.1) in the spring. CONCLUSIONS: The IRT was effective to establish a parameter for facial and ocular temperatures of black-and-gold howler monkeys kept under human care.


Alouatta , Body Temperature , Eye , Face , Infrared Rays , Thermography , Animals , Thermography/veterinary , Thermography/methods , Alouatta/physiology , Male , Seasons , Female , Fever/veterinary , Fever/diagnosis , Animals, Zoo
20.
Int J Mol Sci ; 25(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38791347

IR-783, a commercially available near-infrared (NIR) heptamethine cyanine dye, has been used for selective tumor imaging in breast, prostate, cervical, and brain cancers in vitro and in vivo. Although the molecular mechanism behind the structure-inherent tumor targeting of IR-783 has not been well-demonstrated, IR-783 has unique properties such as a good water solubility and low cytotoxicity compared with other commercial heptamethine cyanine dyes. The goal of this study is to evaluate the phototherapeutic efficacy of IR-783 as a tumor-targeted photothermal agent in human colorectal cancer xenografts. The results demonstrate that IR-783 shows both the subcellular localization in HT-29 cancer cells and preferential accumulation in HT-29 xenografted tumors 24 h after its intravenous administration. Furthermore, the IR-783 dye reveals the superior capability to convert NIR light into heat energy under 808 nm NIR laser irradiation in vitro and in vivo, thereby inducing cancer cell death. Taken together, these findings suggest that water-soluble anionic IR-783 can be used as a bifunctional phototherapeutic agent for the targeted imaging and photothermal therapy (PTT) of colorectal cancer. Therefore, this work provides a simple and effective approach to develop biocompatible, hydrophilic, and tumor-targetable PTT agents for targeted cancer phototherapy.


Photothermal Therapy , Humans , Photothermal Therapy/methods , Animals , Mice , Xenograft Model Antitumor Assays , HT29 Cells , Carbocyanines/chemistry , Mice, Nude , Infrared Rays , Colorectal Neoplasms/therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , Fluorescent Dyes/chemistry , Fluorescence , Mice, Inbred BALB C
...