Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.942
Filter
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 243-246, 2024 May 22.
Article in Chinese | MEDLINE | ID: mdl-38952309

ABSTRACT

The insecticide resistance is becoming increasingly severe in malaria vectors and has become one of the most important threats to global malaria elimination. Currently, malaria vectors not only have developed high resistance to conventional insecticides, including organochlorine, organophosphates, carbamates, and pyrethroids, but also have been resistant to recently used neonicotinoids and pyrrole insecticides. This article describes the current status of global insecticide resistance in malaria vectors and global insecticide resistance management strategies, analyzes the possible major challenges in the insecticide resistance management, and proposes the response actions, so as to provide insights into global insecticide resistance management and contributions to global malaria elimination.


Subject(s)
Insecticide Resistance , Insecticides , Malaria , Animals , Humans , Insect Vectors/drug effects , Insect Vectors/parasitology , Insecticides/pharmacology , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology
2.
Parasit Vectors ; 17(1): 287, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956689

ABSTRACT

BACKGROUND: The emergence of pyrethroid resistance has threatened the elimination of Triatoma infestans from the Gran Chaco ecoregion. We investigated the status and spatial distribution of house infestation with T. infestans and its main determinants in Castelli, a municipality of the Argentine Chaco with record levels of triatomine pyrethroid resistance, persistent infestation over 2005-2014, and limited or no control actions over 2015-2020. METHODS: We conducted a 2-year longitudinal survey to assess triatomine infestation by timed manual searches in a well-defined rural section of Castelli including 14 villages and 234 inhabited houses in 2018 (baseline) and 2020, collected housing and sociodemographic data by on-site inspection and a tailored questionnaire, and synthetized these data into three indices generated by multiple correspondence analysis. RESULTS: The overall prevalence of house infestation in 2018 (33.8%) and 2020 (31.6%) virtually matched the historical estimates for the period 2005-2014 (33.7%) under recurrent pyrethroid sprays. While mean peridomestic infestation remained the same (26.4-26.7%) between 2018 and 2020, domestic infestation slightly decreased from 12.2 to 8.3%. Key triatomine habitats were storerooms, domiciles, kitchens, and structures occupied by chickens. Local spatial analysis showed significant aggregation of infestation and bug abundance in five villages, four of which had very high pyrethroid resistance approximately over 2010-2013, suggesting persistent infestations over space-time. House bug abundance within the hotspots consistently exceeded the estimates recorded in other villages. Multiple regression analysis revealed that the presence and relative abundance of T. infestans in domiciles were strongly and negatively associated with indices for household preventive practices (pesticide use) and housing quality. Questionnaire-derived information showed extensive use of pyrethroids associated with livestock raising and concomitant spillover treatment of dogs and (peri) domestic premises. CONCLUSIONS: Triatoma infestans populations in an area with high pyrethroid resistance showed slow recovery and propagation rates despite limited or marginal control actions over a 5-year period. Consistent with these patterns, independent experiments confirmed the lower fitness of pyrethroid-resistant triatomines in Castelli compared with susceptible conspecifics. Targeting hotspots and pyrethroid-resistant foci with appropriate house modification measures and judicious application of alternative insecticides with adequate toxicity profiles are needed to suppress resistant triatomine populations and prevent their eventual regional spread.


Subject(s)
Chagas Disease , Insecticide Resistance , Insecticides , Pyrethrins , Triatoma , Animals , Triatoma/drug effects , Triatoma/physiology , Pyrethrins/pharmacology , Argentina , Insecticides/pharmacology , Chagas Disease/transmission , Chagas Disease/epidemiology , Humans , Longitudinal Studies , Insect Vectors/drug effects , Insect Vectors/physiology , Housing , Ecosystem , Insect Control
3.
BMC Genomics ; 25(1): 665, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961324

ABSTRACT

Indoor residual spraying (IRS) and insecticide-treated nets (ITNs) are the main methods used to control mosquito populations for malaria prevention. The efficacy of these strategies is threatened by the spread of insecticide resistance (IR), limiting the success of malaria control. Studies of the genetic evolution leading to insecticide resistance could enable the identification of molecular markers that can be used for IR surveillance and an improved understanding of the molecular mechanisms associated with IR. This study used a weighted gene co-expression network analysis (WGCNA) algorithm, a systems biology approach, to identify genes with similar co-expression patterns (modules) and hub genes that are potential molecular markers for insecticide resistance surveillance in Kenya and Benin. A total of 20 and 26 gene co-expression modules were identified via average linkage hierarchical clustering from Anopheles arabiensis and An. gambiae, respectively, and hub genes (highly connected genes) were identified within each module. Three specific genes stood out: serine protease, E3 ubiquitin-protein ligase, and cuticular proteins, which were top hub genes in both species and could serve as potential markers and targets for monitoring IR in these malaria vectors. In addition to the identified markers, we explored molecular mechanisms using enrichment maps that revealed a complex process involving multiple steps, from odorant binding and neuronal signaling to cellular responses, immune modulation, cellular metabolism, and gene regulation. Incorporation of these dynamics into the development of new insecticides and the tracking of insecticide resistance could improve the sustainable and cost-effective deployment of interventions.


Subject(s)
Anopheles , Insecticide Resistance , Pyrethrins , Systems Biology , Anopheles/genetics , Anopheles/drug effects , Animals , Insecticide Resistance/genetics , Pyrethrins/pharmacology , Insecticides/pharmacology , Gene Regulatory Networks , Organophosphates/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Kenya , Gene Expression Profiling
4.
Parasit Vectors ; 17(1): 300, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992693

ABSTRACT

BACKGROUND: The widespread use of insecticide-treated nets (ITNs) has significantly contributed to the reduction in malaria cases and deaths observed across Africa. Unfortunately, this control strategy is threatened by the rapid spread of pyrethroid resistance in malaria vectors. Dual-active-ingredient insecticidal nets are now available to mitigate the impact of pyrethroid resistance. To facilitate evidence-based decisions regarding product selection in specific use settings, data are needed on the efficacy of these different nets against local mosquito populations. METHODS: Two experimental hut trials were performed in Za-Kpota, southern Benin in 2021 to evaluate the performance of Interceptor G2 (BASF), Royal Guard (Disease Control Technologies) and PermaNet 3.0 (Vestergaard Frandsen), all dual-active-ingredient bednets, in comparison to untreated or standard pyrethroid-treated bednets, against free-flying wild Anopheles gambiae mosquitoes. The performance of some of these next-generation nets was compared to the same type of nets that have been in use for up to 2 years. Mosquitoes collected in the huts were followed up after exposure to assess the sublethal effects of treatments on certain life-history traits. RESULTS: The predominant species in the study site was Anopheles gambiae sensu stricto (An. gambiae s.s.). Both Anopheles coluzzii and An. gambiae s.s. were resistant to pyrethroids (deltamethrin susceptibility was restored by piperonyl butoxide pre-exposure). In the experimental hut trials, the highest blood-feeding inhibition (5.56%) was recorded for the Royal Guard net, relative to the standard PermaNet 2.0 net (44.44% inhibition). The highest 72-h mortality rate (90.11%) was recorded for the Interceptor G2 net compared to the PermaNet 2.0 net (56.04%). After exposure, the risk of death of An. gambiae sensu lato (An. gambiae s.l.) was 6.5-fold higher with the Interceptor G2 net and 4.4-fold higher with the PermaNet 3.0 net compared to the respective untreated net. Lower mosquito mortality was recorded with an aged Interceptor G2 net compared to a new Interceptor G2 net. Oviposition rates were lower in mosquitoes collected from huts containing ITNs compared to those of untreated controls. None of the mosquitoes collected from huts equipped with Royal Guard nets laid any eggs. CONCLUSIONS: The Royal Guard and Interceptor G2 nets showed a potential to significantly improve the control of malaria-transmitting vectors. However, the PermaNet 3.0 net remains effective in pyrethroid-resistant areas.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Benin , Pyrethrins/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Malaria/prevention & control , Malaria/transmission , Female
5.
PLoS One ; 19(7): e0298512, 2024.
Article in English | MEDLINE | ID: mdl-38995958

ABSTRACT

Pyrethroids are the most widely used insecticides to control vector borne diseases including malaria. Physiological resistance mechanisms to these insecticides have been well described, whereas those for behavioral resistance remain overlooked. Field data suggest the presence of spatial sensory detection by Anopheles mosquitoes of the pyrethroid molecules used in insecticide-based control tools, such as long-lasting insecticide nets or insecticide residual spraying. This opens the way to the emergence of a wide range of behavioral adaptations among malaria vectors. However, the spatial sensory detection of these molecules is controversial and needs to be demonstrated. The goal of this study was to behaviorally characterize the non-contact detection of three of the most common pyrethroids used for malaria vector control: permethrin, deltamethrin an ⍺-cypermethrin. To reach this goal, we recorded the behavior (takeoff response) of Anopheles gambiae pyrethroid-sensitive and resistant laboratory strains, as well as field collected mosquitoes from the Gambiae Complex, when exposed to the headspace of bottles containing different doses of the insecticides at 25 and 35°C, in order to represent a range of laboratory and field temperatures. We found the proportion of laboratory susceptible and resistant female mosquitoes that took off was, in all treatments, dose and the temperature dependent. Sensitive mosquitoes were significantly more prone to take off only in the presence of ⍺-cypermethrin, whereas sensitive and resistant mosquitoes showed similar responses to permethrin and deltamethrin. Field-collected mosquitoes of the Gambiae Complex were also responsive to permethrin, independently of the species identity (An. gambiae, An. coluzzii and An. arabiensis) or their genotypes for the kdr mutation, known to confer resistance to pyrethroids. The observed ability of Anopheles spp. mosquitoes to detect insecticides without contact could favor the evolution of behavioral modifications that may allow them to avoid or reduce the adverse effect of insecticides and thus, the development of behavioral resistance.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Control , Mosquito Vectors , Pyrethrins , Animals , Anopheles/drug effects , Anopheles/physiology , Pyrethrins/pharmacology , Pyrethrins/toxicity , Insecticides/pharmacology , Insecticides/toxicity , Mosquito Vectors/drug effects , Mosquito Control/methods , Female , Nitriles/pharmacology , Permethrin/pharmacology , Malaria/transmission , Malaria/prevention & control
6.
Parasit Vectors ; 17(1): 292, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978086

ABSTRACT

BACKGROUND: The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS: Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS: The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS: These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.


Subject(s)
Aedes , Insecticide Resistance , Mosquito Vectors , Animals , Mozambique , Insecticide Resistance/genetics , Aedes/genetics , Aedes/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Mutation , Electron Transport Complex IV/genetics , Insecticides/pharmacology , Madagascar , Microsatellite Repeats/genetics , Female , Voltage-Gated Sodium Channels/genetics
7.
J Agric Food Chem ; 72(28): 15624-15632, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38952111

ABSTRACT

Phytophagous insects are more predisposed to evolve insecticide resistance than other insect species due to the "preadaptation hypothesis". Cytochrome P450 monooxygenases have been strongly implicated in insecticide and phytochemical detoxification in insects. In this study, RNA-seq results reveal that P450s of Spodoptera litura, especially the CYP3 clan, are dominant in cyantraniliprole, nicotine, and gossypol detoxification. The expression of a Malpighian tubule-specific P450 gene, SlCYP9A75a, is significantly upregulated in xenobiotic treatments except α-cypermethrin. The gain-of-function and loss-of-function analyses indicate that SlCYP9A75a contributes to cyantraniliprole, nicotine, and α-cypermethrin tolerance, and SlCYP9A75a is capable of binding to these xenobiotics. This study indicates the roles of inducible SlCYP9A75a in detoxifying man-made insecticides and phytochemicals and may provide an insight into the development of cross-tolerance in omnivorous insects.


Subject(s)
Cytochrome P-450 Enzyme System , Insect Proteins , Insecticide Resistance , Insecticides , Malpighian Tubules , Spodoptera , Xenobiotics , Animals , Spodoptera/genetics , Spodoptera/drug effects , Spodoptera/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Xenobiotics/metabolism , Insecticides/pharmacology , Malpighian Tubules/metabolism , Malpighian Tubules/enzymology , Malpighian Tubules/drug effects , Insecticide Resistance/genetics , Inactivation, Metabolic/genetics , Larva/growth & development , Larva/genetics , Larva/drug effects
8.
Malar J ; 23(1): 211, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020365

ABSTRACT

BACKGROUND: Anopheles stephensi is recognized as the main malaria vector in Iran. In recent years, resistance to several insecticide classes, including organochlorine, pyrethroids, and carbamate compounds, has been reported for this medically important malaria vector. The main objective of the present study was to evaluate the insecticide susceptibility status of An. stephensi collected from the southern part of Iran, and to clarify the mechanism of resistance, using bioassay tests and molecular methods comparing the sequence of susceptible and resistant mosquitoes. METHODS: Mosquito larvae were collected from various larval habitats across six different districts (Gabrik, Sardasht, Tidar, Dehbarez, Kishi and Bandar Abbas) in Hormozgan Provine, located in the southern part of Iran. From each district standing water areas with the highest densities of Anopheles larvae were selected for sampling, and adult mosquitoes were reared from them. Finally, the collected mosquito species were identified using valid keys. Insecticide susceptibility of An. stephensi was tested using permethrin 0.75%, lambdacyhalothrin 0.05%, deltamethrin 0.05%, and DDT 4%, following the World Health Organization (WHO) test procedures for insecticide resistance monitoring. Additionally, knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene was sequenced and analysed among resistant populations to detect possible molecular mechanisms of observed resistance phenotypes. RESULTS: The susceptibility status of An. stephensi revealed that resistance to DDT and permethrin was found in all districts. Furthermore, resistance to all tested insecticides in An. stephensi was detected in Gabrik, Sardasht, Tidar, and Dehbarez. Analysis of knockdown resistance (kdr) mutations at the vgsc did not show evidence for the presence of this mutation in An. stephensi. CONCLUSION: Based on the results of the current study, it appears that in An. stephensi from Hormozgan Province (Iran), other resistance mechanisms such as biochemical resistance due to detoxification enzymes may be involved due to the absence of the kdr mutation or non-target site resistance. Further investigation is warranted in the future to identify the exact resistance mechanisms in this main malaria vector across the country.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Mutation , Anopheles/genetics , Anopheles/drug effects , Animals , Iran , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Larva/drug effects , Larva/genetics , Pyrethrins/pharmacology , Permethrin/pharmacology , DDT/pharmacology , Biological Assay , Nitriles/pharmacology , Female
9.
Parasit Vectors ; 17(1): 303, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997729

ABSTRACT

BACKGROUND: Malaria transmission is known to be perennial and heterogeneous in Benin. Studies assessing local malaria prevalence, transmission levels and vector characteristics are critical for designing, monitoring and evaluating new vector control interventions in community trials. We conducted a study in the Zakpota sub-district of central Benin to collect baseline data on household characteristics, malaria prevalence, vector characteristics and transmission dynamics in preparation for a randomised controlled trial to evaluate the community impact of VECTRON™ T500, a new broflanilide indoor residual spraying (IRS) product. METHODS: A total of 480 children under 5 years of age from the 15 villages of the sub-district were tested for malaria by rapid diagnostic tests (RDTs). Mosquitoes were collected by human landing catches (HLCs), pyrethrum spray catches (PSCs) and Centers for Disease Control and Prevention miniature light traps (CDC-LTs) in selected houses in each village to assess vector density, composition, vector infectivity and prevalence of insecticide resistance markers. Bioassays were performed to detect vector susceptibility to pyrethroids, broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). RESULTS: A total of 9080 households were enumerated in the 15 study villages. Insecticide-treated net (ITN) usage was > 90%, with 1-2 ITNs owned per household. Houses were constructed mainly with cement (44%) and mud (38%) substrates or a mixture of cement and mud (18%), and 60% of them had open eaves. The overall prevalence of P. falciparum infection was 19% among surveyed children: 20% among females and 18% among males. The haemoglobin rate showed an anaemia (< 11 g/dl) prevalence of 66%. Anopheles coluzzii and An. gambiae sensu stricto (s.s.) were the two vector species present at an overall proportion of 46% versus 54%, respectively. The human biting rate was 2.3 bites per person per night (b/p/n) and biting occurred mostly indoors compared with outdoors (IRR = 0.776; P = 0.001). The overall proportion of outdoor biting was 44% and exceeded indoor biting in three villages. The sporozoite rate was 2% with a combined yearly entomological inoculation rate (EIR) of 16.1 infected bites per person per year (ib/p/y). There was great variability in malaria transmission risk across the villages, with EIR ranging from 0 to 29.3 ib/p/y. The vector population showed a high intensity of resistance to pyrethroids across the study villages but was largely susceptible to broflanilide and clothianidin. CONCLUSIONS: This study found high levels of malaria prevalence, vector density and transmission in the Zakpota sub-district despite the wide use of insecticide-treated nets. The vector population was mostly indoor resting and showed a high intensity of pyrethroid resistance but was generally fully susceptible to broflanilide. These findings demonstrated the suitability of the study area for the assessment of VECTRON™ T500 in a community randomised trial.


Subject(s)
Anopheles , Insecticides , Malaria , Mosquito Control , Mosquito Vectors , Benin/epidemiology , Humans , Animals , Insecticides/pharmacology , Mosquito Control/methods , Prevalence , Child, Preschool , Mosquito Vectors/drug effects , Mosquito Vectors/parasitology , Anopheles/drug effects , Anopheles/parasitology , Anopheles/physiology , Female , Malaria/transmission , Malaria/prevention & control , Malaria/epidemiology , Male , Infant , Insecticide Resistance , Pyrethrins/pharmacology
10.
Proc Natl Acad Sci U S A ; 121(28): e2402407121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38959045

ABSTRACT

Trade-offs between evolutionary gain and loss are prevalent in nature, yet their genetic basis is not well resolved. The evolution of insect resistance to insecticide is often associated with strong fitness costs; however, how the fitness trade-offs operates remains poorly understood. Here, we show that the mitogen-activated protein kinase (MAPK) pathway and its upstream and downstream actors underlie the fitness trade-offs associated with insecticide resistance in the whitefly Bemisia tabaci. Specifically, we find a key cytochrome P450 gene CYP6CM1, that confers neonicotinoids resistance to in B. tabaci, is regulated by the MAPKs p38 and ERK through their activation of the transcription factor cAMP-response element binding protein. However, phosphorylation of p38 and ERK also leads to the activation of the transcription repressor Cap "n" collar isoform C (CncC) that negatively regulates exuperantia (Ex), vasa (Va), and benign gonial cell neoplasm (Bg), key genes involved in oogenesis, leading to abnormal ovary growth and a reduction in female fecundity. We further demonstrate that the transmembrane G protein-coupled receptor (GPCR) neuropeptide FF receptor 2 (NPFF2) triggers the p38 and ERK pathways via phosphorylation. Additionally, a positive feedback loop between p38 and NPFF2 leads to the continuous activation of the MAPK pathways, thereby constitutively promoting neonicotinoids resistance but with a significant reproductive cost. Collectively, these findings provide fundamental insights into the role of cis-trans regulatory networks incurred by GPCR-MAPK signaling pathways in evolutionary trade-offs and applied knowledge that can inform the development of strategies for the sustainable pest control.


Subject(s)
Hemiptera , Insect Proteins , Insecticide Resistance , MAP Kinase Signaling System , Receptors, G-Protein-Coupled , Animals , Hemiptera/genetics , Hemiptera/metabolism , Insecticide Resistance/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Female , Insecticides/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics
11.
Arch Insect Biochem Physiol ; 116(3): e22131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016064

ABSTRACT

Bacillus thuringiensis (Bt) is widely used as a biopesticide worldwide. To date, at least eight pest species have been found to be resistant to Bt in the field. As the first pest that was reported having resistance to Bt in the field, considerable research has been done on the mechanisms of Bt resistance in Plutella xylostella. However, whether the acquisition of Bt resistance by P. xylostella comes at a fitness cost is also a valuable question. In this study, Aminopeptidase-N 2 (APN2), a Cry toxin receptor gene of P. xylostella, was knocked down by RNA interference, resulting in improved resistance to Cry1Ac. It was also found that larval mortality of APN2 knockdown P. xylostella was significantly higher than that of the control, while the pupation rate, pupal weight, eclosion rate, fecundity (egg/female), hatchability, and female adult longevity were significantly lower in APN2 knockdown P. xylostella than in the control. These results illustrate that if Cry1Ac resistance was obtained only through the reduction of APN2 expression, P. xylostella would need to incur some fitness costs for it.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , CD13 Antigens , Endotoxins , Hemolysin Proteins , Insecticide Resistance , Larva , Moths , Animals , Endotoxins/pharmacology , Moths/genetics , Moths/growth & development , Moths/enzymology , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , CD13 Antigens/metabolism , CD13 Antigens/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Larva/growth & development , Larva/genetics , Female , RNA Interference , Insect Proteins/genetics , Insect Proteins/metabolism
12.
PLoS Biol ; 22(7): e3002704, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38954724

ABSTRACT

The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Chitin Synthase , Insecticide Resistance , Retroelements , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chitin Synthase/genetics , Chitin Synthase/metabolism , Retroelements/genetics , Bacillus thuringiensis/genetics , Insecticide Resistance/genetics , CRISPR-Cas Systems , Alternative Splicing/genetics , Alternative Splicing/drug effects , Spodoptera/drug effects , Plants, Genetically Modified , Moths/drug effects , Moths/genetics
13.
Gates Open Res ; 8: 27, 2024.
Article in English | MEDLINE | ID: mdl-39035850

ABSTRACT

This article addresses the evolving challenges in evaluating insecticide-based tools for vector control. In response to the emergence of insecticide resistance in major malaria vectors, novel chemistries and products are coming to market, and there is a need to review the available testing methodologies. Commonly used methods for evaluating insecticides, such as the World Health Organization (WHO) cone bioassay, are inadequate for the diverse range of tools now available. Innovation to Impact (I2I) has studied the variability in laboratory methods, with the aim of identifying key factors that contribute to variation and providing recommendations to tighten up protocols. The I2I Methods Landscape is a living document which presents a review of existing methods for evaluating vector control tools, with the scope currently extending to insecticide-treated nets (ITNs) and indoor residual sprays (IRS). The review reveals a lack of validation for many commonly used vector control methods, highlighting the need for improved protocols to enhance reliability and robustness of the data that is generated to make decisions in product development, evaluation, and implementation. A critical aspect highlighted by this work is the need for tailored methods to measure endpoints relevant to the diverse modes of action of novel insecticides. I2I envisage that the Methods Landscape will serve as a decision-making tool for researchers and product manufacturers in selecting appropriate methods, and a means to prioritise research and development. We call for collective efforts in the pro-active development, validation, and consistent implementation of suitable methods in vector control to produce the data needed to make robust decisions.


Subject(s)
Insecticides , Malaria , Mosquito Control , Mosquito Control/methods , Animals , Humans , Malaria/prevention & control , Mosquito Vectors/drug effects , Insecticide Resistance , Insecticide-Treated Bednets
14.
Parasitol Res ; 123(7): 282, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037590

ABSTRACT

This study examined the pattern of resistance to widely applied synthetic pyrethroids, i.e., cypermethrin and deltamethrin, against larvae of Rhipicephalus microplus ticks sampled from Marathwada region in Maharashtra, India. The study also examined the role of α- and ß-esterases and glutathione-S-transferase (GST) in resistance development. All eight R. microplus isolates tested were resistant to deltamethrin (RL IV), having RR50 values from 6.88 to 131.26. LPT analysis exhibited the resistance level II deltamethrin resistance in Beed and Hingoli, III in Dharashiv, and IV in Sambhajinagar, Parbhani, Latur, Jalna, and Nanded isolates. The LIT analysis showed that Dharashiv field isolates had the lowest LC50 value of 229.09 ppm against cypermethrin, while Sambhajinagar field isolates had the highest at 489.78 ppm. The RR50 ranged from 1145.45 to 2448.9. Seven isolates were level I resistant to cypermethrin while the Jalna isolate was level II resistant. In larvae treated with deltamethrin and cypermethrin, the activity of α- and ß-esterase enzymes increased significantly compared to control groups. The enzyme ratios in treated larvae ranged from 0.7533 to 1.7023 for α-esterase and 0.7434 to 3.2054 for ß-esterase. The Hingoli isolate treated with cypermethrin exhibited the highest α-esterase activity (903.261), whereas Sambhajinagar isolate had the highest GST enzyme ratio (2.8224) after deltamethrin exposure. When exposed to cypermethrin, the Hingoli isolate showed the highest GST enzyme ratio, 2.0832. The present study provides the current resistance status in tick populations from Marathwada region indicating deltamethrin and cypermethrin to be ineffective for tick control. The results also suggest that SP compounds should be regulated in this region and alternative control strategies should be introduced.


Subject(s)
Acaricides , Glutathione Transferase , Larva , Nitriles , Pyrethrins , Rhipicephalus , Animals , Pyrethrins/pharmacology , India , Rhipicephalus/drug effects , Rhipicephalus/enzymology , Nitriles/pharmacology , Larva/drug effects , Glutathione Transferase/metabolism , Acaricides/pharmacology , Esterases/metabolism , Insecticide Resistance , Drug Resistance
15.
J Vector Borne Dis ; 61(2): 151-157, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922649

ABSTRACT

BACKGROUND OBJECTIVES: Despite significant progress in malaria control throughout India, Chhattisgarh state continues to be a significant contributor to both malaria morbidity and mortality. This study aims to identify key factors associated with malaria endemicity, with a goal of focusing on these factors for malaria elimination by 2030. METHODS: We employed an analysis and narrative review methodology to summarize the existing evidence on malaria epidemiology in Chhattisgarh. Data encompassing environmental conditions, dominant malaria vectors and their distribution, and the impact of previous interventions on malaria control, were extracted from published literature using PubMed and Google Scholar. This information was subsequently correlated with malaria incidence data using appropriate statistical and geographical methods. RESULTS: Much of the malaria burden in Chhattisgarh state is concentrated in a few specific districts. The primary malaria vectors in these regions are Anopheles culicifacies and An. fluviatilis. High transmission areas are found in tribal belts which are challenging to access and are characterized by densely forested areas that provide a conducive habitat for malaria vectors. INTERPRETATION CONCLUSION: Conducive environmental conditions characterized by high forest cover, community behavior, and insurgency, contribute to high malaria endemicity in the area. Challenges include insecticide resistance in malaria vectors and asymptomatic malaria. Allocating additional resources to high-endemic districts is crucial. Innovative and focused malaria control programs of the country, such as DAMAN and Malaria Mukt Abhiyan, hold immense importance.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , India/epidemiology , Humans , Malaria/prevention & control , Malaria/epidemiology , Animals , Anopheles/parasitology , Anopheles/physiology , Mosquito Vectors/parasitology , Mosquito Control/methods , Disease Eradication/methods , Incidence , Insecticide Resistance
16.
PLoS Negl Trop Dis ; 18(6): e0012256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870209

ABSTRACT

The Aedes aegypti cadherin-like protein (Aae-Cad) and the membrane-bound alkaline phosphatase (Aae-mALP) are membrane proteins identified as putative receptors for the larvicidal Cry toxins produced by Bacillus thuringiensis subsp. israelensis bacteria. Cry toxins are the most used toxins in the control of different agricultural pest and mosquitos. Despite the relevance of Aae-Cad and Aae-mALP as possible toxin-receptors in mosquitoes, previous efforts to establish a clear functional connection among them and Cry toxins activity have been relatively limited. In this study, we used CRISPR-Cas9 to generate knockout (KO) mutations of Aae-Cad and Aae-mALP. The Aae-mALP KO was successfully generated, in contrast to the Aae-Cad KO which was obtained only in females. The female-linked genotype was due to the proximity of aae-cad gene to the sex-determining loci (M:m). Both A. aegypti KO mutant populations were viable and their insect-development was not affected, although a tendency on lower egg hatching rate was observed. Bioassays were performed to assess the effects of these KO mutations on the susceptibility of A. aegypti to Cry toxins, showing that the Aae-Cad female KO or Aae-mALP KO mutations did not significantly alter the susceptibility of A. aegypti larvae to the mosquitocidal Cry toxins, including Cry11Aa, Cry11Ba, Cry4Ba, and Cry4Aa. These findings suggest that besides the potential participation of Aae-Cad and Aae-mALP as Cry toxin receptors in A. aegypti, additional midgut membrane proteins are involved in the mode of action of these insecticidal toxins.


Subject(s)
Aedes , Alkaline Phosphatase , Bacillus thuringiensis Toxins , Bacterial Proteins , CRISPR-Cas Systems , Cadherins , Endotoxins , Hemolysin Proteins , Animals , Aedes/genetics , Aedes/drug effects , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Female , Cadherins/genetics , Cadherins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Gene Knockout Techniques , Larva/genetics , Larva/growth & development , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Male , Insecticides/pharmacology
17.
Pestic Biochem Physiol ; 202: 105958, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879340

ABSTRACT

The wheat aphid Sitobion miscanthi is a dominant and destructive pest in agricultural production. Insecticides are the main substances used for effective control of wheat aphids. However, their extensive application has caused severe resistance of wheat aphids to some insecticides; therefore, exploring resistance mechanisms is essential for wheat aphid management. In the present study, CYP6CY2, a new P450 gene, was isolated and overexpressed in the imidacloprid-resistant strain (SM-R) compared to the imidacloprid-susceptible strain (SM-S). The increased sensitivity of S. miscanthi to imidacloprid after knockdown of CYP6CY2 indicates that it could be associated with imidacloprid resistance. Subsequently, the posttranscriptional regulation of CYP6CY2 in the 3' UTR by miR-3037 was confirmed, and CYP6CY2 participated in imidacloprid resistance. This finding is critical for determining the role of P450 in relation to the resistance of S. miscanthi to imidacloprid. It is of great significance to understand this regulatory mechanism of P450 expression in the resistance of S. miscanthi to neonicotinoids.


Subject(s)
Aphids , Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , MicroRNAs , Neonicotinoids , Nitro Compounds , Neonicotinoids/pharmacology , Nitro Compounds/pharmacology , Animals , Insecticides/pharmacology , Insecticide Resistance/genetics , Aphids/genetics , Aphids/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Imidazoles/pharmacology
18.
J Infect Public Health ; 17(7): 102459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870682

ABSTRACT

The objective of this were conducted to elucidate spatiotemporal variations in malaria epidemiology in Gabon since 1980. For that, five databases, were used to collect and identify all studies published between 1980 and 2023 on malaria prevalence, antimalarial drug resistance, markers of antimalarial drug resistance and insecticide resistance marker. The findings suggest that Gabon continues to face malaria as an urgent public health problem, with persistently high prevalence rates. Markers of resistance to CQ persist despite its withdrawal, and markers of resistance to SP have emerged with a high frequency, reaching 100 %, while ACTs remain effective. Also, recent studies have identified markers of resistance to the insecticides Kdr-w and Kdr-e at frequencies ranging from 25 % to 100 %. Ace1R mutation was reported with a frequency of 0.4 %. In conclusion, the efficacy of ACTs remains above the threshold recommended by the WHO. Organo-phosphates and carbamates could provide an alternative for vector control.


Subject(s)
Antimalarials , Malaria , Gabon/epidemiology , Humans , Malaria/epidemiology , Prevalence , Antimalarials/therapeutic use , Insecticide Resistance , Drug Resistance , Animals , Insecticides/pharmacology
19.
Parasites Hosts Dis ; 62(2): 251-256, 2024 May.
Article in English | MEDLINE | ID: mdl-38835266

ABSTRACT

The global resurgence of bed bug infestations, exacerbated by increasing international travel, trade, and insecticide resistance, has significantly impacted Korea. This study identified the bed bug species and performed pyrethroid resistance genotyping of recently resurgent bed bugs in Korea. Thirty-one regional bed bug samples were collected from 5 administrative regions: Gyeonggi-do (n=14), Seoul (n=13), Busan (n=2), Jeonllanam-do (n=1), and Chungcheongbuk-do (n=1). The samples underwent morphological and molecular identification. Twenty-four regional samples (77.4%) were identified as the tropical bed bug, Cimex hemipterus, and the remaining 7 regional samples (22.6%) were identified as the common bed bug, Cimex lectularius. The C. hemipterus regional samples carried at least three mutations associated with knockdown resistance (kdr), including 2 super-kdr mutations. The 7 C. lectularius regional samples possessed at least one of the 3 kdr-related mutations associated with pyrethroid resistance. This study confirms that the prevalent bed bug species recently in Korea is C. hemipterus, replacing the previously endemic C. lectularius. Additionally, the rise in bed bug populations with pyrethroid resistance underscores the necessity of introducing alternative insecticides.


Subject(s)
Bedbugs , Genotype , Insecticide Resistance , Insecticides , Pyrethrins , Animals , Bedbugs/genetics , Bedbugs/drug effects , Pyrethrins/pharmacology , Republic of Korea , Insecticide Resistance/genetics , Insecticides/pharmacology , Mutation
20.
Sci Rep ; 14(1): 13447, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862628

ABSTRACT

Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.


Subject(s)
Aedes , Genetic Variation , Insecticide Resistance , Insecticide Resistance/genetics , Animals , Aedes/genetics , Aedes/drug effects , Genomics/methods , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Insect Proteins/genetics , Whole Genome Sequencing/methods , DNA Copy Number Variations
SELECTION OF CITATIONS
SEARCH DETAIL