Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.660
Filter
1.
Luminescence ; 39(8): e4849, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39099225

ABSTRACT

Pesticides in environmental samples pose significant risks to ecosystems and human health since they require precise and efficient detection methods. Imidacloprid (IMI), a widely used neonicotinoid insecticide, exemplifies these hazards due to its potential toxicity. This study addresses the urgent need for improved monitoring of such contaminants by introducing a novel fluorometric method for detecting IMI using nitrogen-doped graphite carbon dots (N-GCDs). The sensor operates by quenching fluorescence through the interaction of Cu2+ ions with N-GCDs. Subsequently, IMI binds to the imidazole group, chelates with Cu2+, and restores the fluorescence of N-GCDs. This alternating fluorescence behavior allows for the accurate identification of both Cu2+ and IMI. The sensor exhibits linear detection ranges of 20-100 nM for Cu2+ and 10-140 µg/L for IMI, with detection limits of 18 nM and 1.2 µg/L, respectively. The high sensitivity of this sensor enables the detection of real-world samples, which underscores its potential for practical use in environmental monitoring and agricultural safety.


Subject(s)
Copper , Environmental Monitoring , Fluorometry , Graphite , Neonicotinoids , Nitro Compounds , Nitrogen , Quantum Dots , Neonicotinoids/analysis , Neonicotinoids/chemistry , Nitro Compounds/chemistry , Nitro Compounds/analysis , Copper/chemistry , Copper/analysis , Nitrogen/chemistry , Graphite/chemistry , Quantum Dots/chemistry , Insecticides/analysis , Insecticides/chemistry , Imidazoles/chemistry
2.
J Agric Food Chem ; 72(33): 18365-18377, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39105749

ABSTRACT

Host-symbiont interaction plays a crucial role in determining the host's fitness under toxic stress, as observed in numerous insect species. However, the mechanism of the symbionts involved in the detoxification of insecticides remains poorly known. In this study, through microbiome, proteomic, and genomic analysis, we identified a prevalent symbiont, Enterococcus casseliflavus EMBL-3, in a major invasive insect pest,Spodoptera frugiperda. This symbiont enhances the host's insecticide resistance to chlorantraniliprole by breaking amide bonds and dehalogenating insecticides. Complying with the increase in exposure risk of chlorantraniliprole, the E. casseliflavus isolates of insects' symbionts but not those from mammals or environmental strains showed a significant enrichment of potential chlorantraniliprole degradation genes. EMBL-3 is popular in field population insects with efficient horizontal transmission ability through cross-diet and cannibalism. This study provides a new therapeutic target for agricultural pests based on symbiont-targeted insect control for global crop protection.


Subject(s)
Enterococcus , Insecticides , Spodoptera , Symbiosis , ortho-Aminobenzoates , Animals , Insecticides/metabolism , Insecticides/pharmacology , Insecticides/chemistry , Spodoptera/microbiology , Spodoptera/drug effects , Enterococcus/metabolism , Enterococcus/genetics , Enterococcus/drug effects , ortho-Aminobenzoates/metabolism , ortho-Aminobenzoates/pharmacology , Inactivation, Metabolic , Insecticide Resistance , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
3.
J Agric Food Chem ; 72(33): 18708-18719, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106049

ABSTRACT

The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Endotoxins , Hemolysin Proteins , Insect Proteins , Insecticides , Larva , Moths , Animals , Bacillus thuringiensis Toxins/metabolism , Bacillus thuringiensis Toxins/toxicity , Bacillus thuringiensis Toxins/chemistry , Endotoxins/metabolism , Endotoxins/genetics , Endotoxins/toxicity , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Hemolysin Proteins/toxicity , Hemolysin Proteins/genetics , Moths/metabolism , Moths/drug effects , Moths/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/metabolism , Larva/drug effects , Larva/growth & development , Larva/genetics , Insecticides/toxicity , Insecticides/pharmacology , Insecticides/chemistry , Bacillus thuringiensis/chemistry , Bacillus thuringiensis/metabolism , Bacillus thuringiensis/genetics , Insecticide Resistance/genetics , Pest Control, Biological , Helicoverpa armigera
4.
Sci Rep ; 14(1): 18393, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117743

ABSTRACT

A new series of substituted benzo[h]chromene, benzochromenopyrimidine, and benzochromenotriazolopyrimidine derivatives were synthesized via chemical transformations of iminonitrile, ethoxymethylene amino, and cyanomethylene functionalities. The chemical structures of the synthesized compounds were assured by spectroscopic data and elemental analysis. The larvicidal efficacy of these compounds against Culex pipiens L. larvae was investigated, revealing potent insecticidal activity, particularly for compounds 6, 10, and 16, exceeding that of the standard insecticide chlorpyrifos. The mode of action of these compounds was explored through molecular docking studies, indicating their potential as acetylcholine esterase (AChE) inhibitors and nicotinic acetylcholine receptors (nAChR) blockers. The structure-activity relationship analysis highlighted the influence of substituents and fused heterocyclic rings on larvicidal potency. These findings suggest that the synthesized compounds hold promise as potential candidates for developing novel and effective mosquito control agents.


Subject(s)
Benzopyrans , Culex , Insecticides , Larva , Molecular Docking Simulation , Animals , Culex/drug effects , Larva/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Structure-Activity Relationship , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/chemical synthesis , Models, Molecular , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Receptors, Nicotinic/metabolism , Molecular Structure
5.
Sci Rep ; 14(1): 18567, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127742

ABSTRACT

Encapsulation of essential oils (EOs) is an important strategy that can be applied to intensify the stability and efficiency of these compounds in integrated pest management. The present study aimed to investigate the sub-lethal activity of polymer-based EOs nanoparticles against red flour beetle, Tribolium castaneum adults as an important critical pest of stored products. Chitosan nanoparticles (CSNPs) containing garlic and cinnamon essential oils (GEO and CEO) prepared using the ionic cross-link technique. Stability of nano-formulations evaluated over temperature and storage time. The fumigant effect (LC10, LC20, LC30) and contact toxicity (LC10, LC15, LC25) determined. In addition, the contact toxicities of EOs and their nanoparticles on nutritional indices evaluated. An olfactometer used to assess the repellent activity of EOs and EOs loaded in CSNPs (EOs@CSNPs) in sub-lethal fumigant concentrations. Characterization results showed GEO loaded in CSNPs has particle size of 231.14 ± 7.55 nm, polydispersity index (PDI) value of 0.15 ± 0.02, encapsulation efficiency (EE) percentage of 76.77 ± 0.20 and zeta potential of - 18.82 ± 0.90 mV, in which these values for the CEO loaded in CSNPs (CEO@CSNPs) changed to 303.46 ± 0.00 nm, 0.20 ± 0.05, 86.81 ± 0.00% and - 20.16 ± 0.35 mV, respectively. A lower PDI value for both CSNPs showed an appropriate NPs size distribution. Furthermore, NPs size and encapsulation efficiency did not change in various temperatures and during four months which confirm good stability of the EOs@CSNPs. In LC30 of GEO@CSNPs, the maximum repellency was determined as 66.66 ± 3.33. Among nutritional indices, in LC25 of GEO@CSNPs, the relative growth rate (RGR) (0.011 ± 0.003 mg.mg-1.day-1), relative consumption rate (RCR) (0.075 ± 0.004 mg.mg-1.day-1) and feeding deterrence index (FDI) (54.662 ± 1.616%) were more affected, so GEO@CSNPs was more effective than CEO@CSNPs. The results of repellent and anti-dietary activities of EOs and EOs@CSNPs confirmed the higher repellency and adverse effectivity on nutritional indices of Tribolium castaneum pest treated with EOs@CSNPs compared to free EOs. In conclusion, the NPs form of GEO and CEO can be a novel and efficient carrier for improving the repellent and anti-nutritional activities of EOs.


Subject(s)
Insect Repellents , Nanoparticles , Oils, Volatile , Tribolium , Animals , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Nanoparticles/chemistry , Tribolium/drug effects , Insect Repellents/pharmacology , Insect Repellents/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Cinnamomum zeylanicum/chemistry , Polymers/chemistry , Particle Size , Garlic/chemistry , Insecticides/pharmacology , Insecticides/chemistry
6.
J Agric Food Chem ; 72(32): 17847-17857, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39088794

ABSTRACT

The mechanisms of insecticide resistance are complex. Recent studies have revealed a novel mechanism involving the chemosensory system in insecticide resistance. However, the specific binding mechanism between olfactory-related genes and insecticides needs to be clarified. In this study, the binding mechanism between pyrethroid insecticide deltamethrin and RpCSP6 from Rhopalosiphum padi was investigated by using computational and multiple experimental methods. RpCSP6 was expressed in different tissues and developmental stages of R. padi and can be induced by deltamethrin. Knockdown of RpCSP6 significantly increased the susceptibility of R. padi to deltamethrin. The binding affinity of RpCSP6 to 24 commonly used insecticides was measured. Seven key residues were found to steadily interact with deltamethrin, indicating their significance in the binding affinity to the insecticide. Our research provided insights for effectively analyzing the binding mechanism of insect CSPs with insecticides, facilitating the development of new and effective insecticides that target insect CSPs.


Subject(s)
Insect Proteins , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Pyrethrins/metabolism , Pyrethrins/pharmacology , Nitriles/metabolism , Nitriles/pharmacology , Nitriles/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insecticides/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Insecticide Resistance/genetics , Animals , Protein Binding
7.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951812

ABSTRACT

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Subject(s)
Aphids , Bacillus , Insecticides , Lipopeptides , Animals , Aphids/drug effects , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/isolation & purification , Insecticides/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Multigene Family , Secondary Metabolism , Pest Control, Biological , Whole Genome Sequencing , Genome, Bacterial/genetics
8.
Bioorg Chem ; 150: 107591, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964147

ABSTRACT

Some heterocycles bearing a benzo[h]quinoline moiety were synthesized through treating a 3-((2-chlorobenzo[h]quinolin-3-yl)methylene)-5-(p-tolyl)furan-2(3H)-one with four nitrogen nucleophiles comprising ammonium acetate, benzylamine, dodecan-1-amine, and 1,2-diaminoethane. Also, thiation reactions of furanone and pyrrolinone derivatives were investigated. The insecticidal activity of these compounds against mosquito larvae (Culex pipiens L.) was evaluated. All tested compounds exhibited significant larvicidal activity, surpassing that of the conventional insecticide chlorpyrifos. In silico docking analysis revealed that these compounds may act as acetyl cholinesterase (AChE) inhibitors, potentially explaining their larvicidal effect. Additionally, interactions with other neuroreceptors, such as nicotinic acetylcholine receptor and sodium channel voltage-gated alpha subunit were also predicted. The results obtained from this study reflected the potential of benzo[h]quinoline derivatives as promising candidates for developing more effective and sustainable mosquito control strategies. The ADME (absorption, distribution, metabolism, and excretion) analyses displayed their desirable drug-likeness and oral bioavailability properties.


Subject(s)
Culex , Insecticides , Larva , Molecular Docking Simulation , Quinolines , Animals , Culex/drug effects , Insecticides/pharmacology , Insecticides/chemistry , Insecticides/chemical synthesis , Larva/drug effects , Structure-Activity Relationship , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Molecular Structure , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Acetylcholinesterase/metabolism
9.
J Agric Food Chem ; 72(29): 16378-16389, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38980661

ABSTRACT

Rice (Oryza sativaL.) is a crucial staple food crop globally, facing significant challenges from various pests that affect crop productivity and quality. Conventional pesticide usage has limitations, necessitating the development of sustainable pest management strategies. This study focuses on the expression, purification, and functional characterization of Oryzacystatin II (OC-II), a protein derived from O. sativaL. Indica rice, with the intent to evaluate its potential as a bioinsecticide against rice pests. The OC-II gene was expressed and purified, and purification confirmed its molecular weight (∼12 kDa) and protein sequence through LC-MS/MS analysis and Western blotting. The IC50 value of OC-II was calculated as 0.06 µM, and the inhibition was identified as a competitive inhibition. The protein exhibited efficient control of both pests at the nymph and adult stages, with lower probing marks observed on treated plants. The inhibition of cathepsin B enzyme activity in insects further confirmed the bioactivity of the OC-II protein. Molecular docking and molecular dynamics simulations provided insights into the interaction between the OC-II protein and cathepsin enzymes reported in BPH and WBPH. Further investigations can focus on optimizing production methods and exploring the specificity and efficacy of the OC-II protein against other crop pests to enhance its practical applications.


Subject(s)
Insecticides , Molecular Docking Simulation , Oryza , Plant Proteins , Oryza/genetics , Oryza/chemistry , Oryza/metabolism , Animals , Insecticides/chemistry , Insecticides/pharmacology , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Pest Control, Biological
10.
Pestic Biochem Physiol ; 203: 106024, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084783

ABSTRACT

Indoxacarb is a chiral insecticide that consists of two enantiomers, S-(+)-indoxacarb and R-(-)-indoxacarb, of which only S-(+)-indoxacarb has insecticidal activity. Previous enantioselective toxicology studies of indoxacarb focused mostly on simple environmental model organisms. The lack of a toxicology evaluation of indoxacarb conducted in a mammalian system could mean that the extent of the potential health risk posed by the insecticide to humans is not adequately known. In this study, we reported on a new pair of enantiomers, S-IN-RM294 and R-IN-RM294, derived from the metabolic breakdown of S-(+)-indoxacarb and R-(-)-indoxacarb, respectively, in rats. The toxicokinetics of S-(+)-indoxacarb, R-(-)-indoxacarb, S-IN-RM294, and R-IN-RM294 in rats were evaluated to provide a more comprehensive risk assessment of these molecules. The bioavailability and excretion rates of both S-(+)-indoxacarb and R-(-)-indoxacarb were relatively low, which may be due to their faster metabolism and accumulation in the tissues. In addition, there were significant differences in the metabolism and distribution between the two indoxacarb enantiomers and their metabolites in vivo. S-(+)-Indoxacarb was found to be more easily metabolized in the blood compared with R-(-)-indoxacarb, as shown by the differences in pharmacokinetic parameters between oral and intravenous administration. Analysis of their tissue distribution showed that S-(+)-indoxacarb was less likely to accumulate in most tissues. The results obtained for the two metabolites were consistent with those of the two parent compounds. S-IN-RM294 was more readily cleared from the blood and less likely to accumulate in the tissues compared with R-IN-RM294. Therefore, whether from the perspective of insecticidal activity or from the perspective of mammalian and environmental friendliness, the application of optically pure S-(+)-indoxacarb in agriculture may be a more efficient and safer strategy.


Subject(s)
Biological Availability , Insecticides , Oxazines , Rats, Sprague-Dawley , Toxicokinetics , Animals , Male , Oxazines/pharmacokinetics , Oxazines/toxicity , Oxazines/metabolism , Stereoisomerism , Insecticides/toxicity , Insecticides/pharmacokinetics , Insecticides/chemistry , Rats
11.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063059

ABSTRACT

Plants of the Meliaceae family have long attracted researchers' interest due to their various insecticidal activities, with triterpenes being the main active ingredients. In this paper, we discuss 93 triterpenoids with insecticidal activity from 37 insecticidal plant species of 15 genera (Munronia, Neobeguea, Pseudocedrela, Nymania, Quivisia, Ruagea, Dysoxylum, Soymida, Lansium, Sandoricum, Walsura, Trichilia, Swietenia, Turraea, and Xylocarpus) in the family Meliaceae. Among these genera, Trichilia deserves further research, with twelve species possessing insecticidal activity. The 93 insecticidal molecules included 27 ring-seco limonoids (comprising 1 ring A-seco group chemical, 1 ring B-seco group chemical, 5 ring D-seco group chemicals, 14 rings A,B-seco group chemicals, 5 rings B,D-seco group chemicals, and 1 rings A,B,D-seco group chemical), 22 ring-intact limonoids (comprising 5 cedrelone-class chemicals, 6 trichilin-class chemicals, 7 havanensin-class chemicals, 2 azadirone-class chemicals, 1 vilasinin-class chemical, and 1 other chemical), 33 2,30-linkage chemicals (comprising 25 mexicanolide-class chemicals and 8 phragmalin-class chemicals), 3 1,n-linkage-group chemicals, 3 onoceranoid-type triterpenoids, 2 apotirucallane-type terpenoids, 2 kokosanolide-type tetranortriterpenoids, and 1 cycloartane triterpene. In particular, 59 molecules showed antifeedant activity, 30 molecules exhibited poisonous effects, and 9 molecules possessed growth regulatory activity. Particularly, khayasin, beddomei lactone, 3ß,24,25-trihydroxycycloartane, humilinolides A-E and methyl-2-hydroxy-3ß-isobutyroxy-1-oxomeliac-8(30)-enate showed excellent insecticidal activities, which were comparable to that of azadirachtin and thus deserved more attention. Moreover, it was noteworthy that various chemicals (such as 12α-diacetoxywalsuranolide, 11ß,12α-diacetoxycedrelone, 1α,7α,12α-triacetoxy-4α-carbomethoxy-11ß-hydroxy-14ß,15ß-epoxyhavanensin, and 11-epi-21-hydroxytoonacilide, etc.) from Turraea showed excellent insecticidal activity. Specially, the insecticidal activity of khayasin from Neobeguea against the coconut leaf beetle were similar to that of rotenone. Therefore, it was a promising candidate insecticide for the control of the coconut leaf beetle.


Subject(s)
Insecticides , Meliaceae , Triterpenes , Meliaceae/chemistry , Triterpenes/pharmacology , Triterpenes/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Animals , Limonins/pharmacology , Limonins/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
12.
Molecules ; 29(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39064892

ABSTRACT

A growing trend in plant protection is replacing chemical preparations with environmentally friendly biological compositions. Chitosan, due to its biocompatibility, biodegradability, and bioactivity, is an effective agent against plant diseases. The purpose of the study was to evaluate chitosan as a potential biopesticide for potato plants. Three variants of chitosan were tested: high (310-375 kDa, >75% deacetylated), medium (190-310 kDa, 75-85% deacetylated), and low (50-190 kDa, 75-85% deacetylated) molecular weight. The chitosan variants were dissolved in lactic and succinic acids and tested for antibacterial and antifungal properties against eight strains of mould and two strains of bacteria responsible for potato diseases. The possible cytotoxicity of chitosan was evaluated against different cell lines: insect Sf-9, human keratinocyte HaCaT, and human colon carcinoma Caco-2. The bioprotective activities of the chitosan were also evaluated in situ on potato tubers. Chitosan inhibited the growth of almost all the selected phytopathogens. The most active was medium molecular chitosan in lactic acid. This formula was characterized by low toxicity towards human cells and high toxicity towards Sf-9 cells. It was also found to have positive effects on the growth of stems and roots, gas exchange, and chlorophyll index in potato plants. Selected chitosan formulation was proposed as a functional biopesticide for potato protection against phytopathogens.


Subject(s)
Chitosan , Solanum tuberosum , Chitosan/pharmacology , Chitosan/chemistry , Solanum tuberosum/drug effects , Solanum tuberosum/microbiology , Humans , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Plant Growth Regulators/pharmacology , Plant Growth Regulators/chemistry , Caco-2 Cells , Microbial Sensitivity Tests , Plant Diseases/microbiology , Plant Diseases/prevention & control
13.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064968

ABSTRACT

Diaphorina citri Kuwayama (D. citri) is one of the major pests in the citrus industry, which spreads Citrus Huanglongbing disease. It has developed resistance to chemical insecticides. Therefore, searching for greener solutions for pest management is critically important. The main aim of this study was to evaluate the repellent and insecticidal efficacy of essential oils (EOs) from four species of Myrtaceae plants: Psidium guajava (PG), Eucalyptus robusta (ER), Eucalyptus tereticornis (ET), and Baeckea frutescens (BF) against D. citri and to analyze their chemical compositions. GC-MS analysis was performed, and the results indicated that the EOs of PG, ER, ET, and BF were rich in terpenoids, ketones, esters, and alcohol compounds. The repellent rate of all four EOs showed that it decreased with exposure time but increased with the concentration of EOs from 80.50% to 100.00% after treating D. citri for 6 h with four EOs at 100% concentration and decreased to 67.71% to 85.49% after 24 h of exposure. Among the compounds from the EOs tested, eucalyptol had the strongest repellent activity, with a 24 h repellency rate of 100%. The contact toxicity bioassay results showed that all EOs have insecticidal toxicity to D. citri; the LC50 for nymphs was 36.47-93.15 mL/L, and for adults, it was 60.72-111.00 mL/L. These results show that when PG is used as the reference material, the ER, ET, and BF EOs have strong biological activity against D. citri, which provides a scientific basis for the further development of plant-derived agrochemicals.


Subject(s)
Hemiptera , Insect Repellents , Insecticides , Myrtaceae , Oils, Volatile , Animals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Hemiptera/drug effects , Insect Repellents/pharmacology , Insect Repellents/chemistry , Myrtaceae/chemistry , Insecticides/chemistry , Insecticides/pharmacology , Citrus/chemistry , Gas Chromatography-Mass Spectrometry , Plant Oils/chemistry , Plant Oils/pharmacology
14.
Chemosphere ; 362: 142940, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059637

ABSTRACT

In this study, geopolymer catalysts were synthesized by incorporating different TiO2 (0, 7, and 14 wt%) and Fe2O3 content (0, 7, 14, and 20 wt%) into porous metakaolin-based geopolymer granules. TiO2- and Fe2O3-immobilized geopolymer granules were applied for photocatalytic removals of imidacloprid under UV-C irradiation. The analysis of the surface morphology of the Fe2O3 catalyst revealed its larger surface area predominated with meso- and macro-pores thus providing a larger area for photocatalysis. Meanwhile, the TiO2 catalyst had TiO2 nanoparticles filled up those mesopores and macropores in geopolymer resulting in its denser structure therefore limiting access of imidacloprid to the reactive sites. To maximize its photocatalytic activities, Fe2O3 and TiO2 could be immobilized into porous geopolymer matrix up to 20 and 14 wt%, respectively. The developed porous geopolymer had relatively stable imidacloprid adsorption capacities regardless of the TiO2 and Fe2O3 contents in their texture. After UV irradiation, their removal efficiencies were 94.85-100% and the photocatalytic degradation increased with the increase in TiO2 content (from 0 to 14 wt%) and Fe2O3 content (from 14 to 20 wt%). Nevertheless, Fe2O3-immobilized geopolymer granules posed a significantly higher kinetic rate (1.966 h-1) compared to that of TiO2 (0.154 h-1) at the same catalyst content (14 wt%). The newly developed Fe2O3-immobilized porous geopolymer catalysts could be effectively reused over 10 successive cycles during which the imidacloprid could be completely removed.


Subject(s)
Ferric Compounds , Insecticides , Neonicotinoids , Nitro Compounds , Titanium , Ultraviolet Rays , Neonicotinoids/chemistry , Titanium/chemistry , Insecticides/chemistry , Nitro Compounds/chemistry , Catalysis , Ferric Compounds/chemistry , Porosity , Adsorption , Polymers/chemistry , Water Pollutants, Chemical/chemistry
15.
J Agric Food Chem ; 72(28): 15552-15560, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38950523

ABSTRACT

To synthesize the fundamental framework of dihydroagarofuran, a novel strategy was devised for constructing the C-ring through a dearomatization reaction using 6-methoxy-1-tetralone as the initial substrate. Subsequently, the dihydroagarofuran skeleton was assembled via two consecutive Michael addition reactions. The conjugated diene and trans-dihydroagarofuran skeleton were modified. The insecticidal activities of 33 compounds against Mythimna separata were evaluated. Compounds 11-5 exhibited an LC50 value of 0.378 mg/mL. The activity exhibited a remarkable 29-fold increase compared to positive control Celangulin V, which was widely recognized as the most renowned natural dihydroagarofuran polyol ester insecticidal active compound. Docking experiments between synthetic compounds and target proteins revealed the shared binding sites with Celangulin V. Structure-activity relationship studies indicated that methyl groups at positions C4 and C10 significantly improved insecticidal activity, while ether groups with linear chains displayed enhanced activity; in particular, the allyl ether group demonstrated optimal efficacy. Furthermore, a three-dimensional quantitative structure-activity relationship model was established to investigate the correlation between the skeletal structure and activity. These research findings provide valuable insights for discovering and developing dihydroagarofuran-like compounds.


Subject(s)
Insecticides , Molecular Docking Simulation , Moths , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Moths/drug effects , Molecular Structure , Structure-Activity Relationship , Quantitative Structure-Activity Relationship , Lignans/chemistry , Lignans/pharmacology , Sesquiterpenes
16.
J Agric Food Chem ; 72(31): 17271-17282, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39052523

ABSTRACT

Ethyl 5-cyano-1,6-dihydro-2-methyl-4-(2'-thienyl)-6-thioxonicotinate (A) was synthesized and reacted with ethyl chloroacetate in the presence of sodium acetate or sodium carbonate to give ethyl 5-cyano-6-((2-ethoxy-2-oxoethyl)thio)-2-methyl-4-(2'-thienyl)nicotinate (1a) or its isomeric thieno[2,3-b]pyridine 2a. 3-Aminothieno[2,3-b]pyridine-2-carboxamide 2b was also synthesized by the reaction of A with 2-chloroacetamide. The reaction of 1a with hydrazine hydrate in boiling ethanol gave acethydrazide 3. Heating ester 1a with hydrazine hydrate under neat conditions afforded 3-amino-1H-pyrazolo[3,4-b]pyridine 10. Compounds 2b, 3, and 10 were used as precursors for synthesizing other new thieno[2,3-b]pyridines and pyrazolo[3,4-b]pyridines containing mainly the ethyl nicotinate scaffold. Structures of all new compounds were confirmed by elemental and spectral analyses. Most of the obtained compounds were evaluated for their insecticidal activity toward the nymphs and adults of Aphis gossypii (Glover,1887). Some compounds such as 4, 9b, and 9c showed promising results. The effect of some sublethal concentrations, less than LC50, of compounds 4, 9b, and 9c on the examined Aphis was subjected to a further study. The results demonstrated that exposure of A. gossypii nymphs to sublethal concentrations of compounds 4, 9b, and 9c had noticeable effects on their biological parameters, i.e., nymphal instar duration, generation time, and adult longevity. The highest concentration C1 of all three compounds increased the nymphal instar duration and generation time and decreased adult longevity and vice versa.


Subject(s)
Aphids , Insecticides , Pyridines , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Animals , Pyridines/chemistry , Aphids/drug effects , Molecular Structure , Structure-Activity Relationship , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Nicotinic Acids/chemistry , Nicotinic Acids/pharmacology
17.
J Agric Food Chem ; 72(31): 17317-17327, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39067067

ABSTRACT

With high aphid-repellent activity but low stability, (E)-ß-farnesene (EßF), the major component of the aphid alarm pheromone, can be used as a synergist to insecticides. Some EßF analogues possess both good aphid-repellent activity and stability, but the synergistic effect and related mechanism are still unclear. Therefore, this study investigated the synergistic effect and underlying mechanism of the EßF and its analogue against the aphid Myzus persicae. The results indicated that EßF and the analogue showed significantly synergistic effects to different insecticides, with synergism ratios from 1.524 to 3.446. Mechanistic studies revealed that EßF and the analogue exhibited effective repellent activity, significantly upregulated target OBP genes by 161 to 731%, increased aphid mobility, and thereby enhanced contact with insecticides. This research suggests that the EßF analogue represents a novel synergist for insecticides, with the potential for further application in aphid control owing to its enhanced bioactivity and the possibility of reducing insecticide doses.


Subject(s)
Aphids , Drug Synergism , Insecticides , Sesquiterpenes , Aphids/drug effects , Animals , Insecticides/chemistry , Insecticides/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Prunus persica/chemistry , Prunus persica/parasitology , Insect Repellents/chemistry , Insect Repellents/pharmacology
18.
Sci Rep ; 14(1): 17384, 2024 07 29.
Article in English | MEDLINE | ID: mdl-39075143

ABSTRACT

Bacillus thuringiensis (Bt) is a widely used microbial insecticide, but its effectiveness is limited due to the degradation of Bt spores and crystals under UV radiation from sunlight. The objective of this study was to develop a novel Bt formulation with improved UV protection by utilizing sulfur quantum dots (SQDs) as stabilizing agents in a Pickering emulsion. The SQDs were comprehensively characterized using FTIR, XRD, TEM, HRTEM, UV, and fluorescence analyses, which confirmed the formation of well-dispersed, spherical SQDs. The microcapsule formulation with SQDs demonstrated superior UV stability, as it maintained 57.77% spore viability after 96 h of UV exposure, in comparison to 33.74% and 31.25% for the SQDs formulation (non-microcapsules) and unprotected Bt formulations (free spore, as a control), respectively. Furthermore, the microcapsule formulation exhibited higher insecticidal activity, resulting in a larval mortality of 71.22%, as opposed to 42.34% and 38.42% for the other formulations. These findings emphasize the effectiveness of microcapsule formulation with SQDs in safeguarding Bt spores and crystals against UV radiation, thereby enhancing their practical application in pest control. This approach presents a promising strategy for the development of biopesticides that are more resilient and have a longer shelf life.


Subject(s)
Bacillus thuringiensis , Quantum Dots , Spores, Bacterial , Sulfur , Ultraviolet Rays , Quantum Dots/chemistry , Spores, Bacterial/drug effects , Spores, Bacterial/radiation effects , Sulfur/chemistry , Sulfur/pharmacology , Animals , Insecticides/chemistry , Insecticides/pharmacology , Larva/drug effects
19.
J Chromatogr A ; 1731: 465179, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39047447

ABSTRACT

Conjugated microporous polymers (CMPs) have unique characteristics and have been used in a range of fascinating applications in separation sciences. In this study, a CMP, designated as CMP-1, was synthesized via the Sonogashira-Hagihara coupling reaction using 1,3,5-triphenylbenzene and 1,4-dibromobenzene as building blocks. CMP-1 features a large surface area, abundant micropore structures, and excellent stability, making it a promising solid-phase extraction adsorbent for the efficient enrichment of neonicotinoid insecticides (NEOs). Under the optimized conditions, CMP-1 was combined with high-performance liquid chromatography and diode array detection to enable the detection of NEOs with a wide linear range (0.5-200 µg·L-1), a low detection limit (0.26-0.58 µg·L-1), and acceptable precision. The developed method was applied to determine spiked NEOs in three types of environmental water samples, with recoveries of 73.7%-112.0% and relative standard deviations of 0.6%-9.4%.


Subject(s)
Insecticides , Limit of Detection , Neonicotinoids , Polymers , Solid Phase Extraction , Water Pollutants, Chemical , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/chemistry , Insecticides/analysis , Insecticides/isolation & purification , Insecticides/chemistry , Chromatography, High Pressure Liquid/methods , Neonicotinoids/analysis , Neonicotinoids/isolation & purification , Neonicotinoids/chemistry , Polymers/chemistry , Porosity , Adsorption
20.
Sci Rep ; 14(1): 16325, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009775

ABSTRACT

Mosquitoes are important vectors for the transmission of several infectious diseases that lead to huge morbidity and mortality. The exhaustive use of synthetic insecticides has led to widespread resistance and environmental pollution. Using essential oils and nano-emulsions as novel insecticides is a promising alternative approach for controlling vector borne diseases. In the current study, Lantana camara EO and NE were evaluated for their larvicidal and pupicidal activities against Anopheles culicifacies. The inhibitory effect of EO and NE on AChE, NSE (α/ß), and GST was also evaluated and compared. GC-MS analysis of oil displayed 61 major peaks. The stable nano-emulsion with an observed hydrodynamic diameter of 147.62 nm was formed using the o/w method. The nano-emulsion exhibited good larvicidal (LC50 50.35 ppm and LC90 222.84 ppm) and pupicidal (LC50 54.82 ppm and LC90 174.58 ppm) activities. Biochemical evaluations revealed that LCEO and LCNE inhibited AChE, NSE (α/ß), and GST, displaying LCNE to be a potent binder to AChE and NSE enzyme, whereas LCEO showed higher binding potency towards GST. The nano-emulsion provides us with novel opportunities to target different mosquito enzymes with improved insecticidal efficacy. Due to its natural origin, it can be further developed as a safer and more potent larvicide/insecticide capable of combating emerging insecticide resistance.


Subject(s)
Anopheles , Emulsions , Insecticides , Lantana , Larva , Oils, Volatile , Anopheles/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Lantana/chemistry , Insecticides/pharmacology , Insecticides/chemistry , Larva/drug effects , Kinetics , Acetylcholinesterase/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/antagonists & inhibitors , Mosquito Vectors/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mosquito Control/methods
SELECTION OF CITATIONS
SEARCH DETAIL