Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 807
Filter
1.
PLoS Biol ; 22(9): e3002757, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39231388

ABSTRACT

Integrins are fundamental for cell adhesion and the formation of focal adhesions (FA). Accordingly, these receptors guide embryonic development, tissue maintenance, and haemostasis but are also involved in cancer invasion and metastasis. A detailed understanding of the molecular interactions that drive integrin activation, FA assembly, and downstream signalling cascades is critical. Here, we reveal a direct association of paxillin, a marker protein of FA sites, with the cytoplasmic tails of the integrin ß1 and ß3 subunits. The binding interface resides in paxillin's LIM3 domain, where based on the NMR structure and functional analyses, a flexible, 7-amino acid loop engages the unstructured part of the integrin cytoplasmic tail. Genetic manipulation of the involved residues in either paxillin or integrin ß3 compromises cell adhesion and motility of murine fibroblasts. This direct interaction between paxillin and the integrin cytoplasmic domain identifies an alternative, kindlin-independent mode of integrin outside-in signalling particularly important for integrin ß3 function.


Subject(s)
Paxillin , Protein Binding , Paxillin/metabolism , Animals , Mice , Protein Domains , Cell Adhesion/physiology , Focal Adhesions/metabolism , Humans , Cell Movement , Integrin beta3/metabolism , Integrin beta3/genetics , Integrin beta3/chemistry , Fibroblasts/metabolism , Integrin beta Chains/metabolism , Integrin beta Chains/chemistry , Integrin beta Chains/genetics , Integrin beta1/metabolism , Signal Transduction
2.
Mol Carcinog ; 63(11): 2190-2204, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39136603

ABSTRACT

The regulatory mechanisms underlying bone metastasis in lung adenocarcinoma (LUAD) are not yet fully understood despite the frequent occurrence of bone involvement. This study aimed to examine the involvement and mechanism of integrin subunit beta 3 (ITGB3) in the process of LUAD bone metastasis. Our findings indicate that ITGB3 facilitates the migration and invasion of LUAD cells in vitro and metastasis to the bone in vivo. Furthermore, ITGB3 stimulates osteoclast production and activation, thereby expediting osteolytic lesion progression. Extracellular vesicles (EVs) isolated from the conditioned medium (CM) of LUAD cells overexpressing ITGB3 determined that ITGB3 facilitates osteoclastogenesis and enhances osteoclast activity by utilizing EVs-mediated transport to RAW264.7 cells. Our in vivo findings demonstrated that ITGB3-EVs augmented the population of osteoclasts, thereby establishing an osteoclastic pre-metastatic niche (PMN) conducive to the colonization and subsequent growth of LUAD cells in the bone. ITGB3 is enriched in serum EVs of patients diagnosed with LUAD bone metastasis, potentially facilitating osteoclast differentiation and activation in vitro. Our research illustrates that ITGB3-EVs derived from LUAD cells facilitate osteoclast differentiation and activation by modulating the phosphorylation level of p38 MAPK. This process ultimately leads to the generation of osteolytic PMN and accelerates the progression of bone metastasis.


Subject(s)
Adenocarcinoma of Lung , Bone Neoplasms , Extracellular Vesicles , Integrin beta3 , Lung Neoplasms , Osteoclasts , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Humans , Osteoclasts/metabolism , Osteoclasts/pathology , Animals , Mice , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/genetics , RAW 264.7 Cells , Cell Line, Tumor , Cell Movement , Female , Cell Differentiation , Male
3.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201327

ABSTRACT

HER2-positive breast cancer, representing 15-20% of all breast cancer cases, often develops resistance to the HER2-targeted therapy trastuzumab. Unfortunately, effective treatments for advanced HER2-positive breast cancer remain scarce. This study aims to investigate the roles of ITGß3, and Hedgehog signaling in trastuzumab resistance and explore the potential of combining trastuzumab with cilengitide as a therapeutic strategy. Quantitative gene expression analysis was performed to assess the transcription of EMT (epithelial-mesenchymal transition) markers Slug, Snail, Twist2, and Zeb1 in trastuzumab-resistant HER2-positive breast cancer cells. The effects of ITGß3 and Hedgehog signaling were investigated. Additionally, the combination therapy of trastuzumab and cilengitide was evaluated. Acquired trastuzumab resistance induced the transcription of Slug, Snail, Twist2, and Zeb1, indicating increased EMT. This increased EMT was mediated by ITGB3 and Hedgehog signaling. ITGß3 regulated both the Hedgehog pathway and EMT, with the latter being independent of the Hedgehog pathway. The combination of trastuzumab and cilengitide showed a synergistic effect, reducing both EMT and Hedgehog pathway activity. Targeting ITGß3 with cilengitide, combined with trastuzumab, effectively suppresses the Hedgehog pathway and EMT, offering a potential strategy to overcome trastuzumab resistance and improve outcomes for HER2-positive breast cancer patients.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Integrin beta3 , Receptor, ErbB-2 , Trastuzumab , Humans , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Female , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Integrin beta3/metabolism , Integrin beta3/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Line, Tumor , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Hedgehog Proteins/metabolism , Snake Venoms
4.
J Reprod Immunol ; 165: 104312, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39094215

ABSTRACT

BACKGROUND: Endometriosis (EMs) is a chronic disease characterized by endometrial-like tissue present outside of the uterus. Macrophages have been confirmed to participate in the development of EMs. Integrin ß3 (ITGB3), a ß-subunit of the integrin family, is crucial in tumor progression. In this study, we investigated the pivotal role of ITGB3 in endometrial stromal cells (ESCs) and its influence on the development of EMs, particularly focusing on the regulatory impact of macrophages. METHODS: In this study, we used western blot, Real-time qPCR, Immunohistochemistry to detected the high expression of ITGB3 in ESCs. ITGB3-overexpression ESCs (ITGB3-OE) was constructed and detected by RNA-seq with normal ESCs. ATP and lactate expression assay, transwell migration assay, wound healing, cell adhesion assay and other molecular biology techniques were used to explore the potential mechanisms. In vivo, we constructed the EMs mouse model and injected with cilengitite to inhibit ITGB3. RESULTS: Here, we found ITGB3 highly expressed in ectopic lesions in EMs. The increasing ITGB3 resulted in activating the glycolysis, which produced more ATP and lactate in ITGB3-OE. After culturing with lactate, the migration, proliferation and invasion ability of ESCs were enhanced, while the result in 2-DG was reversed. In vivo, the results showed that after antagonizing ITGB3, the number of ectopic lesions was decrease. CONCLUSIONS: Our findings indicate that ITGB3 up-regulated by macrophages are able to regulate the glycolysis to promote the development of EMs and lactate enhances the ability of proliferation, migration, invasion and adhesion of EMs iv vivo and in vitro.


Subject(s)
Endometriosis , Glycolysis , Integrin beta3 , Lactic Acid , Animals , Female , Humans , Mice , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Endometriosis/pathology , Endometriosis/metabolism , Endometrium/pathology , Endometrium/metabolism , Integrin beta3/metabolism , Integrin beta3/genetics , Lactic Acid/metabolism , Macrophages/metabolism , Macrophages/immunology , Stromal Cells/metabolism , Stromal Cells/pathology
5.
Biomolecules ; 14(8)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39199276

ABSTRACT

Several inflammatory cytokines bind to the allosteric site (site 2) and allosterically activate integrins. Site 2 is also a binding site for 25-hydroxycholesterol, an inflammatory lipid mediator, and is involved in inflammatory signaling (e.g., TNF and IL-6 secretion) in addition to integrin activation. FGF2 is pro-inflammatory and pro-thrombotic, and FGF1, homologous to FGF2, has anti-inflammatory and anti-thrombotic actions, but the mechanism of these actions is unknown. We hypothesized that FGF2 and FGF1 bind to site 2 of integrins and regulate inflammatory signaling. Here, we describe that FGF2 is bound to site 2 and allosterically activated ß3 integrins, suggesting that the pro-inflammatory action of FGF2 is mediated by binding to site 2. In contrast, FGF1 bound to site 2 but did not activate these integrins and instead suppressed integrin activation induced by FGF2, indicating that FGF1 acts as an antagonist of site 2 and that the anti-inflammatory action of FGF1 is mediated by blocking site 2. A non-mitogenic FGF1 mutant (R50E), which is defective in binding to site 1 of αvß3, suppressed ß3 integrin activation by FGF2 as effectively as WT FGF1.


Subject(s)
Fibroblast Growth Factor 1 , Fibroblast Growth Factor 2 , Integrin beta3 , Humans , Integrin beta3/metabolism , Integrin beta3/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , Fibroblast Growth Factor 2/metabolism , Allosteric Regulation , Anti-Inflammatory Agents/pharmacology , Allosteric Site , Animals , Protein Binding , Binding Sites
6.
Arterioscler Thromb Vasc Biol ; 44(10): 2213-2222, 2024 10.
Article in English | MEDLINE | ID: mdl-39145395

ABSTRACT

BACKGROUND: Platelets prevent bleeding in a variety of inflammatory settings, the adhesion receptors and activation pathways involved being highly context-dependent and functionally redundant. In some situations, platelets recruited to inflammatory sites act independently of aggregation. The mechanisms underlying stable platelet adhesion in inflamed microvessels remain incompletely understood, in particular, whether and if so, how ß1 and ß3 integrins are involved. METHODS: The impact of isolated or combined platelet deficiency in ß1 and ß3 integrins on inflammation-associated hemostasis was investigated in 3 models of acute inflammation: immune complex-based cutaneous reverse passive Arthus reaction, intranasal lipopolysaccharide-induced lung inflammation, and cerebral ischemia-reperfusion following transient (2-hour) occlusion of the middle cerebral artery. RESULTS: Mice with platelet-directed inactivation of Itgb1 (PF4Cre-ß1-/-) displayed no bleeding in any of the inflammation models, while mice defective in platelet Itgb3 (PF4Cre-ß3-/-) exhibited bleeding in all 3 models. Remarkably, the bleeding phenotype of PF4Cre-ß3-/- mice was exacerbated in the reverse passive Arthus model by the concomitant deletion of ß1 integrins, PF4Cre-ß1-/-/ß3-/- animals presenting increased bleeding. Intravital microscopy in reverse passive Arthus experiments highlighted a major defect in the adhesion of PF4Cre-ß1-/-/ß3-/- platelets to inflamed microvessels. Unlike PF4Cre-ß1-/- and PF4Cre-ß3-/- mice, PF4Cre-ß1-/-/ß3-/- animals developed early hemorrhagic transformation 6 hours after transient middle cerebral artery occlusion. PF4Cre-ß1-/-/ß3-/- mice displayed no more bleeding in lipopolysaccharide-induced lung inflammation than PF4Cre-ß3-/- animals. CONCLUSIONS: Altogether, these results show that the requirement for and degree of functional redundancy between platelet ß1 and ß3 integrins in inflammation-associated hemostasis vary with the inflammatory situation.


Subject(s)
Blood Platelets , Disease Models, Animal , Hemorrhage , Integrin beta1 , Integrin beta3 , Mice, Inbred C57BL , Mice, Knockout , Animals , Male , Mice , Blood Platelets/metabolism , Hemorrhage/genetics , Hemorrhage/blood , Hemostasis , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/blood , Infarction, Middle Cerebral Artery/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/blood , Integrin beta1/metabolism , Integrin beta1/genetics , Integrin beta3/genetics , Integrin beta3/metabolism , Lipopolysaccharides , Platelet Adhesiveness , Pneumonia/genetics , Pneumonia/blood , Pneumonia/metabolism , Pneumonia/pathology , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/blood
7.
J Clin Invest ; 134(16)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145443

ABSTRACT

The phenotypic switch of vascular smooth cells (VSMCs) from a contractile to a synthetic state is associated with the development and progression of aortic aneurysm (AA). However, the mechanism underlying this process remains unclear. In this issue of the JCI, Song et al. identified SLC44A2 as a regulator of the phenotypic switch in VSMCs. Inhibition of SLC44A2 facilitated the switch to the synthetic state, contributing to the development of AA. Mechanistically, SLC44A2 interacted with NRP1 and ITGB3 to activate the TGF-ß/SMAD signaling pathway, resulting in VSMCs with a contractile phenotype. Furthermore, VSMC-specific SLC44A2 overexpression by genetic or pharmacological manipulation reduced AA in mouse models. These findings suggest the potential of targeting the SLC44A2 signaling pathway for AA prevention and treatment.


Subject(s)
Aortic Aneurysm , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Signal Transduction , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , Phenotype , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Integrin beta3/metabolism , Integrin beta3/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Neuropilin-1/metabolism , Neuropilin-1/genetics
8.
Commun Biol ; 7(1): 795, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951640

ABSTRACT

The peroxisome is a versatile organelle that performs diverse metabolic functions. PEX3, a critical regulator of the peroxisome, participates in various biological processes associated with the peroxisome. Whether PEX3 is involved in peroxisome-related redox homeostasis and myocardial regenerative repair remains elusive. We investigate that cardiomyocyte-specific PEX3 knockout (Pex3-KO) results in an imbalance of redox homeostasis and disrupts the endogenous proliferation/development at different times and spatial locations. Using Pex3-KO mice and myocardium-targeted intervention approaches, the effects of PEX3 on myocardial regenerative repair during both physiological and pathological stages are explored. Mechanistically, lipid metabolomics reveals that PEX3 promotes myocardial regenerative repair by affecting plasmalogen metabolism. Further, we find that PEX3-regulated plasmalogen activates the AKT/GSK3ß signaling pathway via the plasma membrane localization of ITGB3. Our study indicates that PEX3 may represent a novel therapeutic target for myocardial regenerative repair following injury.


Subject(s)
Cell Membrane , Integrin beta3 , Mice, Knockout , Regeneration , Animals , Male , Mice , Cell Membrane/metabolism , Cell Proliferation , Heart Injuries/metabolism , Heart Injuries/pathology , Heart Injuries/genetics , Integrin beta3/metabolism , Integrin beta3/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Plasmalogens/metabolism , Signal Transduction
9.
Int J Mol Sci ; 25(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39063187

ABSTRACT

Metastatic melanoma, a deadly form of skin cancer, often develops resistance to the BRAF inhibitor drug vemurafenib, highlighting the need for understanding the underlying mechanisms of resistance and exploring potential therapeutic strategies targeting integrins and TGF-ß signalling. In this study, the role of integrins and TGF-ß signalling in vemurafenib resistance in melanoma was investigated, and the potential of combining vemurafenib with cilengitide as a therapeutic strategy was investigated. In this study, it was found that the transcription of PAI1 and p21 was induced by acquired vemurafenib resistance, and ITGA5 levels were increased as a result of this resistance. The transcription of ITGA5 was mediated by the TGF-ß pathway in the development of vemurafenib resistance. A synergistic effect on the proliferation of vemurafenib-resistant melanoma cells was observed with the combination therapy of vemurafenib and cilengitide. Additionally, this combination therapy significantly decreased invasion and colony formation in these resistant cells. In conclusion, it is suggested that targeting integrins and TGF-ß signalling, specifically ITGA5, ITGB3, PAI1, and p21, may offer promising approaches to overcoming vemurafenib resistance, thereby improving outcomes for metastatic melanoma patients.


Subject(s)
Drug Resistance, Neoplasm , Melanoma , Snake Venoms , Vemurafenib , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Snake Venoms/pharmacology , Integrin beta3/metabolism , Integrin beta3/genetics , Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Integrins/metabolism , Integrins/antagonists & inhibitors , Integrin alpha5/metabolism , Integrin alpha5/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Indoles/pharmacology , Indoles/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
10.
J Biol Chem ; 300(8): 107516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960036

ABSTRACT

Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.


Subject(s)
Glomerulosclerosis, Focal Segmental , Integrin beta3 , Thrombospondin 1 , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/genetics , Animals , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Humans , Mice , Integrin beta3/metabolism , Integrin beta3/genetics , Male , Mice, Knockout , Kidney Tubules/metabolism , Kidney Tubules/pathology , Female , Adult , Signal Transduction , Cell Line , Doxorubicin/pharmacology , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/genetics
11.
Cells ; 13(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786077

ABSTRACT

Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality. METHODS: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation. RESULTS: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years. When compared to a control group of SARS-CoV-2 (-) negative lungs (COVID-19-), TLR-2 expression was up-regulated in a subset of patients with deadly COVID-19 fatal lung illness. The proportion of Spike-1 (+) patients found by PCR and ISH correlates to the proportion of Spike-S1-positive cases as detected by digital pathology examination. Furthermore, CD61 expression was considerably higher in the lungs of deceased patients. In conclusion, we demonstrate that innate immune prolonged hyperactivation is related to platelet/megakaryocyte over-expression in the lung. CONCLUSIONS: Microthrombosis in deadly COVID-19+ lung disease is associated with an increase in the number of CD61+ platelets and megakaryocytes in the pulmonary interstitium, as well as their functional activation; this phenomenon is associated with increased expression of innate immunity TLR2+ cells, which binds the SARS-CoV-2 E protein, and significantly with the persistence of the Spike-S1 viral sequence.


Subject(s)
COVID-19 , Lung , Megakaryocytes , SARS-CoV-2 , Thrombosis , Toll-Like Receptor 2 , Up-Regulation , Humans , COVID-19/pathology , COVID-19/immunology , COVID-19/metabolism , Male , Female , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Megakaryocytes/metabolism , Megakaryocytes/pathology , Megakaryocytes/virology , Aged , Middle Aged , Aged, 80 and over , Lung/pathology , Lung/virology , Lung/metabolism , Up-Regulation/genetics , Thrombosis/pathology , Integrin beta3/metabolism , Integrin beta3/genetics , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Pneumonia, Viral/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Immunity, Innate , Pandemics
12.
J Agric Food Chem ; 72(13): 7043-7054, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38509000

ABSTRACT

14-3-3ζ protein, the key target in the regulation and control of integrin ß3 outside-in signaling, is an attractive new strategy to inhibit thrombosis without affecting hemostasis. In this study, 4'-O-methylbavachalconeB (4-O-MB) in Psoraleae Fructus was identified as a 14-3-3ζ ligand with antithrombosis activity by target fishing combined with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) analysis. The competitive inhibition analysis showed that 4-O-MB targeted 14-3-3ζ and blocked the 14-3-3ζ/integrin ß3 interaction with inhibition constant (Ki) values of 9.98 ± 0.22 µM. Molecular docking and amino acid mutation experiments confirmed that 4-O-MB specifically bound to 14-3-3ζ through LSY9 and SER28 to regulate the 14-3-3ζ/integrin ß3 interaction. Besides, 4-O-MB affected the integrin ß3 early outside-in signal by inhibiting AKT and c-Src phosphorylation. Meanwhile, 4-O-MB could inhibit ADP-, collagen-, or thrombin-induced platelet aggregation function but had no effect on platelet adhesion to collagen-coated surfaces in vivo. Administration of 4-O-MB could significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings provide new prospects for the antithrombotic effects of Psoraleae Fructus and the potential application of 4-O-MB as lead compounds in the therapy of thrombosis by targeting 14-3-3ζ.


Subject(s)
Platelet Aggregation , Thrombosis , Mice , Animals , Integrin beta3/genetics , Integrin beta3/chemistry , Integrin beta3/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/pharmacology , Molecular Docking Simulation , Thrombosis/drug therapy , Thrombosis/genetics , Thrombosis/metabolism , Collagen/metabolism , Blood Platelets/metabolism
13.
Endocrinology ; 165(3)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38195194

ABSTRACT

BACKGROUND: Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal-fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. METHODS: Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. RESULTS: We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin ß3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin ß3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. CONCLUSION: Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.


Subject(s)
Bone Morphogenetic Protein 2 , Integrin beta3 , Pregnancy , Humans , Female , Integrin beta3/genetics , Integrin beta3/metabolism , Bone Morphogenetic Protein 2/metabolism , Trophoblasts/metabolism , Cell Line , Placentation/physiology , RNA, Small Interfering/metabolism , Cell Movement
14.
Altern Ther Health Med ; 30(9): 152-156, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38294750

ABSTRACT

Objective: The objective of this study was to investigate the clinical phenotype and genetic etiology of Glanzmann's thrombasthenia in a consanguineous pedigree. Methods: Clinical data and ancillary test results were collected from pedigrees with Glanzmann's thrombasthenia. High-throughput sequencing was used to detect variants in the proband. Candidate variants were verified by Sanger sequencing. Results: Two patients in the pedigree were homozygous for the c.2248C>T (p. Arg750Ter) variant of the ITGB3 gene. The parents and maternal grandmother, who didn't have any recurrent haemorrhage, were found to carry a heterozygous c.2248C>T variant of the ITGB3 gene, which was absent in the aunt and paternal grandmother. Conclusion: The homozygous variant c.2248C>T (p. Arg750Ter) in the ITGB3 gene underlies the disease in this pedigree. This diagnosis will facilitate genetic counselling in this pedigree for better patient management and life guidance.


Subject(s)
Integrin beta3 , Pedigree , Thrombasthenia , Humans , Thrombasthenia/genetics , Female , Male , Integrin beta3/genetics , Consanguinity , Adult
15.
Cell Biol Int ; 48(2): 216-228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081783

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC) compared to other BC subtypes in clinical settings. Currently, there are no effective therapeutic strategies for TNBC treatment. Therefore, there is an urgent need to identify suitable biomarkers or therapeutic targets for TNBC patients. Thrombomodulin (TM) plays a role in cancer progression and metastasis in many different cancers. However, the role of TM in TNBC is not yet fully understood. First, silenced-TM in MDA-MB-231 cells caused an increase in proliferative and metastatic activity. In contrast, overexpression of TM in Hs578T cells caused a reduction in proliferation, invasion, and migration rate. Using RNA-seq analysis, we found that Integrin beta 3 (ITGB3) expression may be a downstream target of TM. Furthermore, we found an increase in ITGB3 levels in TM-KD cells by QPCR and western blot analysis but a decrease in ITGB3 levels in TM-overexpressing cells. We found phospho-smad2/3 levels were increased in TM-KD cells but decreased in TM-overexpressing cells. This implies that TM negatively regulates ITGB3 levels through the activation of the smad2/3 pathway. Silencing ITGB3 in TM-KD cells caused a decrease in proliferation and migration. Finally, we found that higher ITGB3 levels were correlated with poor overall survival and relapse-free survival in patients with TNBC. Our results indicated a novel regulatory relationship between TM and ITGB3 in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Blotting, Western , Cell Line, Tumor , Cell Movement , Cell Proliferation , Integrin beta3/genetics , Thrombomodulin/genetics , Triple Negative Breast Neoplasms/metabolism
17.
Gene ; 888: 147805, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37716584

ABSTRACT

BACKGROUND/AIM: Recently, it was reported that the non-synonymous c.1431C > T (p. G477=) mutation of the integrin subunit ß3 (ITGB3) gene is the cause of Glanzmann's thrombasthenia (GT). However, the functional consequences of this mutation on the ITGB3 gene and protein expression remain to be elucidated. Therefore, this study was conducted to cover this scientific shortage. METHODS: Peripheral blood samples were collected from Chinese family members (parents and proband and his sister), and DNA was extracted and sequenced using whole-exome and Sanger sequencing. The effect of c.1431C > T mutation on the splicing of mRNA was verified by the in vitro minigene assay and the three variants that resulted from the mutation were cloned into a phage vector and pEGFP-C1 vector, and ITGB3 gene and protein expression was detected in the transfected 293 T cells using qPCR and Western blotting. RESULTS: Minigene splicing assay showed that c.1431C > T mutation causes three kinds of alternative splicing; (1) a 95 bp deletion in the middle of exon10, (2) a 155 bp deletion (95 bp deletion in the middle of exon10 plus a 60 bp deletion in the right side of exon10), and (3) a 261 bp deletion in the right side of exon10. The in vitro expression assay showed that the c.1431C > T variant did not affect the ITGB3 mRNA levels, but directly led to protein truncation and declined expression. CONCLUSION: Due to its significant impact on protein expression, c.1431C > T mutation in ITGB3 could be considered a pathogenic variant of GT. This could enrich the ITGB3 mutation spectrum and provide a base for the genetic diagnosis of GT.


Subject(s)
Thrombasthenia , Humans , Thrombasthenia/genetics , Thrombasthenia/diagnosis , Mutation , RNA Splicing , Base Sequence , RNA, Messenger/genetics , Integrin beta3/genetics
18.
J Thromb Haemost ; 21(12): 3597-3607, 2023 12.
Article in English | MEDLINE | ID: mdl-37604334

ABSTRACT

BACKGROUND: Glanzmann thrombasthenia (GT) is an autosomal recessive platelet aggregation disorder caused by mutations in ITGA2B or ITGB3. OBJECTIVES: We aimed to assess the phenotype and investigate the genetic etiology of a GT pedigree. METHODS: A patient with bleeding manifestations and mild mental retardation was enrolled. Complete blood count, coagulation, and platelet aggregation tests were performed. Causal mutations were identified via whole exome and genome sequencing and subsequently confirmed through polymerase chain reaction and Sanger sequencing. The transcription of ITGB3 was characterized using RNA sequencing and reverse transcription polymerase chain reaction. The αⅡb and ß3 biosynthesis was investigated via whole blood flow cytometry and in vitro studies. RESULTS: GT was diagnosed in a patient with defective platelet aggregation. Novel compound heterozygous ITGB3 variants were identified, with a maternal nonsense mutation (c.2222G>A, p.Trp741∗) and a paternal SINE-VNTR-Alu (SVA) retrotransposon insertion. The 5' truncated SVA element was inserted in a sense orientation in intron 11 of ITGB3, resulting in aberrant splicing of ITGB3 and significantly reducing ß3 protein content. Meanwhile, both the expression and transportation of ß3 were damaged by the ITGB3 c.2222G>A. Almost no αⅡb and ß3 expressions were detected on the patient's platelets surface. CONCLUSION: Novel compound heterozygous ITGB3 mutations were identified in the GT pedigree, resulting in defects of αⅡbß3 biosynthesis. This is the first report of SVA retrotransposon insertion in the genetic pathogenesis of GT. Our study highlights the importance of combining multiple high-throughput sequencing technologies for the molecular diagnosis of genetic disorders.


Subject(s)
Thrombasthenia , Humans , Thrombasthenia/diagnosis , Thrombasthenia/genetics , Retroelements , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Phenotype , Blood Platelets/metabolism , Integrin beta3/genetics , Integrin beta3/metabolism
20.
Mol Brain ; 16(1): 49, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296444

ABSTRACT

The relationship between autism spectrum disorder (ASD) and dendritic spine abnormalities is well known, but it is unclear whether the deficits relate to specific neuron types and brain regions most relevant to ASD. Recent genetic studies have identified a convergence of ASD risk genes in deep layer pyramidal neurons of the prefrontal cortex. Here, we use retrograde recombinant adeno-associated viruses to label specifically two major layer V pyramidal neuron types of the medial prefrontal cortex: the commissural neurons, which put the two cerebral hemispheres in direct communication, and the corticopontine neurons, which transmit information outside the cortex. We compare the basal dendritic spines on commissural and corticopontine neurons in WT and KO mice for the ASD risk gene Itgb3, which encodes for the cell adhesion molecule ß3 integrin selectively enriched in layer V pyramidal neurons. Regardless of the genotype, corticopontine neurons had a higher ratio of stubby to mushroom spines than commissural neurons. ß3 integrin affected selectively spine length in corticopontine neurons. Ablation of ß3 integrin resulted in corticopontine neurons lacking long (> 2 µm) thin dendritic spines. These findings suggest that a deficiency in ß3 integrin expression compromises specifically immature spines on corticopontine neurons, thereby reducing the cortical territory they can sample. Because corticopontine neurons receive extensive local and long-range excitatory inputs before relaying information outside the cortex, specific alterations in dendritic spines of corticopontine neurons may compromise the computational output of the full cortex, thereby contributing to ASD pathophysiology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Mice , Animals , Dendritic Spines/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Integrin beta3/genetics , Integrin beta3/metabolism , Pyramidal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL