Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.231
Filter
1.
Clin Exp Med ; 24(1): 184, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39117877

ABSTRACT

The prevalence of HCV infection in Egypt has decreased following the introduction of direct-acting antiviral therapy. However, treatment response is influenced by various factors, particularly host immunogenetics such as IL-28B and FOXP3 polymorphisms. The current study examined the impact of SNPs in the FOXP3 gene promoter region on HCV-infected Egyptian patients, along with SNPs in the IL28B gene.This study involved 99 HCV patients who achieved SVR12 after a 12 week DAA treatment while 63 HCV patients experienced treatment failure. IL28B rs12979860 SNP was identified using real-time PCR, while IL28B rs8099917, FOXP3 rs3761548, and rs2232365 SNPs were analyzed using RFLP-PCR. Serum levels of IL28B and FOXP3 were quantified using ELISA technique in representative samples from both groups. The IL28B rs12979860 T > C (P = 0.013) and FOXP3 rs2232365 A > G polymorphisms (P = 0.008) were found to significantly increase the risk of non-response. Responders had higher IL28B serum levels (P = 0.046) and lower FOXP3 levels (P < 0.001) compared to non-responders. Regression analysis showed an association between IL28B rs12979860 and FOXP3 rs2232365 with treatment response, independent of age and gender. A predictive model was developed with 76.2% sensitivity and 91.9% specificity for estimating DAAs response in HCV patients.Our findings confirmed the IL28B rs12979860 T > C and FOXP3 rs2232365 A > G polymorphisms significantly affect DAA treatment response in HCV Egyptian patients. Lower levels of IL-28B along with higher levels of FOXP3 are linked to poor response. Our results may lead to new insights into DAA responsiveness contributing to personalized medicine and improving therapeutic decision-making for HCV patients.


Subject(s)
Antiviral Agents , Forkhead Transcription Factors , Hepatitis C, Chronic , Interferons , Interleukins , Polymorphism, Single Nucleotide , Humans , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/virology , Male , Female , Antiviral Agents/therapeutic use , Middle Aged , Interleukins/genetics , Interleukins/blood , Adult , Egypt , Forkhead Transcription Factors/genetics , Treatment Outcome , Promoter Regions, Genetic , Immunogenetics , Interferon Lambda
2.
Proc Natl Acad Sci U S A ; 121(33): e2405644121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39121163

ABSTRACT

Nuclear factor kappa B (NFκB) is a pathogenic factor in chronic lymphocytic leukemia (CLL) that is not addressed specifically by current therapies. NFκB is activated by inflammatory factors that stimulate toll-like receptors (TLRs) and receptors for interleukin-1 (IL-1) family members. IL-1 is considered a master regulator of inflammation, and IL-1 receptor signaling is inhibited by the IL-1 receptor antagonist anakinra. These considerations suggested that anakinra might have a role in the treatment of CLL. Consistent with this idea, anakinra inhibited spontaneous and TLR7-mediated activation of the canonical NFκB pathway in CLL cells in vitro. However, CLL cells exhibited only weak signaling responses to IL-1 itself, and anakinra was found to inhibit NFκB along with oxidative stress in an IL-1 receptor-independent manner. Anakinra was then administered with minimal toxicity to 11 previously untreated CLL patients in a phase I dose-escalation trial (NCT04691765). A stereotyped clinical response was observed in all patients. Anakinra lowered blood lymphocytes and lymph node sizes within the first month that were associated with downregulation of NFκB and oxidative stress in the leukemia cells. However, inhibition of NFκB was accompanied by upregulation of type 1 interferon (IFN) signaling, c-MYC-regulated genes and proteins, and loss of the initial clinical response. Anakinra increased IFN signaling and survival of CLL cells in vitro that were, respectively, phenocopied by mitochondrial antioxidants and reversed by IFN receptor blocking antibodies. These observations suggest that anakinra has activity in CLL and may be a useful adjunct for conventional therapies as long as compensatory IFN signaling is blocked at the same time.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Signal Transduction , Aged , Female , Humans , Male , Middle Aged , Interferons/metabolism , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/antagonists & inhibitors , Signal Transduction/drug effects , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/antagonists & inhibitors
3.
Sci Adv ; 10(32): eadl1584, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110797

ABSTRACT

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.


Subject(s)
Histone Acetyltransferases , Interferons , Mice, Knockout , RNA, Double-Stranded , Signal Transduction , Stem Cells , Animals , RNA, Double-Stranded/metabolism , Mice , Stem Cells/metabolism , Stem Cells/cytology , Interferons/metabolism , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/cytology , Mitochondria/metabolism , Cell Self Renewal/genetics , Intestines/cytology
4.
Int J Mol Sci ; 25(15)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39125716

ABSTRACT

In patients with endometriosis, refluxed endometrial fragments evade host immunosurveillance, developing into endometriotic lesions. However, the mechanisms underlying this evasion have not been fully elucidated. N-Myc and STAT Interactor (NMI) have been identified as key players in host immunosurveillance, including interferon (IFN)-induced cell death signaling pathways. NMI levels are markedly reduced in the stromal cells of human endometriotic lesions due to modulation by the Estrogen Receptor beta/Histone Deacetylase 8 axis. Knocking down NMI in immortalized human endometrial stromal cells (IHESCs) led to elevated RNA levels of genes involved in cell-to-cell adhesion and extracellular matrix signaling following IFNA treatment. Furthermore, NMI knockdown inhibited IFN-regulated canonical signaling pathways, such as apoptosis mediated by Interferon Stimulated Gene Factor 3 and necroptosis upon IFNA treatment. In contrast, NMI knockdown with IFNA treatment activated non-canonical IFN-regulated signaling pathways that promote proliferation, including ß-Catenin and AKT signaling. Moreover, NMI knockdown in IHESCs stimulated ectopic lesions' growth in mouse endometriosis models. Therefore, NMI is a novel endometriosis suppressor, enhancing apoptosis and inhibiting proliferation and cell adhesion of endometrial cells upon IFN exposure.


Subject(s)
Apoptosis , Endometriosis , Signal Transduction , Female , Humans , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/genetics , Animals , Mice , Apoptosis/genetics , Endometrium/metabolism , Endometrium/pathology , Cell Proliferation , Stromal Cells/metabolism , Cell Adhesion/genetics , Interferons/metabolism , Intracellular Signaling Peptides and Proteins
5.
Mol Cell ; 84(15): 2870-2881.e5, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39013473

ABSTRACT

The human silencing hub (HUSH) preserves genome integrity through the epigenetic repression of invasive genetic elements. However, despite our understanding of HUSH as an obligate complex of three subunits, only loss of MPP8 or Periphilin, but not TASOR, triggers interferon signaling following derepression of endogenous retroelements. Here, we resolve this paradox by characterizing a second HUSH complex that shares MPP8 and Periphilin but assembles around TASOR2, an uncharacterized paralog of TASOR. Whereas HUSH represses LINE-1 retroelements marked by the repressive histone modification H3K9me3, HUSH2 is recruited by the transcription factor IRF2 to repress interferon-stimulated genes. Mechanistically, HUSH-mediated retroelement silencing sequesters the limited pool of the shared subunits MPP8 and Periphilin, preventing TASOR2 from forming HUSH2 complexes and hence relieving the HUSH2-mediated repression of interferon-stimulated genes. Thus, competition between two HUSH complexes intertwines retroelement silencing with the induction of an immune response, coupling epigenetic and immune aspects of genome defense.


Subject(s)
Gene Silencing , Humans , HEK293 Cells , Histones/metabolism , Histones/genetics , Retroelements/genetics , Epigenesis, Genetic , Long Interspersed Nucleotide Elements/genetics , Signal Transduction , Interferons/metabolism , Interferons/immunology , Interferons/genetics , HeLa Cells
6.
Molecules ; 29(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38999177

ABSTRACT

A short 19 bp dsRNA with 3'-trinucleotide overhangs acting as immunostimulating RNA (isRNA) demonstrated strong antiproliferative action against cancer cells, immunostimulatory activity through activation of cytokines and Type-I IFN secretion, as well as anti-tumor and anti-metastatic effects in vivo. The aim of this study was to determine the tolerance of chemical modifications (2'-F, 2'-OMe, PS, cholesterol, and amino acids) located at different positions within this isRNA to its ability to activate the innate immune system. The obtained duplexes were tested in vivo for their ability to activate the synthesis of interferon-α in mice, and in tumor cell cultures for their ability to inhibit their proliferation. The obtained data show that chemical modifications in the composition of isRNA have different effects on its individual functions, including interferon-inducing and antiproliferative effects. The effect of modifications depends not only on the type of modification but also on its location and the surrounding context of the modifications. This study made it possible to identify leader patterns of modifications that enhance the properties of isRNA: F2/F2 and F2_S/F2 for interferon-inducing activity, as well as F2_S5/F2_S5, F2-NH2/F2-NH2, and Ch-F2/Ch-F2 for antiproliferative action. These modifications can improve the pharmacokinetic and pharmacodynamic properties, as well as increase the specificity of isRNA action to obtain the desired effect.


Subject(s)
Cell Proliferation , RNA, Double-Stranded , RNA, Double-Stranded/pharmacology , RNA, Double-Stranded/chemistry , Animals , Cell Proliferation/drug effects , Mice , Humans , Cell Line, Tumor , Interferon-alpha/metabolism , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Interferons/metabolism
7.
Vet Res ; 55(1): 92, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049059

ABSTRACT

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), which originates from zoonotic transmission of bat coronaviruses in the HKU2 lineage, causes severe illness in pigs and carries a high risk of spreading to humans. At present, there are no licenced therapeutics for the treatment of SADS-CoV. In this study, we examined the effectiveness of recombinant porcine interferon delta 8 (IFN-δ8) against SADS-CoV both in vitro and in vivo. In vitro experiments showed that IFN-δ8 inhibited SADS-CoV proliferation in a concentration-dependent manner, with complete inhibition occurring at a concentration of 5 µg/mL. In vivo experiments demonstrated that two 50 µg/kg doses of IFN-δ8 injected intraperitoneally protected piglets against lethal challenge, blocked viral shedding, attenuated intestinal damage, and decreased the viral load in the jejunum and ileum. Further findings suggested that IFN-δ8 inhibited SADS-CoV infection by increasing the expression of IFN-stimulated genes. These results indicate that IFN-δ8 shows promise as a biological macromolecule drug against SADS-CoV infection.


Subject(s)
Coronavirus Infections , Recombinant Proteins , Swine Diseases , Animals , Swine , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Interferons , Coronavirus/drug effects , Coronavirus/physiology , Antiviral Agents/pharmacology , Alphacoronavirus
8.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000027

ABSTRACT

Cytokines, chemokines, and interferons are released in response to viral infection with the ultimate aim of viral clearance. However, in SARS-CoV-2 infection, there is an imbalanced immune response, with raised cytokine levels but only a limited interferon response with inefficient viral clearance. Furthermore, the inflammatory response can be exaggerated, which risks both acute and chronic sequelae. Several observational studies have suggested a reduced risk of progression to severe COVID-19 in subjects with a higher omega-3 index. However, randomized studies of omega-3 supplementation have failed to replicate this benefit. Omega-3 fats provide important anti-inflammatory effects; however, fatty fish contains many other fatty acids that provide health benefits distinct from omega-3. Therefore, the immune health benefit of whole salmon oil (SO) was assessed in adults with mild to moderate COVID-19. Eleven subjects were randomized to best supportive care (BSC) with or without a full spectrum, enzymatically liberated SO, dosed at 4g daily, for twenty-eight days. Nasal swabs were taken to measure the change in gene expression of markers of immune response and showed that the SO provided both broad inflammation-resolving effects and improved interferon response. The results also suggest improved lung barrier function and enhanced immune memory, although the clinical relevance needs to be assessed in longer-duration studies. In conclusion, the salmon oil was well tolerated and provided broad inflammation-resolving effects, indicating a potential to enhance immune health.


Subject(s)
COVID-19 , Chemokines , Cytokines , Fish Oils , Interferons , SARS-CoV-2 , Humans , Fish Oils/pharmacology , Fish Oils/therapeutic use , COVID-19/immunology , COVID-19/virology , Male , Interferons/metabolism , Interferons/genetics , SARS-CoV-2/immunology , Cytokines/metabolism , Female , Middle Aged , Chemokines/metabolism , Chemokines/genetics , Adult , COVID-19 Drug Treatment , Fatty Acids, Omega-3/pharmacology
9.
Zhonghua Jie He He Hu Xi Za Zhi ; 47(7): 663-667, 2024 Jul 12.
Article in Chinese | MEDLINE | ID: mdl-38955753

ABSTRACT

Pulmonary aspergillosis is a serious pulmonary fungal infectious disease. It is difficult to manage and has limited treatment options. Existing anti-aspergillus medications have high rates of treatment failure and increased drug resistance, making it difficult to meet the clinical requirements. Therefore, the development of new, effective treatment programs is critical. According to research, interferons play an important role in the body's immune response to bacterial and viral infectious diseases. Inadequate interferon expression or dysfunction can put the body at risk for certain infectious diseases. Interferon has been used in clinical trials to prevent or treat infectious diseases. In recent years, researchers have focused on the immunological role of interferon in Aspergillus infections and its potential for clinical application. This review summarized the most recent advances in the immunoregulatory mechanisms of interferon and its clinical application in Aspergillus infections.


Subject(s)
Interferons , Humans , Aspergillus , Aspergillosis/immunology , Pulmonary Aspergillosis/immunology , Pulmonary Aspergillosis/drug therapy
10.
Cell Rep Med ; 5(7): 101631, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38986623

ABSTRACT

Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/ß-catenin signaling contribute to acquired DDRi drug resistance.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Animals , Mice , Xenograft Model Antitumor Assays , Wnt Signaling Pathway/genetics , Drug Resistance, Neoplasm/genetics , Genomics/methods , Biological Specimen Banks , Genetic Heterogeneity , DNA Damage/genetics , Interferons/metabolism , Interferons/genetics , Cell Lineage/genetics
11.
PLoS Pathog ; 20(7): e1012017, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39038029

ABSTRACT

Some respiratory viruses can cause a viral interference through the activation of the interferon (IFN) pathway that reduces the replication of another virus. Epidemiological studies of coinfections between SARS-CoV-2 and other respiratory viruses have been hampered by non-pharmacological measures applied to mitigate the spread of SARS-CoV-2 during the COVID-19 pandemic. With the ease of these interventions, SARS-CoV-2 and influenza A viruses can now co-circulate. It is thus of prime importance to characterize their interactions. In this work, we investigated viral interference effects between an Omicron variant and a contemporary influenza A/H3N2 strain, in comparison with an ancestral SARS-CoV-2 strain and the 2009 pandemic influenza A/H1N1 virus. We infected nasal human airway epitheliums with SARS-CoV-2 and influenza, either simultaneously or 24 h apart. Viral load was measured by RT-qPCR and IFN-α/ß/λ1/λ2 proteins were quantified by immunoassay. Expression of four interferon-stimulated genes (ISGs; OAS1/IFITM3/ISG15/MxA) was also measured by RT-droplet digital PCR. Additionally, susceptibility of each virus to IFN-α/ß/λ2 recombinant proteins was determined. Our results showed that influenza A, and especially A/H3N2, interfered with both SARS-CoV-2 viruses, but that SARS-CoV-2 did not significantly interfere with A/H3N2 or A/H1N1. Consistently with these results, influenza, and particularly the A/H3N2 strain, caused a higher production of IFN proteins and expression of ISGs than SARS-CoV-2. SARS-CoV-2 induced a marginal IFN production and reduced the IFN response during coinfections with influenza. All viruses were susceptible to exogenous IFNs, with the ancestral SARS-CoV-2 and Omicron being less susceptible to type I and type III IFNs, respectively. Thus, influenza A causes a viral interference towards SARS-CoV-2 most likely through an IFN response. The opposite is not necessarily true, and a concurrent infection with both viruses leads to a lower IFN response. Taken together, these results help us to understand how SARS-CoV-2 interacts with another major respiratory pathogen.


Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human , SARS-CoV-2 , Viral Interference , Humans , COVID-19/virology , Influenza, Human/virology , Influenza A Virus, H3N2 Subtype/genetics , Coinfection/virology , Influenza A Virus, H1N1 Subtype/genetics , Interferons/metabolism , Viral Load , Virus Replication , Influenza A virus
12.
Nat Commun ; 15(1): 5842, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992037

ABSTRACT

Activating interferon responses with STING agonists (STINGa) is a current cancer immunotherapy strategy, and therapeutic modalities that enable tumor-targeted delivery via systemic administration could be beneficial. Here we demonstrate that tumor cell-directed STING agonist antibody-drug-conjugates (STINGa ADCs) activate STING in tumor cells and myeloid cells and induce anti-tumor innate immune responses in in vitro, in vivo (in female mice), and ex vivo tumor models. We show that the tumor cell-directed STINGa ADCs are internalized into myeloid cells by Fcγ-receptor-I in a tumor antigen-dependent manner. Systemic administration of STINGa ADCs in mice leads to STING activation in tumors, with increased anti-tumor activity and reduced serum cytokine elevations compared to a free STING agonist. Furthermore, STINGa ADCs induce type III interferons, which contribute to the anti-tumor activity by upregulating type I interferon and other key chemokines/cytokines. These findings reveal an important role for type III interferons in the anti-tumor activity elicited by STING agonism and provide rationale for the clinical development of tumor cell-directed STINGa ADCs.


Subject(s)
Immunity, Innate , Immunoconjugates , Interferons , Membrane Proteins , Animals , Membrane Proteins/agonists , Membrane Proteins/immunology , Immunity, Innate/drug effects , Female , Humans , Mice , Cell Line, Tumor , Immunoconjugates/pharmacology , Immunoconjugates/administration & dosage , Interferons/metabolism , Interferon Lambda , Neoplasms/immunology , Neoplasms/drug therapy , Interferon Type I/immunology , Cytokines/metabolism , Myeloid Cells/immunology , Myeloid Cells/drug effects , Immunotherapy/methods , Mice, Inbred C57BL , Receptors, IgG/agonists , Receptors, IgG/metabolism , Receptors, IgG/immunology
13.
Front Cell Infect Microbiol ; 14: 1415695, 2024.
Article in English | MEDLINE | ID: mdl-39035358

ABSTRACT

Histone deacetylates family proteins have been studied for their function in regulating viral replication by deacetylating non-histone proteins. RIG-I (Retinoic acid-inducible gene I) is a critical protein in RNA virus-induced innate antiviral signaling pathways. Our previous research showed that HDAC8 (histone deacetylase 8) involved in innate antiviral immune response, but the underlying mechanism during virus infection is still unclear. In this study, we showed that HDAC8 was involved in the regulation of vesicular stomatitis virus (VSV) replication. Over-expression of HDAC8 inhibited while knockdown promoted VSV replication. Further exploration demonstrated that HDAC8 interacted with and deacetylated RIG-I, which eventually lead to enhance innate antiviral immune response. Collectively, our data clearly demonstrated that HDAC8 inhibited VSV replication by promoting RIG-I mediated interferon production and downstream signaling pathway.


Subject(s)
DEAD Box Protein 58 , Histone Deacetylases , Immunity, Innate , Receptors, Immunologic , Signal Transduction , Vesiculovirus , Virus Replication , DEAD Box Protein 58/metabolism , DEAD Box Protein 58/genetics , Humans , Histone Deacetylases/metabolism , Vesiculovirus/immunology , Receptors, Immunologic/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Acetylation , HEK293 Cells , Interferons/metabolism , Interferons/immunology , Cell Line , Host-Pathogen Interactions/immunology , Animals , Vesicular stomatitis Indiana virus/immunology
14.
Sci Immunol ; 9(97): eadp1139, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058762

ABSTRACT

Type I and III interferons (IFNs) are robustly induced during infections and protect cells against viral infection. Both type I and III IFNs are also produced at low levels in the thymus at steady state; however, their role in T cell development and immune tolerance is unclear. Here, we found that both type I and III IFNs were constitutively produced by a very small number of AIRE+ murine thymic epithelial cells, independent of microbial stimulation. Antigen-presenting cells were highly responsive to thymic IFNs, and IFNs were required for the activation and maturation of thymic type 1 conventional dendritic cells, macrophages, and B cells. Loss of IFN sensing led to reduced regulatory T cell selection, reduced T cell receptor (TCR) repertoire diversity, and enhanced autoreactive T cell responses to self-antigens expressed during peripheral IFN signaling. Thus, constitutive exposure to IFNs in the thymus is required for generating a tolerant and diverse TCR repertoire.


Subject(s)
Interferons , Mice, Inbred C57BL , Thymus Gland , Animals , Thymus Gland/immunology , Mice , Interferons/immunology , Mice, Knockout , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology
16.
Zool Res ; 45(5): 972-982, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39085753

ABSTRACT

Type IV interferon (IFN-υ) is a recently discovered cytokine crucial for host defense against viral infections. However, the role and mechanisms of IFN-υ in bacterial infections remain unexplored. This study investigated the antibacterial and antiviral functions and mechanisms of grass carp ( Ctenopharyngodon idella) IFN-υ (CiIFN-υ) both in vivo and in vitro. The CiIFN-υ gene was first identified and characterized in grass carp. Subsequently, the immune expression of CiIFN-υ significantly increased following bacterial challenge, indicating its response to bacterial infections. The eukaryotic recombinant expression plasmid of CiIFN-υ was then constructed and transfected into fathead minnow (FHM) cells. Supernatants were collected and incubated with four bacterial strains, followed by plate spreading and colony counting. Results indicated that CiIFN-υ exhibited more potent antibacterial activity against gram-negative bacteria compared to gram-positive bacteria and aggregated gram-negative bacteria but not gram-positive bacteria. In vivo experiments further confirmed the antibacterial function, showing high survival rates, low tissue edema and damage, reduced tissue bacterial load, and elevated proinflammatory response at the early stages of bacterial infection. In addition, the antiviral function of CiIFN-υ was confirmed through in vitro and in vivo experiments, including crystal violet staining, survival rates, tissue viral burden, and RT-qPCR. This study highlights the antibacterial function and preliminary mechanism of IFN-υ, demonstrating that IFN-υ possesses dual functions against bacterial and viral infections.


Subject(s)
Carps , Fish Diseases , Animals , Carps/immunology , Fish Diseases/immunology , Fish Diseases/virology , Antiviral Agents/pharmacology , Gene Expression Regulation/drug effects , Interferons/metabolism , Interferons/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Infections/veterinary , Bacterial Infections/immunology , Fish Proteins/genetics , Fish Proteins/metabolism , Amino Acid Sequence , Phylogeny
17.
Fish Shellfish Immunol ; 152: 109781, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029718

ABSTRACT

IkappaB kinase beta (IKKß) is a key member of IκB kinases and functions importantly in interferon (IFN) signaling. Phosphorylation and ubiquitination are involved in the activation of IKKß. A20 is a de-ubiquitin enzyme and functions as a suppressor in inflammation signaling, which has been reported to be phosphorylated and activated by IKKß. However, the role and relationship of IKKß and A20 in teleost remains unclear. In this study, IKKß (bcIKKß) and A20 (bcA20) of black carp (Mylopharyngodon piceus) have been cloned and characterized. Overexpressed bcIKKß in EPC cells showed strong anti-viral ability by activating both NF-κB and IFN signaling. EPC cells stable expressing bcIKKß presented improved anti-viral activity as well. The interaction between bcA20 and bcIKKß was identified, and overexpression of bcA20 was able to suppress bcIKKß-mediated activation of NF-κB and IFN signaling. Meanwhile, knock-down of A20 increased host the antiviral ability of host cells. Importantly, it has been identified that bcA20 was able to remove K27-linked ubiquitination and decrease the phosphorylation of bcIKKß. Thus, our data conclude that bcA20 suppresses the anti-viral activity of bcIKKß and removes its K27-linked ubiquitination, which presents a new mechanism of IKKß regulation.


Subject(s)
Carps , Fish Proteins , I-kappa B Kinase , Signal Transduction , Ubiquitination , Animals , I-kappa B Kinase/genetics , I-kappa B Kinase/immunology , I-kappa B Kinase/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Carps/immunology , Carps/genetics , Signal Transduction/immunology , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Fish Diseases/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Sequence Alignment/veterinary , Phylogeny , Gene Expression Profiling/veterinary , Amino Acid Sequence
18.
Viruses ; 16(7)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39066259

ABSTRACT

Viruses often pose a significant threat to the host through the exploitation of cellular machineries for their own benefit. In the context of immune responses, myriad host factors are deployed to target viral RNAs and inhibit viral protein translation, ultimately hampering viral replication. Understanding how "non-self" RNAs interact with the host translation machinery and trigger immune responses would help in the development of treatment strategies for viral infections. In this review, we explore how interferon-stimulated gene products interact with viral RNA and the translation machinery in order to induce either global or targeted translation inhibition.


Subject(s)
Interferons , Protein Biosynthesis , RNA, Viral , Virus Diseases , Animals , Humans , Host-Pathogen Interactions , Interferons/immunology , Interferons/metabolism , Interferons/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Diseases/immunology , Virus Diseases/virology , Virus Diseases/genetics , Virus Replication , Viruses/immunology , Viruses/genetics , Viruses/drug effects
19.
J Exp Med ; 221(9)2024 09 02.
Article in English | MEDLINE | ID: mdl-38953896

ABSTRACT

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Subject(s)
Endothelial Cells , Membrane Proteins , Humans , Infant , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gain of Function Mutation , Golgi Apparatus/metabolism , Interferons/metabolism , Interferons/genetics , Lung Diseases, Interstitial/genetics , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation , Signal Transduction , Vascular Diseases/genetics , Vascular Diseases/pathology , Infant, Newborn , Child, Preschool , Female
20.
J Med Case Rep ; 18(1): 321, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965631

ABSTRACT

BACKGROUND: Thrombotic microangiopathy is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and organ injury. The pathological features include vascular damage that is manifested by arteriolar and capillary thrombosis with characteristic abnormalities in the endothelium and vessel wall. Thrombocytopenia is one of the common adverse effects of interferon therapy. However, a more serious but rare side effect is thrombotic microangiopathy. CASE PRESENTATION: We report the case of a 36-year-old Asian male patient with clinical manifestations of hypertension, blurred vision, acute renal failure, thrombocytopenia, and thrombotic microangiopathy. Renal biopsy showed interstitial edema with fibrosis, arteriolar thickening with vitreous changes, and epithelial podocytes segmental fusion. Immunofluorescence microscopy showed C3(+), Ig A(+) deposition in the mesangial region, which was pathologically consistent with thrombotic microangiopathy renal injury and Ig A deposition. The patient had a history of hepatitis B virus infection for more than 5 years. Lamivudine was used in the past, but the injection of long-acting interferon combined with tenofovir alafenamide fumarate was used since 2018. The comprehensive clinical investigation and laboratory examination diagnosed the condition as thrombotic microangiopathy kidney injury caused by interferon. After stopping interferon in his treatment, the patient's renal function partially recovered after three consecutive therapeutic plasma exchange treatments and follow-up treatment without immunosuppressant. The renal function of the patient remained stable. CONCLUSIONS: This report indicates that interferon can induce thrombotic microangiopathy with acute renal injury, which can progress to chronic renal insufficiency.


Subject(s)
Antiviral Agents , Thrombotic Microangiopathies , Humans , Male , Thrombotic Microangiopathies/chemically induced , Adult , Antiviral Agents/adverse effects , Acute Kidney Injury/chemically induced , Plasma Exchange , Hepatitis B/complications , Interferons/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL