Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 177
1.
Int J Mol Sci ; 25(10)2024 May 18.
Article En | MEDLINE | ID: mdl-38791570

INTRODUCTION: Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS: We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS: Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS: Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.


Colitis, Ulcerative , Computational Biology , Ustekinumab , Humans , Ustekinumab/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Male , Female , Computational Biology/methods , Adult , Middle Aged , Treatment Outcome , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Prospective Studies , Transcriptome , Gene Expression Profiling/methods , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/drug effects , Machine Learning , Prognosis
2.
Sci Rep ; 14(1): 12293, 2024 05 29.
Article En | MEDLINE | ID: mdl-38811719

HLA-B27 is a major risk factor for spondyloarthritis (SpA), yet the underlying mechanisms remain unclear. HLA-B27 misfolding-induced IL-23, which is mediated by endoplasmic reticulum (ER) stress has been hypothesized to drive SpA pathogenesis. Expression of HLA-B27 and human ß2m (hß2m) in rats (HLA-B27-Tg) recapitulates key SpA features including gut inflammation. Here we determined whether deleting the transcription factor CHOP (Ddit3-/-), which mediates ER-stress induced IL-23, affects gut inflammation in HLA-B27-Tg animals. ER stress-mediated Il23a overexpression was abolished in CHOP-deficient macrophages. Although CHOP-deficiency also reduced Il23a expression in immune cells isolated from the colon of B27+ rats, Il17a levels were not affected, and gut inflammation was not reduced. Rather, transcriptome analysis revealed increased expression of pro-inflammatory genes, including Il1a, Ifng and Tnf in HLA-B27-Tg colon tissue in the absence of CHOP, which was accompanied by higher histological Z-scores. RNAScope localized Il17a mRNA to the lamina propria of the HLA-B27-Tg rats and revealed similar co-localization with Cd3e (CD3) in the presence and absence of CHOP. This demonstrates that CHOP-deficiency does not improve, but rather exacerbates gut inflammation in HLA-B27-Tg rats, indicating that HLA-B27 is not promoting gut disease through ER stress-induced IL-23. Hence, CHOP may protect rats from more severe HLA-B27-induced gut inflammation.


Colitis , Endoplasmic Reticulum Stress , HLA-B27 Antigen , Spondylarthritis , Transcription Factor CHOP , Animals , HLA-B27 Antigen/genetics , HLA-B27 Antigen/metabolism , Transcription Factor CHOP/metabolism , Transcription Factor CHOP/genetics , Colitis/metabolism , Colitis/genetics , Colitis/chemically induced , Colitis/pathology , Rats , Spondylarthritis/metabolism , Spondylarthritis/pathology , Spondylarthritis/genetics , Disease Models, Animal , Interleukin-23/metabolism , Interleukin-23/genetics , Humans , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Rats, Transgenic , Interleukin-17/metabolism , Interleukin-17/genetics , Colon/pathology , Colon/metabolism , Macrophages/metabolism , Macrophages/immunology
3.
Cytokine ; 179: 156619, 2024 07.
Article En | MEDLINE | ID: mdl-38669908

Interleukin (IL)-23 is implicated in the pathogenesis of several inflammatory diseases and is usually linked with helper T cell (Th17) biology. However, there is some data linking IL-23 with innate immune biology in such diseases. We therefore examined the effects of IL-23p19 genetic deletion and/or neutralization on in vitro macrophage activation and in an innate immune-driven peritonitis model. We report that endogenous IL-23 was required for maximal macrophage activation by zymosan as determined by pro-inflammatory cytokine production, including a dramatic upregulation of granulocyte-colony stimulating factor (G-CSF). Furthermore, both IL-23p19 genetic deletion and neutralization in zymosan-induced peritonitis (ZIP) led to a specific reduction in the neutrophil numbers, as well as a reduction in the G-CSF levels in exudate fluids. We conclude that endogenous IL-23 can contribute significantly to macrophage activation during an inflammatory response, mostly likely via an autocrine/paracrine mechanism; of note, endogenous IL-23 can directly up-regulate macrophage G-CSF expression, which in turn is likely to contribute to the regulation of IL-23-dependent neutrophil number and function during an inflammatory response, with potential significance for IL-23 targeting particularly in neutrophil-associated inflammatory diseases.


Inflammation , Interleukin-23 , Myeloid Cells , Neutrophils , Zymosan , Animals , Inflammation/metabolism , Inflammation/immunology , Interleukin-23/metabolism , Mice , Neutrophils/metabolism , Neutrophils/immunology , Myeloid Cells/metabolism , Peritonitis/metabolism , Peritonitis/immunology , Mice, Inbred C57BL , Granulocyte Colony-Stimulating Factor/metabolism , Macrophage Activation , Macrophages/metabolism , Macrophages/immunology , Interleukin-23 Subunit p19/metabolism , Interleukin-23 Subunit p19/genetics , Mice, Knockout
4.
Kaohsiung J Med Sci ; 39(8): 789-800, 2023 Aug.
Article En | MEDLINE | ID: mdl-37098777

The interleukin-23 (IL-23)/IL-17 immune axis has been linked to the pathology of psoriasis, but how this axis contributes to skin inflammation in this disease remains unclear. We measured inflammatory cytokines associated with the IL-23/IL-17 immune axis in the serum of patients with psoriasis using enzyme-linked immunosorbent assays. Psoriasis was induced in male C57BL/6J mice using imiquimod (IMQ) cream, and animals received intraperitoneal injections of recombinant mouse anti-IL-23A or anti-IL-17A antibodies for 7 days. The potential effects of the IL-23/IL-17 immune axis on skin inflammation were assessed based on pathology scoring, hematoxylin-eosin staining of skin samples, and quantitation of inflammatory cytokines. Western blotting was used to evaluate levels of the following factors in skin: ACT1, TRAF6, TAK1, NF-κB, and pNF-κB. The serum of psoriasis patients showed elevated levels of several cytokines involved in the IL-23/IL-17 immune axis: IL-2, IL-4, IL-8, IL-12, IL-17, IL-22, IL-23, and interferon-γ. Levels of IL-23p19 and IL-17 were increased in serum and skin of IMQ-treated mice, while ACT1, TRAF6, TAK1, NF-κB, and pNF-κB were upregulated in the skin. A large proportion of NF-κB p65 localized in nucleus of involucrin+ cells in the epidermis and in F4/80+ cells of the dermis of psoriatic lesional skin. Treating these animals with anti-IL-23 or anti-IL-17 antibodies improved pathological score and immune imbalance, mitigated skin inflammation and downregulated ACT1, TRAF6, TAK1, NF-κB, and pNF-κB in skin. Our results suggest that skin inflammation mediated by the IL-23/IL-17 immune axis in psoriasis involves activation of the ACT1/TRAF6/TAK1/NF-κB pathway in keratinocytes and macrophage.


Imiquimod , Interleukin-17 , Interleukin-23 , NF-kappa B , Psoriasis , Animals , Male , Mice , Cytokines/metabolism , Disease Models, Animal , Imiquimod/adverse effects , Inflammation/pathology , Interleukin-23/genetics , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Keratinocytes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , NF-kappa B/genetics , NF-kappa B/metabolism , Psoriasis/pathology , Skin/pathology , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Interleukin-17/metabolism
5.
J Clin Endocrinol Metab ; 107(10): e4037-e4047, 2022 09 28.
Article En | MEDLINE | ID: mdl-35809263

CONTEXT: Teprotumumab, an IGF-I receptor (IGF-IR) inhibitor, is effective in thyroid-associated ophthalmopathy (TAO). The drug can modulate induction by TSH of IL-6 and IL-8 in CD34+ fibrocytes and their putative derivatives, CD34+ orbital fibroblasts (CD34+ OF). Fibrocytes express multiple thyroid autoantigens and cytokines implicated in TAO, which are downregulated by Slit2. Inflammation and disordered hyaluronan (HA) accumulation occur in TAO. Whether teprotumumab alters these processes directly in fibrocytes/CD34+ OF remains uncertain. OBJECTIVE: Determine teprotumumab effects on expression/synthesis of several TAO-relevant molecules in fibrocytes and GD-OF. DESIGN/SETTING/PARTICIPANTS: Patients with TAO and healthy donors were recruited from an academic endocrine and oculoplastic practice. MAIN OUTCOME MEASURES: Real-time PCR, specific immunoassays. RESULTS: Teprotumumab attenuates basal and TSH-inducible autoimmune regulator protein, thyroglobulin, sodium iodide symporter, thyroperoxidase, IL-10, and B-cell activating factor levels in fibrocytes. It downregulates IL-23p19 expression/induction while enhancing IL-12p35, intracellular and secreted IL-1 receptor antagonists, and Slit2. These effects are mirrored by linsitinib. HA production is marginally enhanced by teprotumumab, the consequence of enhanced HAS2 expression. CONCLUSION: Teprotumumab affects specific gene expression in fibrocytes and GD-OF in a target-specific, nonmonolithic manner, whereas IGF-IR control of these cells appears complex. The current results suggest that the drug may act on cytokine expression and HA production systemically and locally, within the TAO orbit. These findings extend our insights into the mechanisms through which IGF-IR inhibition might elicit clinical responses in TAO, including a potential role of Slit2 in attenuating inflammation and tissue remodeling.


Graves Ophthalmopathy , Antibodies, Monoclonal, Humanized , Autoantigens/metabolism , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Cell Activating Factor/pharmacology , Cells, Cultured , Fibroblasts/metabolism , Gene Expression , Graves Ophthalmopathy/drug therapy , Graves Ophthalmopathy/genetics , Humans , Hyaluronic Acid/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Interleukin-10/metabolism , Interleukin-12 Subunit p35/genetics , Interleukin-12 Subunit p35/metabolism , Interleukin-12 Subunit p35/pharmacology , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Interleukin-23 Subunit p19/pharmacology , Interleukin-6/metabolism , Interleukin-8/metabolism , Orbit/metabolism , Receptor, IGF Type 1/genetics , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Thyroglobulin/genetics , Thyrotropin/metabolism
6.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article En | MEDLINE | ID: mdl-34884474

Interleukin (IL) 23 (p19/p40) plays a critical role in the pathogenesis of psoriasis and is upregulated in psoriasis skin lesions. In clinical practice, anti-IL-23Ap19 antibodies are highly effective against psoriasis. IL-39 (p19/ Epstein-Barr virus-induced (EBI) 3), a newly discovered cytokine in 2015, shares the p19 subunit with IL-23. Anti-IL-23Ap19 antibodies may bind to IL-39; also, the cytokine may contribute to the pathogenesis of psoriasis. To investigate IL23Ap19- and/or EBI3-including cytokines in psoriatic keratinocytes, we analyzed IL-23Ap19 and EBI3 expressions in psoriasis skin lesions, using immunohistochemistry and normal human epidermal keratinocytes (NHEKs) stimulated with inflammatory cytokines, using quantitative real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and liquid chromatography-electrospray tandem mass spectrometry (LC-Ms/Ms). Immunohistochemical analysis showed that IL-23Ap19 and EBI3 expressions were upregulated in the psoriasis skin lesions. In vitro, these expressions were synergistically induced by the triple combination of tumor necrosis factor (TNF)-α, IL-17A, and interferon (IFN)-γ, and suppressed by dexamethasone, vitamin D3, and acitretin. In ELISA and LC-Ms/Ms analyses, keratinocyte-derived IL-23Ap19 and EBI3, but not heterodimeric forms, were detected with humanized anti-IL-23Ap19 monoclonal antibodies, tildrakizumab, and anti-EBI3 antibodies, respectively. Psoriatic keratinocytes may express IL-23Ap19 and EBI3 proteins in a monomer or homopolymer, such as homodimer or homotrimer.


Interleukin-23 Subunit p19/metabolism , Interleukins/metabolism , Minor Histocompatibility Antigens/metabolism , Psoriasis/immunology , Up-Regulation , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line , Chromatography, Liquid , Cytokines/genetics , Cytokines/metabolism , Humans , Interleukin-23 Subunit p19/genetics , Interleukins/genetics , Keratinocytes/immunology , Minor Histocompatibility Antigens/genetics , Psoriasis/genetics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Up-Regulation/drug effects
7.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34769069

C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.


C-Reactive Protein/metabolism , Interleukin-23 Subunit p19/metabolism , Monocytes/metabolism , Cells, Cultured , Humans , Interleukin-23 Subunit p19/genetics , RNA, Messenger/genetics , Transcriptional Activation
8.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article En | MEDLINE | ID: mdl-34016751

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Interleukin-1beta/genetics , Lung Neoplasms/drug therapy , Oxadiazoles/pharmacology , Pyrimidines/pharmacology , Syntenins/genetics , Animals , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokine CCL11/genetics , Chemokine CCL11/immunology , Chemokine CCL17/genetics , Chemokine CCL17/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/immunology , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Interleukin-5/genetics , Interleukin-5/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , Oxadiazoles/chemical synthesis , Pyrimidines/chemical synthesis , Signal Transduction , Syntenins/antagonists & inhibitors , Syntenins/immunology , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/pathology , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
9.
Sci Rep ; 11(1): 5266, 2021 03 04.
Article En | MEDLINE | ID: mdl-33664371

Among various cytokines, interleukin (IL)-12 family cytokines have very unique characteristics in that they are composed of two distinct subunits and these subunits are shared with each other. IL-23, one of the IL-12 family cytokines, consists of p19 and p40 subunits, is mainly produced by antigen-presenting cells, and plays a critical role in the expansion and maintenance of pathogenic helper CD4+ T (Th)17 cells. Since we initially found that p19 is secreted in the culture supernatant of activated CD4+ T cells, we have further investigated the role of p19. p19 was revealed to associate with CD5 antigen-like (CD5L), which is a repressor of Th17 pathogenicity and is highly expressed in non-pathogenic Th17 cells, to form a composite p19/CD5L. This p19/CD5L was shown to activate STAT5 and enhance the differentiation into granulocyte macrophage colony-stimulating factor (GM-CSF)-producing CD4+ T cells. Both CD4+ T cell-specific conditional p19-deficient mice and complete CD5L-deficient mice showed significantly alleviated experimental autoimmune encephalomyelitis (EAE) with reduced frequency of GM-CSF+CD4+ T cells. During the course of EAE, the serum level of p19/CD5L, but not CD5L, correlated highly with the clinical symptoms. Thus, the composite p19/CD5L is a possible novel heterodimeric cytokine that contributes to EAE development with GM-CSF up-regulation.


Apoptosis Regulatory Proteins/genetics , CD5 Antigens/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukin-23 Subunit p19/genetics , Receptors, Scavenger/genetics , Animals , Antigen-Presenting Cells/immunology , Apoptosis Regulatory Proteins/immunology , CD4-Positive T-Lymphocytes/immunology , CD5 Antigens/immunology , CD5 Antigens/ultrastructure , Dimerization , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Humans , Interleukin-23 Subunit p19/immunology , Interleukin-23 Subunit p19/ultrastructure , Mice , Receptors, Scavenger/immunology , Th1 Cells/immunology , Th17 Cells/immunology
10.
Arthritis Rheumatol ; 73(7): 1200-1210, 2021 07.
Article En | MEDLINE | ID: mdl-33452873

OBJECTIVE: ZAP-70W163C BALB/c (SKG) mice develop reactive arthritis (ReA) following infection with Chlamydia muridarum. Since intracellular pathogens enhance their replicative fitness in stressed host cells, we examined how myeloid cells infected with C muridarum drive arthritis. METHODS: SKG, Il17a-deficient SKG, and BALB/c female mice were infected with C muridarum or C muridarum luciferase in the genitals. C muridarum dissemination was assessed by in vivo imaging or genomic DNA amplification. Macrophages were depleted using clodronate liposomes. Anti-tumor necrosis factor (anti-TNF) and anti-interleukin-23p19 (anti-IL-23p19) were administered after infection or arthritis onset. Gene expression of Hspa5, Tgtp1, Il23a, Il17a, Il12b, and Tnf was compared in SKG mice and BALB/c mice. RESULTS: One week following infection with C muridarum, macrophages and neutrophils were observed to have infiltrated the uteri of mice and were also shown to have carried C muridarum DNA to the spleen. C muridarum load was higher in SKG mice than in BALB/c mice. Macrophage depletion was shown to reduce C muridarum load and prevent development of arthritis. Compared with BALB/c mice, expression of Il23a and Il17a was increased in the uterine and splenic neutrophils of SKG mice. The presence of anti-IL-23p19 during infection or Il17a deficiency suppressed arthritis. Tnf was overexpressed in the joints of SKG mice within 1 week postinfection, and persisted beyond the first week. TNF inhibition during infection or at arthritis onset suppressed the development of arthritis. Levels of endoplasmic reticulum stress were constitutively increased in the joints of SKG mice but were induced, in conjunction with immunity-related GTPase, by C muridarum infection in the uterus. CONCLUSION: C muridarum load is higher in SKG mice than in BALB/c mice. Whereas proinflammatory IL-23 produced by neutrophils contributes to the initiation of C muridarum-mediated ReA, macrophage depletion reduces C muridarum dissemination to other tissues, tissue burden, and the development of arthritis. TNF inhibition was also shown to suppress arthritis development. Our data suggest that enhanced bacterial dissemination in macrophages of SKG mice drives the TNF production needed for persistent arthritis.


Arthritis, Reactive/immunology , Chlamydia Infections/immunology , Interleukin-23 Subunit p19/immunology , Interleukin-23/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Arthritis, Experimental/genetics , Arthritis, Reactive/genetics , Chlamydia muridarum , Endoplasmic Reticulum Chaperone BiP , Female , Gene Expression Profiling , Heat-Shock Proteins/genetics , Heat-Shock Proteins/immunology , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Interleukin-23 Subunit p19/genetics , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/immunology , Tumor Necrosis Factor-alpha/genetics , ZAP-70 Protein-Tyrosine Kinase/genetics
11.
Gut ; 70(6): 1023-1036, 2021 06.
Article En | MEDLINE | ID: mdl-33037057

OBJECTIVE: Dysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine. DESIGN: We performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples. RESULTS: We characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1ß and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease. CONCLUSION: Our work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn's disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1ß-targeting therapies upstream of IL-23.


Drug Resistance/genetics , Inflammatory Bowel Diseases/genetics , Interleukin-10/genetics , Interleukin-23 Subunit p19/biosynthesis , Interleukin-23 Subunit p19/genetics , Monocytes/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Autocrine Communication , Cells, Cultured , Female , Gene Expression , Gene Expression Regulation , Gene Regulatory Networks , Homeostasis/genetics , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-10/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Male , Middle Aged , Monocytes/immunology , Paracrine Communication , Receptors, Interleukin-10/antagonists & inhibitors , Receptors, Interleukin-10/metabolism , Signal Transduction/genetics , Transcriptome , Tumor Necrosis Factor-alpha/adverse effects , Young Adult
12.
PLoS One ; 15(12): e0242329, 2020.
Article En | MEDLINE | ID: mdl-33259477

Members of the IL-6/IL-12 cytokine family are critical regulators of innate and adaptive immunity and have emerged as key players controlling inflammatory and autoimmune disorders. This cytokine family comprises of IL-12, IL-23, IL-27, and IL-35, each consisting of distinct α- and ß-cytokine subunits that form heterodimers. A new member of this family, IL-39, was identified in the murine species and was shown to consist of the IL-23p19 and Epstein-Barr Virus-induced 3 (EBI3) subunits. Subsequently, it was shown that IL-39 was implicated in the immunopathogenesis of murine experimental lupus erythematosus. The existence of IL-39 in the human system has yet to be confirmed. Based on the clinical success of IL-23p19 neutralizing approaches in moderate-to-severe psoriasis, anti-IL-23p19 antibodies in the clinic may not only neutralize IL-23, but additionally IL-39, implying that IL-39 might also contribute to the pathogenesis of psoriasis. It is therefore pivotal to demonstrate IL-39 expression and to characterize its function in the human system. In this study, we provided evidence for the existence of secreted heterodimeric p19 and EBI3 complexes in supernatants originating from p19 and EBI3 transfected HEK293FT cells. We attempted to detect IL-39 expression from stimulated human primary B cells, human keratinocytes and in vitro polarized human macrophages. Whereas, the expression of p19 and EBI3 mRNA was elevated, we failed to detect p19 and EBI3 heterodimers. Functional assays were conducted with conditioned media containing human IL-39 or with a human recombinant IL-39 Fc protein. Immune cells targeted by IL-39 in mouse, such as neutrophils and PBMCs, did not respond to human IL-39 stimulation and IL-39 failed to activate STAT3 in a reporter cell line. These results suggest that, while the secretion of p19/EBI3 complexes can be forced in human cells, it is secreted below the lower quantity of detection or it has no functional role.


Adaptive Immunity/genetics , Immunity, Innate/genetics , Interleukin-23 Subunit p19/genetics , Interleukins/genetics , Minor Histocompatibility Antigens/genetics , Receptors, Cytokine/genetics , Animals , Humans , Interleukin-23 Subunit p19/immunology , Interleukins/immunology , Mice , Minor Histocompatibility Antigens/immunology , Neutrophils/immunology , Receptors, Cytokine/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology
13.
Int J Mol Sci ; 21(15)2020 Aug 01.
Article En | MEDLINE | ID: mdl-32752186

Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme known to suppress immune responses, and several reports have showed that it is associated with psoriasis. IDO2 is an isoform of IDO1, recently identified as a catalytic enzyme in the tryptophan-kynurenine pathway, which is expressed in dendritic cells and monocytes. The expression of IDO2 in immune cells suggests that IDO2 may contribute to immune functions. However, the role of IDO2 in the pathogenesis of psoriasis remains unclear. In this study, to elucidate the role of IDO2 in psoriasis, we assessed imiquimod (IMQ)-induced psoriasis-like dermatitis in IDO2 knockout (KO) mice. Skin inflammation, evaluated by scoring erythema, scaling, and ear thickness, was significantly worse in the IDO2 KO mice than in the wild-type (WT) mice. The mRNA expression levels of TNF-α, IL-23p19, and IL-17A, key cytokines involved in the development of psoriasis, were also increased in the IDO2 KO mice. Furthermore, immunohistochemistry revealed that the number of Ki67-positive cells in the epidermis and CD4-, CD8-, and IL-17-positive lymphocytes infiltrating the dermis were significantly increased in the IDO2 KO mice. These results suggest that IDO2 might decrease IL-17 expression, thereby resulting in the suppression of skin inflammation in IMQ-induced psoriasis-like dermatitis.


Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Inflammation/metabolism , Psoriasis/metabolism , Skin/metabolism , Animals , Cytokines/genetics , Cytokines/metabolism , Dermatitis/genetics , Dermatitis/metabolism , Female , Gene Expression Regulation , Imiquimod , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/genetics , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Mice, Inbred C57BL , Mice, Knockout , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
14.
Biochim Biophys Acta Mol Cell Res ; 1867(12): 118836, 2020 12.
Article En | MEDLINE | ID: mdl-32861746

The calcium-sensing receptor (CaSR) is a ubiquitously expressed multifunctional G protein-coupled receptor. Several studies reported that the CaSR plays an anti-inflammatory and anti-tumorigenic role in the intestine, and that it is down-regulated during colorectal carcinogenesis. We hypothesized that positive allosteric CaSR modulators (type II calcimimetics) selectively targeting the intestinal cells could be used for the treatment of intestinal pathologies. Therefore, the aim of this study was to determine the effect of pharmacological stimulation of CaSR on gene expression in vitro and on tumor growth in vivo. We stably transduced two colon cancer cell lines (HT29 and Caco2) with lentiviral vectors containing either the CaSR fused to GFP or GFP only. Using RNA sequencing, RT-qPCR experiments and ELISA, we determined that CaSR over-expression itself had generally little effect on gene expression in these cells. However, treatment with 1 µM of the calcimimetic NPS R-568 increased the expression of pro-inflammatory factors such as IL-23α and IL-8 and reduced the transcription of various differentiation markers in the cells over-expressing the CaSR. In vivo, neither the presence of the CaSR nor p.o. treatment of the animals with the calcimimetic cinacalcet affected tumor growth, tumor cell proliferation or tumor vascularization of murine HT29 xenografts. In summary, CaSR stimulation in CaSR over-expressing cells enhanced the expression of inflammatory markers in vitro, but was not able to repress colorectal cancer tumorigenicity in vivo. These findings suggest potential pro-inflammatory effects of the CaSR and type II calcimimetics in the intestine.


Calcimimetic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Receptors, Calcium-Sensing/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Caco-2 Cells , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Interleukin-23 Subunit p19/genetics , Interleukin-8/genetics , Mice , Phenethylamines/pharmacology , Propylamines/pharmacology
15.
J Biol Chem ; 295(30): 10478-10492, 2020 07 24.
Article En | MEDLINE | ID: mdl-32518162

Interleukin (IL)-12 and IL-23 belong to the IL-12 type family and are composite cytokines, consisting of the common ß subunit p40 and the specific cytokine α subunit p35 and p19, respectively. IL-12 signals via the IL-12Rß1·IL-12Rß2 receptor complex, and IL-23 uses also IL-12Rß1 but engages IL-23R as second receptor. Importantly, binding of IL-12 and IL-23 to IL-12Rß1 is mediated by p40, and binding to IL-12Rß2 and IL-23R is mediated by p35 and p19, respectively. Previously, we have identified a W157A substitution at site 3 of murine IL-23p19 that abrogates binding to murine IL-23R. Here, we demonstrate that the analogous Y185R site 3 substitution in murine and Y189R site 3 substitution in human IL-12p35 abolishes binding to IL-12Rß2 in a cross-species manner. Although Trp157 is conserved between murine and human IL-23p19 (Trp156 in the human ortholog), the site 3 W156A substitution in hIL-23p19 did not affect signaling of cells expressing human IL-12Rß1 and IL-23R, suggesting that the interface of murine IL-23p19 required for binding to IL-23R is different from that in the human ortholog. Hence, we introduced additional hIL-23p19 substitutions within its binding interface to hIL-23R and found that the combined site 3 substitutions of W156A and L160E, which become buried at the complex interface, disrupt binding of hIL-23p19 to hIL-23R. In summary, we have identified substitutions in IL-12p35 and IL-23p19 that disrupt binding to their cognate receptors IL-12Rß2 and IL-23R in a murine/human cross-species manner.


Interleukin-12 Subunit p40 , Interleukin-23 Subunit p19 , Receptors, Interleukin-12 , Receptors, Interleukin , Amino Acid Substitution , Animals , CHO Cells , COS Cells , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Interleukin-12 Subunit p40/chemistry , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/metabolism , Interleukin-23 Subunit p19/chemistry , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/metabolism , Mice , Mutation, Missense , Protein Binding , Receptors, Interleukin/chemistry , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Receptors, Interleukin-12/chemistry , Receptors, Interleukin-12/genetics , Receptors, Interleukin-12/metabolism
16.
J Biol Chem ; 295(19): 6387-6400, 2020 05 08.
Article En | MEDLINE | ID: mdl-32209656

The heterodimeric cytokine interleukin-23 (IL-23 or IL23A/IL12B) is produced by dendritic cells and macrophages and promotes the proinflammatory and regenerative activities of T helper 17 (Th17) and innate lymphoid cells. A recent study has reported that IL-23 is also secreted by lung adenoma cells and generates an inflammatory and immune-suppressed stroma. Here, we observed that proinflammatory tumor necrosis factor (TNF)/NF-κB and mitogen-activated protein kinase (MAPK) signaling strongly induce IL23A expression in intestinal epithelial cells. Moreover, we identified a strong crosstalk between the NF-κB and MAPK/ERK kinase (MEK) pathways, involving the formation of a transcriptional enhancer complex consisting of proto-oncogene c-Jun (c-Jun), RELA proto-oncogene NF-κB subunit (RelA), RUNX family transcription factor 1 (RUNX1), and RUNX3. Collectively, these proteins induced IL23A secretion, confirmed by immunoprecipitation of endogenous IL23A from activated human colorectal cancer (CRC) cell culture supernatants. Interestingly, IL23A was likely secreted in a noncanonical form, as it was not detected by an ELISA specific for heterodimeric IL-23 likely because IL12B expression is absent in CRC cells. Given recent evidence that IL23A promotes tumor formation, we evaluated the efficacy of MAPK/NF-κB inhibitors in attenuating IL23A expression and found that the MEK inhibitor trametinib and BAY 11-7082 (an IKKα/IκB inhibitor) effectively inhibited IL23A in a subset of human CRC lines with mutant KRAS or BRAFV600E mutations. Together, these results indicate that proinflammatory and mitogenic signals dynamically regulate IL23A in epithelial cells. They further reveal its secretion in a noncanonical form independent of IL12B and that small-molecule inhibitors can attenuate IL23A secretion.


Colorectal Neoplasms/metabolism , Epithelial Cells/metabolism , Interleukin-12 Subunit p40/metabolism , Interleukin-23 Subunit p19/metabolism , Intestinal Mucosa/metabolism , MAP Kinase Signaling System , Amino Acid Substitution , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Core Binding Factor Alpha 3 Subunit/metabolism , Epithelial Cells/pathology , HCT116 Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Interleukin-12 Subunit p40/genetics , Interleukin-23 Subunit p19/genetics , Intestinal Mucosa/pathology , Mutation, Missense , Proto-Oncogene Mas , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
17.
PLoS Biol ; 18(3): e3000646, 2020 03.
Article En | MEDLINE | ID: mdl-32203518

Interleukin 23 (IL-23) triggers pathogenic features in pro-inflammatory, IL-17-secreting T cells (Th17 and Tγδ17) that play a key role in the development of inflammatory diseases. However, the IL-23 signaling cascade remains largely undefined. Here, we used quantitative phosphoproteomics to characterize IL-23 signaling in primary murine Th17 cells. We quantified 6,888 phosphorylation sites in Th17 cells and found 168 phosphorylations regulated upon IL-23 stimulation. IL-23 increased the phosphorylation of the myosin regulatory light chain (RLC), an actomyosin contractibility marker, in Th17 and Tγδ17 cells. IL-23-induced RLC phosphorylation required Janus kinase 2 (JAK2) and Rho-associated protein kinase (ROCK) catalytic activity, and further study of the IL-23/ROCK connection revealed an unexpected role of IL-23 in the migration of Tγδ17 and Th17 cells through ROCK activation. In addition, pharmacological inhibition of ROCK reduced Tγδ17 recruitment to inflamed skin upon challenge with inflammatory agent Imiquimod. This work (i) provides new insights into phosphorylation networks that control Th17 cells, (ii) widely expands the current knowledge on IL-23 signaling, and (iii) contributes to the increasing list of immune cells subsets characterized by global phosphoproteomic approaches.


Inflammation/metabolism , Interleukin-23 Subunit p19/metabolism , Th17 Cells/metabolism , Animals , Cell Movement , Imiquimod/pharmacology , Inflammation/pathology , Interleukin-23 Subunit p19/genetics , Janus Kinase 2 , Mice, Inbred C57BL , Mice, Transgenic , Myosin Light Chains/metabolism , Phosphorylation , Proteomics/methods , Receptors, Interleukin/genetics , Receptors, Interleukin/metabolism , Serine/metabolism , Signal Transduction , rho-Associated Kinases/metabolism
18.
J Immunol ; 204(8): 2053-2063, 2020 04 15.
Article En | MEDLINE | ID: mdl-32169850

Autoimmune diseases are a physiological state that immune responses are directed against and damage the body's own tissues. Numerous studies have demonstrated promising therapeutic effects in certain autoimmune diseases by targeting IL-23/IL-17 axis, mostly through using Abs against IL-23 or IL-17A. Pyrrole-imidazole polyamides are nuclease-resistant compounds that inhibit gene expression through binding to the minor groove of DNA. To develop a novel gene-silencing agent that targets IL-23/IL-17 axis, we designed polyamide that specifically binds to the transcription factor c-Rel-binding site located in the promoter of IL-23p19 subunit. Our study showed that this polyamide is capable of entering into nucleus with high efficiency in dendritic cells and macrophage. In addition, it prevented the binding of c-Rel to the promoter of IL-23p19 in vivo and specifically inhibited the expression of IL-23. More importantly, we demonstrated that this polyamide is therapeutically effective using both the imiquimod-induced psoriasis and experimental autoimmune uveitis mouse models. Taken together, these results indicate that pyrrole-imidazole polyamide targeting IL-23p19 could be a novel and feasible therapeutic strategy for patients with autoimmune diseases.


Autoimmune Diseases/drug therapy , Autoimmune Diseases/genetics , Gene Silencing , Interleukin-23 Subunit p19/antagonists & inhibitors , Nylons/pharmacology , Animals , Autoimmune Diseases/chemically induced , Autoimmune Diseases/immunology , Female , Imidazoles/pharmacology , Imiquimod , Interleukin-23 Subunit p19/genetics , Interleukin-23 Subunit p19/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/immunology , Pyrroles/pharmacology , Uveitis/chemically induced , Uveitis/drug therapy , Uveitis/genetics , Uveitis/immunology
19.
EMBO Rep ; 21(3): e48530, 2020 03 04.
Article En | MEDLINE | ID: mdl-32003148

Pathological aggregation of amyloid-ß (Aß) is a main hallmark of Alzheimer's disease (AD). Recent genetic association studies have linked innate immune system actions to AD development, and current evidence suggests profound gender differences in AD pathogenesis. Here, we characterise gender-specific pathologies in the APP23 AD-like mouse model and find that female mice show stronger amyloidosis and astrogliosis compared with male mice. We tested the gender-specific effect of lack of IL12p40, the shared subunit of interleukin (IL)-12 and IL-23, that we previously reported to ameliorate pathology in APPPS1 mice. IL12p40 deficiency gender specifically reduces Aß plaque burden in male APP23 mice, while in female mice, a significant reduction in soluble Aß1-40 without changes in Aß plaque burden is seen. Similarly, plasma and brain cytokine levels are altered differently in female versus male APP23 mice lacking IL12p40, while glial properties are unchanged. These data corroborate the therapeutic potential of targeting IL-12/IL-23 signalling in AD, but also highlight the importance of gender considerations when studying the role of the immune system and AD.


Alzheimer Disease , Interleukin-12/deficiency , Interleukin-23 Subunit p19/deficiency , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Female , Interleukin-12/genetics , Interleukin-12 Subunit p40/deficiency , Interleukin-12 Subunit p40/genetics , Interleukin-23 Subunit p19/genetics , Male , Mice , Mice, Transgenic , Plaque, Amyloid
20.
Int J Cancer ; 146(7): 2027-2035, 2020 04 01.
Article En | MEDLINE | ID: mdl-31693169

The heterogeneities of colorectal cancer (CRC) lead to staging inadequately of patients' prognosis. Here, we performed a prognostic analysis based on the tumor mutational profile and explored the characteristics of the high-risk tumors. We sequenced 338 colorectal carcinomas as the training dataset, constructed a novel five-gene (SMAD4, MUC16, COL6A3, FLG and LRP1B) prognostic signature, and validated it in an independent dataset from The Cancer Genome Atlas (TCGA). Kaplan-Meier and Cox regression analyses confirmed that the five-gene signature is an independent predictor of recurrence and prognosis in patients with Stage III colon cancer. The mutant signature translated to an increased risk of death (hazard ratio = 2.45, 95% confidence interval = 1.15-5.22, p = 0.016 in our dataset; hazard ratio = 4.78, 95% confidence interval = 1.33-17.16, p = 0.008 in TCGA dataset). RNA and bacterial 16S rRNA sequencing of high-risk tumors indicated that mutations of the five-gene signature may lead to intestinal barrier integrity, translocation of gut bacteria and deregulation of immune response and extracellular related genes. The high-risk tumors overexpressed IL23A and IL1RN genes and enriched with cancer-related bacteria (Bacteroides fragilis,Peptostreptococcus, Parvimonas, Alloprevotella and Gemella) compared to the low-risk tumors. The signature identified the high-risk group characterized by gut bacterial translocation and upregulation of interleukins of the tumor microenvironment, which was worth further researching.


Bacterial Translocation , Colonic Neoplasms/diagnosis , Colonic Neoplasms/etiology , Gene Expression Regulation, Neoplastic , Interleukin-23 Subunit p19/genetics , Mutation , Tumor Microenvironment/genetics , Aged , Biomarkers, Tumor , Colonic Neoplasms/mortality , Female , Filaggrin Proteins , Humans , Male , Metagenomics , Middle Aged , Neoplasm Staging , Prognosis , Proportional Hazards Models , RNA, Ribosomal, 16S
...