Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1374818, 2024.
Article in English | MEDLINE | ID: mdl-38827738

ABSTRACT

Activated lung ILC2s produce large quantities of IL-5 and IL-13 that contribute to eosinophilic inflammation and mucus production following respiratory syncytial virus infection (RSV). The current understanding of ILC2 activation during RSV infection, is that ILC2s are activated by alarmins, including IL-33, released from airway epithelial cells in response to viral-mediated damage. Thus, high levels of RSV neutralizing maternal antibody generated from maternal immunization would be expected to reduce IL-33 production and mitigate ILC2 activation. Here we report that lung ILC2s from mice born to RSV-immunized dams become activated despite undetectable RSV replication. We also report, for the first time, expression of activating and inhibitory Fcgamma receptors on ILC2s that are differentially expressed in offspring born to immunized versus unimmunized dams. Alternatively, ex vivo IL-33-mediated activation of ILC2s was mitigated following the addition of antibody: antigen immune complexes. Further studies are needed to confirm the role of Fcgamma receptor ligation by immune complexes as an alternative mechanism of ILC2 regulation in RSV-associated eosinophilic lung inflammation.


Subject(s)
Interleukin-33 , Lung , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Viruses , Animals , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Mice , Female , Lung/immunology , Lung/virology , Interleukin-33/immunology , Respiratory Syncytial Viruses/immunology , Lymphocytes/immunology , Immunization , Receptors, IgG/immunology , Receptors, IgG/metabolism , Antibodies, Viral/immunology , Pregnancy , Respiratory Syncytial Virus Vaccines/immunology
2.
Front Immunol ; 15: 1425282, 2024.
Article in English | MEDLINE | ID: mdl-38881897

ABSTRACT

Interleukin 33 (IL-33), once predominantly recognized for its pro-tumoral activities, has emerged as a multifunctional cytokine with antitumor properties. IL-33 pleiotropic activities include activation of Th1 CD4+ T cells, CD8+ T cells, NK cells, dendritic cells, eosinophils, as well as type 2 innate lymphoid cells. Regarding this immunomodulatory activity, IL-33 demonstrates synergistic interactions with various cancer therapies, including immune checkpoint blockade and chemotherapy. Combinatorial treatments leveraging IL-33 exhibit enhanced antitumor efficacy across different tumor models, promising novel avenues for cancer therapy. Despite its antitumor effects, the complex interplay of IL-33 within the tumor microenvironment underscores the need for further investigation. Understanding the mechanisms underlying IL-33's dual role as both a promoter and inhibitor of tumor progression is essential for refining therapeutic strategies and fully realizing its potential in cancer immunotherapy. This review delves into the intricate landscape of IL-33 effects within the tumor microenvironment, highlighting its pivotal role in orchestrating immune responses against cancer.


Subject(s)
Interleukin-33 , Neoplasms , Tumor Microenvironment , Humans , Interleukin-33/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods
3.
Inflamm Res ; 73(7): 1239-1252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844678

ABSTRACT

BACKGROUND: We have previously shown that asthma-like airways inflammation may be induced by topical exposure to respiratory tract pathogens such as S. pneumoniae (SP) in concert with epithelial alarmins such as IL-33. Details of the pathogenesis of this murine surrogate remain however unexplored. METHODS: Airways inflammation was induced by repeated, intranasal exposure of Il-4-/-, Rag1-/- and Rag2-/-Il2rg-/- mice (in which B lymphocyte IgE switching, adaptive and innate immunity are respectively ablated) as well as wild type mice to inactivated SP, IL-33 or both. Airways pathological changes were analysed, and the subsets and functions of locally accumulated ILC2s investigated by single cell RNA sequencing and flow cytometry. RESULTS: In the presence of IL-33, repeated exposure of the airways to inactivated SP caused marked eosinophil- and neutrophil-rich inflammation and local accumulation of ILC2s, which was retained in the Il-4-/- and Rag1-/- deficient mice but abolished in the Rag2-/-Il2rg-/- mice, an effect partly reversed by adoptive transfer of ILC2s. Single cell sequencing analysis of ILC2s recruited following SP and IL-33 exposure revealed a Klrg1+Ly6a+subset, expressing particularly elevated quantities of the pro-inflammatory cytokine IL-6, type 2 cytokines (IL-5 and IL-13) and MHC class II molecules, promoting type 2 inflammation as well as involved in neutrophil-mediated inflammatory responses. CONCLUSION: Local accumulation of KLRG1+Ly6a+ ILC2s in the lung tissue is a critical aspect of the pathogenesis of airways eosinophilic and neutrophil-rich inflammation induced by repeated exposure to SP in the presence of the epithelial alarmin IL-33.


Subject(s)
Interleukin-33 , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Streptococcus pneumoniae/immunology , Mice, Inbred C57BL , Mice, Knockout , Lung/immunology , Lung/pathology , Lung/microbiology , Lymphocytes/immunology , Inflammation/immunology , Mice , Female , Alarmins/immunology , Homeodomain Proteins
4.
Front Immunol ; 15: 1352704, 2024.
Article in English | MEDLINE | ID: mdl-38895118

ABSTRACT

Background: Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disease with skin barrier defects and a misdirected type 2 immune response against harmless antigens. The skin microbiome in AD is characterized by a reduction in microbial diversity with a dominance of staphylococci, including Staphylococcus epidermidis (S. epidermidis). Objective: To assess whether S. epidermidis antigens play a role in AD, we screened for candidate allergens and studied the T cell and humoral immune response against the extracellular serine protease (Esp). Methods: To identify candidate allergens, we analyzed the binding of human serum IgG4, as a surrogate of IgE, to S. epidermidis extracellular proteins using 2-dimensional immunoblotting and mass spectrometry. We then measured serum IgE and IgG1 binding to recombinant Esp by ELISA in healthy and AD individuals. We also stimulated T cells from AD patients and control subjects with Esp and measured the secreted cytokines. Finally, we analyzed the proteolytic activity of Esp against IL-33 and determined the cleavage sites by mass spectrometry. Results: We identified Esp as the dominant candidate allergen of S. epidermidis. Esp-specific IgE was present in human serum; AD patients had higher concentrations than controls. T cells reacting to Esp were detectable in both AD patients and healthy controls. The T cell response in healthy adults was characterized by IL-17, IL-22, IFN-γ, and IL-10, whereas the AD patients' T cells lacked IL-17 production and released only low amounts of IL-22, IFN-γ, and IL-10. In contrast, Th2 cytokine release was higher in T cells from AD patients than from healthy controls. Mature Esp cleaved and activated the alarmin IL-33. Conclusion: The extracellular serine protease Esp of S. epidermidis can activate IL-33. As an antigen, Esp elicits a type 2-biased antibody and T cell response in AD patients. This suggests that S. epidermidis can aggravate AD through the allergenic properties of Esp.


Subject(s)
Dermatitis, Atopic , Immunoglobulin E , Serine Proteases , Staphylococcus epidermidis , Humans , Staphylococcus epidermidis/immunology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Serine Proteases/immunology , Serine Proteases/metabolism , Adult , Male , Female , Immunoglobulin E/immunology , Immunoglobulin E/blood , Bacterial Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Cytokines/metabolism , Cytokines/immunology , T-Lymphocytes/immunology , Allergens/immunology , Interleukin-33/immunology , Middle Aged
5.
Clin Immunol ; 265: 110264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38825072

ABSTRACT

Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease that primarily affects the joints and surrounding soft tissues, characterized by chronic inflammation and proliferation of the synovium. Various immune cells are involved in the pathophysiology of RA. The complex interplay of factors such as chronic inflammation, genetic susceptibility, dysregulation of serum antibody levels, among others, contribute to the complexity of the disease mechanism, disease activity, and treatment of RA. Recently, the cytokine storm leading to increased disease activity in RA has gained significant attention. Interleukin-33 (IL-33), a member of the IL-1 family, plays a crucial role in inflammation and immune regulation. ST2 (suppression of tumorigenicity 2 receptor), the receptor for IL-33, is widely expressed on the surface of various immune cells. When IL-33 binds to its receptor ST2, it activates downstream signaling pathways to exert immunoregulatory effects. In RA, IL-33 regulates the progression of the disease by modulating immune cells such as circulating monocytes, tissue-resident macrophages, synovial fibroblasts, mast cells, dendritic cells, neutrophils, T cells, B cells, endothelial cells, and others. We have summarized and analyzed these findings to elucidate the pathways through which IL-33 regulates RA. Furthermore, IL-33 has been detected in the synovium, serum, and synovial fluid of RA patients. Due to inconsistent research results, we conducted a meta-analysis on the association between serum IL-33, synovial fluid IL-33, and the risk of developing RA in patients. The pooled SMD was 1.29 (95% CI: 1.15-1.44), indicating that IL-33 promotes the onset and pathophysiological progression of RA. Therefore, IL-33 may serve as a biomarker for predicting the risk of developing RA and treatment outcomes. As existing drugs for RA still cannot address drug resistance in some patients, new therapeutic approaches are needed to alleviate the significant burden on RA patients and healthcare systems. In light of this, we analyzed the potential of targeting the IL-33/ST2-related signaling pathway to modulate immune cells associated with RA and alleviate inflammation. We also reviewed IL-33 and RA susceptibility-related single nucleotide polymorphisms, suggesting potential involvement of IL-33 and macrophage-related drug-resistant genes in RA resistance therapy. Our review elucidates the role of IL-33 in the pathophysiology of RA, offering new insights for the treatment of RA.


Subject(s)
Arthritis, Rheumatoid , Interleukin-33 , Animals , Humans , Arthritis, Rheumatoid/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/immunology , Signal Transduction/immunology
6.
Vet Immunol Immunopathol ; 273: 110786, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824908

ABSTRACT

Canine atopic dermatitis (CAD) is a chronic and inflammatory skin condition with a multifaceted origin, involving genetic factors, skin barrier abnormalities, immune responses, and hypersensitivity to various allergens. Interleukin 33 (IL-33), released by keratinocytes upon cellular injury, plays a crucial role in atopic dermatitis pathogenesis by inducing Th2 lymphocyte-mediated immune responses. This study aimed to evaluate IL-33 expression in dogs with atopic dermatitis and compare it to a control group. Forty-nine dogs were included, with 39 having atopic dermatitis, subdivided into groups based on clinical characteristics, and ten in the control group. Lesion and pruritus scores were assessed, and incisional biopsies were analyzed for dermatopathological characteristics. IL-33 expression was evaluated using immunohistochemistry, the analyses were blinded, based on the measurement of immunostaining areas using Image Pro-Plus software, version 4.5, relying on a semi-automatic color segmentation method, where the tissue immunostaining area for each biomarker was artificially delimited and quantified. Statistically significant differences in IL-33 immunostaining were found among groups (P=0.0005). Lichenified dogs (group 4) exhibited higher immunostaining compared to erythema (group 3) (P=0.0006), alesional pruritus (group 2) (P=0.0261), and the control group (group 1) (P=0.0079). IL-33 immunostaining increased with lesion progression, strongly correlating with lesion scores (P<0.0001), particularly in patients with chronic lesions characterized by erythema and lichenification. These findings suggest IL-33's significant role in canine atopic dermatitis pathogenesis and its association with lesion and inflammation scores during the chronic phase. This suggests potential therapeutic interventions targeting IL-33 or its receptors, though further studies are needed to explore these possibilities.


Subject(s)
Dermatitis, Atopic , Dog Diseases , Immunohistochemistry , Interleukin-33 , Dogs , Animals , Interleukin-33/genetics , Interleukin-33/immunology , Dermatitis, Atopic/veterinary , Dermatitis, Atopic/immunology , Dog Diseases/immunology , Male , Female , Immunohistochemistry/veterinary , Skin/immunology , Skin/pathology , Pruritus/veterinary , Pruritus/immunology
7.
Exp Mol Med ; 56(6): 1340-1347, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825642

ABSTRACT

Interleukin-33 (IL-33), a member of the IL-1 family, is a cytokine released in response to tissue damage and is recognized as an alarmin. The multifaceted roles of IL-33 in tumor progression have sparked controversy within the scientific community. However, most findings generally indicate that endogenous IL-33 has a protumor effect, while exogenous IL-33 often has an antitumor effect in most cases. This review covers the general characteristics of IL-33 and its effects on tumor growth, with detailed information on the immunological mechanisms associated with dendritic cells (DCs). Notably, DCs possess the capability to uptake, process, and present antigens to CD8+ T cells, positioning them as professional antigen-presenting cells. Recent findings from our research highlight the direct association between the tumor-suppressive effects of exogenous IL-33 and a novel subset of highly immunogenic cDC1s. Exogenous IL-33 induces the development of these highly immunogenic cDC1s through the activation of other ST2+ immune cells both in vivo and in vitro. Recognizing the pivotal role of the immunogenicity of DC vaccines in DC-based tumor immunotherapy, we propose compelling methods to enhance this immunogenicity through the addition of IL-33 and the promotion of highly immunogenic DC generation.


Subject(s)
Dendritic Cells , Immunotherapy , Interleukin-33 , Neoplasms , Interleukin-33/metabolism , Interleukin-33/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Cancer Vaccines/immunology
8.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38781213

ABSTRACT

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Subject(s)
Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-22 , Interleukin-33 , Interleukins , Streptococcus pneumoniae , Animals , Interleukin-33/immunology , Interleukin-33/genetics , Interleukin-33/metabolism , Interleukins/metabolism , Interleukins/immunology , Interleukins/genetics , Mice , Streptococcus pneumoniae/immunology , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Humans , Mice, Knockout , Microbiota/immunology , Mice, Inbred C57BL , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Gastrointestinal Microbiome/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Polymorphism, Single Nucleotide
9.
Clin Immunol ; 264: 110234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740111

ABSTRACT

BACKGROUND: Natural anti-cytokine autoantibodies can regulate homeostasis of infectious and inflammatory diseases. The anti-cytokine autoantibody profile and relevance to the pathogenesis of asthma are unknown. We aim to identify key anti-cytokine autoantibodies in asthma patients, and reveal their immunological function and clinical significance. METHODS: A Luciferase Immunoprecipitation System was used to screen serum autoantibodies against 11 key cytokines in patients with allergic asthma and healthy donors. The antigen-specificity, immunomodulatory functions and clinical significance of anti-cytokine autoantibodies were determined by ELISA, qPCR, neutralization assays and statistical analysis, respectively. Potential conditions for autoantibody induction were revealed by in vitro immunization. RESULTS: Of 11 cytokines tested, only anti-IL-33 autoantibody was significantly increased in asthma, compare to healthy controls, and the proportion positive was higher in patients with mild-to-moderate than severe allergic asthma. In allergic asthma patients, the anti-IL-33 autoantibody level correlated negatively with serum concentration of pathogenic cytokines (e.g., IL-4, IL-13, IL-25 and IL-33), IgE, and blood eosinophil count, but positively with mid-expiratory flow FEF25-75%. The autoantibodies were predominantly IgG isotype, polyclonal and could neutralize IL-33-induced pathogenic responses in vitro and in vivo. The induction of the anti-IL-33 autoantibody in blood B-cells in vitro required peptide IL-33 antigen along with a stimulation cocktail of TLR9 agonist and cytokines IL-2, IL-4 or IL-21. CONCLUSIONS: Serum natural anti-IL-33 autoantibodies are selectively induced in some asthma patients. They ameliorate key asthma inflammatory responses, and may improve lung function of allergic asthma.


Subject(s)
Asthma , Autoantibodies , Interleukin-33 , Humans , Asthma/immunology , Autoantibodies/immunology , Autoantibodies/blood , Interleukin-33/immunology , Female , Adult , Male , Middle Aged , Animals , Antibodies, Neutralizing/immunology , Cytokines/immunology , Cytokines/blood , Mice , Young Adult , Immunoglobulin E/immunology , Immunoglobulin E/blood , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/agonists , Severity of Illness Index , Immunoglobulin G/immunology , Immunoglobulin G/blood
10.
J Immunol ; 212(12): 1867-1876, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38647384

ABSTRACT

Allergic airway inflammation results from uncontrolled immune responses to environmental Ags. Although it is well established that allergic immune responses exhibit a high degree of diversity, driven by primary effector cell types such as eosinophils, neutrophils, or CD4 T cells with distinct effector signatures, the mechanisms responsible for such pathogenesis remain elusive. Foxp3+ regulatory T cells (Tregs) are essential immune regulators during chronic inflammation, including allergic airway inflammation. Emerging evidence suggests that Tregs infiltrating inflamed tissues exhibit distinct phenotypes dependent on the specific tissue sites and can display heterogeneity and tissue residency. Whether diverse allergic airway inflammatory responses influence infiltrating Treg heterogeneity or Treg lung residency has not been explored. We employed an unbiased single-cell RNA sequencing approach to investigate lung-infiltrating Tregs in models of eosinophilic and neutrophilic airway inflammation. We found that lung-infiltrating Tregs are highly heterogeneous, and that Tregs displaying lung-resident phenotypes are significantly different depending on the types of inflammation. Treg expression of ST2, a receptor for alarmin IL-33, was predominantly associated with eosinophilic inflammation and tissue residency. Nevertheless, Treg-specific ST2 deficiency did not affect the development of eosinophilic allergic inflammation or the generation of lung-resident Tregs. These results uncover a stark heterogeneity among Tregs infiltrating the lungs during allergic airway inflammation. The results indicate that varying types of inflammation may give rise to phenotypically distinct lung-resident Tregs, underscoring a (to our knowledge) novel mechanism by which inflammatory cues may shape the composition of infiltrating Tregs, allowing them to regulate inflammatory responses through tissue-adapted mechanisms.


Subject(s)
Eosinophils , Lung , Neutrophils , Single-Cell Analysis , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/immunology , Animals , Mice , Neutrophils/immunology , Eosinophils/immunology , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Mice, Knockout , Inflammation/immunology , Disease Models, Animal , Interleukin-33/immunology , Eosinophilia/immunology , Eosinophilia/pathology
11.
Immunity ; 57(5): 1056-1070.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614091

ABSTRACT

A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEß7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.


Subject(s)
Interleukin-33 , Mast Cells , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Animals , Mice , Cell Communication/immunology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Interleukin-33/metabolism , Interleukin-33/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Mast Cells/immunology , Mast Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/metabolism , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/metabolism
12.
J Asthma ; 61(9): 1089-1102, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38478043

ABSTRACT

Objective: In a previous study we have shown that, in the presence of interleukin (IL)-33, repeated, per-nasal challenge of murine airways with Streptococcus pneumoniae (S. pneumoniae) organisms induces human asthma-like airways inflammation. It is not clear, however, whether this effect is unique or manifest in response to other common respiratory pathogens.Methods: To explore this, airways of BALB/c mice were repeatedly challenged per-nasally with formaldehyde-inactivated bacterial bodies in the presence or absence of murine recombinant IL-33. Serum concentrations of S.pneumoniae, Moraxella catarrhalis (M.catarrhalis) and Haemophilus influenzae (H.influenzae) lysates-specific IgE were measured in patients with asthma and control subjects.Results: We showed that in the presence of IL-33, repeated, per-nasal airways exposure to the bodies of these bacteria induced airways hyperresponsiveness (AHR) in the experimental mice. This was accompanied by cellular infiltration into bronchoalveolar lavage fluid (BALF), eosinophilic infiltration and mucous hypertrophy of the lung tissue, with elevated local expression of some type 2 cytokines and elevated, specific IgG and IgE in the serum. The precise characteristics of the inflammation evoked by exposure to each bacterial species were distinguishable.Conclusions: These results suggest that in the certain circumstances, inhaled or commensal bacterial body antigens of both Gram-positive (S. pneumoniae) and Gram-negative (M. catarrhalis and H. influenzae) respiratory tract bacteria may initiate type 2 inflammation typical of asthma in the airways. In addition, we demonstrated that human asthmatic patients manifest elevated serum concentrations of M.catarrhalis- and H.influenzae-specific IgE.


Subject(s)
Antigens, Bacterial , Asthma , Haemophilus influenzae , Immunoglobulin E , Mice, Inbred BALB C , Streptococcus pneumoniae , Asthma/immunology , Asthma/microbiology , Animals , Mice , Streptococcus pneumoniae/immunology , Haemophilus influenzae/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Humans , Antigens, Bacterial/immunology , Female , Moraxella catarrhalis/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/microbiology , Male , Interleukin-33/immunology , Interleukins/immunology , Interleukins/blood , Adult , Middle Aged
13.
Immunology ; 172(2): 226-234, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38409805

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) play critical roles in driving the pathogenesis of allergic airway inflammation. The mechanisms underlying the regulation of ILC2s remain to be fully understood. Here, we identified neuropilin-1 (NRP1) as a surface marker of ILC2s in response to IL-33 stimulation. NRP1 was abundantly expressed in ILC2s from lung under steady state, which was significantly reduced upon IL-33 stimulation. ILC2s with high expression of NRP1 (NRP1high) displayed lower response to IL-33, as compared with NRP1low ILC2s. Transcriptional profiling and flow cytometric analysis showed that downregulation of AKT-mTOR signalling participated in the diminished functionality of NRP1high ILC2s. These observations revealed a potential role of NRP1 in ILC2s responses under allergic inflammatory condition.


Subject(s)
Down-Regulation , Immunity, Innate , Interleukin-33 , Lymphocytes , Neuropilin-1 , Signal Transduction , Interleukin-33/metabolism , Interleukin-33/immunology , Animals , Neuropilin-1/metabolism , Neuropilin-1/genetics , Mice , Lymphocytes/immunology , Lymphocytes/metabolism , Lung/immunology , Lung/metabolism , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice, Inbred C57BL
14.
J Allergy Clin Immunol ; 153(5): 1355-1368, 2024 May.
Article in English | MEDLINE | ID: mdl-38310974

ABSTRACT

BACKGROUND: Eosinophilic esophagitis (EoE) is an increasingly common inflammatory condition of the esophagus; however, the underlying immunologic mechanisms remain poorly understood. The epithelium-derived cytokine IL-33 is associated with type 2 immune responses and elevated in esophageal biopsy specimens from patients with EoE. OBJECTIVE: We hypothesized that overexpression of IL-33 by the esophageal epithelium would promote the immunopathology of EoE. METHODS: We evaluated the functional consequences of esophageal epithelial overexpression of a secreted and active form of IL-33 in a novel transgenic mouse, EoE33. EoE33 mice were analyzed for clinical and immunologic phenotypes. Esophageal contractility was assessed. Epithelial cytokine responses were analyzed in three-dimensional organoids. EoE33 phenotypes were further characterized in ST2-/-, eosinophil-deficient, and IL-13-/- mice. Finally, EoE33 mice were treated with dexamethasone. RESULTS: EoE33 mice displayed ST2-dependent, EoE-like pathology and failed to thrive. Esophageal tissue remodeling and inflammation included basal zone hyperplasia, eosinophilia, mast cells, and TH2 cells. Marked increases in levels of type 2 cytokines, including IL-13, and molecules associated with immune responses and tissue remodeling were observed. Esophageal organoids suggested reactive epithelial changes. Genetic deletion of IL-13 in EoE33 mice abrogated pathologic changes in vivo. EoE33 mice were responsive to steroids. CONCLUSIONS: IL-33 overexpression by the esophageal epithelium generated immunopathology and clinical phenotypes resembling human EoE. IL-33 may play a pivotal role in the etiology of EoE by activating the IL-13 pathway. EoE33 mice are a robust experimental platform for mechanistic investigation and translational discovery.


Subject(s)
Eosinophilic Esophagitis , Interleukin-13 , Interleukin-33 , Animals , Humans , Mice , Disease Models, Animal , Eosinophilic Esophagitis/immunology , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Eosinophils/immunology , Esophageal Mucosa/pathology , Esophageal Mucosa/immunology , Esophagus/pathology , Esophagus/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-13/metabolism , Interleukin-33/genetics , Interleukin-33/immunology , Interleukin-33/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
15.
J Allergy Clin Immunol ; 153(5): 1406-1422.e6, 2024 May.
Article in English | MEDLINE | ID: mdl-38244725

ABSTRACT

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE: We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS: We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS: Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION: Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Asthma , Immunity, Innate , Lymphocytes , Animals , Female , Humans , Male , Mice , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/genetics , Asthma/immunology , Interleukin-33/immunology , Lymphocytes/immunology , Mice, Inbred C57BL , Mice, Knockout
16.
Allergol. immunopatol ; 52(1): 65-70, 01 jan. 2024. ilus, tab
Article in English | IBECS | ID: ibc-229176

ABSTRACT

Background: Atopic dermatitis (AD) is a relapsing, chronic cutaneous inflammatory disease with onset, in general, in early childhood. Chronic skin inflammation is associated with overproduction of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. Oxidative stress, an imbalance between the production of free radicals and antioxidant defense, results in tissue inflammation due to the upregulation of genes that encode inflammatory cytokines. This condition plays an important role in the pathogenesis of AD. Objective: To compare the antioxidant defense in children and adolescents with AD with that of healthy individuals and to verify the association of antioxidant defense with disease severity and nutritional status. Methods: Cross-sectional study that evaluated 48 children and adolescents with AD and 25 controls for nutritional assessment (body mass index z score [BMIZ] and height for age z score [HAZ]) and levels of vitamins A, C, E, and D, zinc (Zn), copper (Cu), antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx]), high-sensitivity C-reactive protein (CRP) and interleukin 33 (IL-33). Results: There was no significant difference in the comparison between AD and control groups for serum levels of vitamins (A, D, C, and E), copper, and antioxidant enzymes. Serum zinc levels were higher in the AD group (β = 24.20; 95% CI 13.95–34.91; P < 0.001) even after adjusting the BMIZ, HAZ, gender, IL-33, and CRP. Children and adolescents with moderate or severe AD compared to mild AD (SCORAD – 36.7±17.4 vs 11.8 ± 3.9; P < 0.001) had lower values of the vitamin E/total lipid ratio (3.68 [0.29;12.63] vs 5.92 [3.27;17.37]; P = 0.013) (AU)


Subject(s)
Humans , Male , Female , Child, Preschool , Child , Adolescent , Antioxidants/blood , Dermatitis, Atopic/blood , Dermatitis, Atopic/immunology , Oxidative Stress , Vitamin E/blood , Vitamin K/blood , Zinc/blood , Severity of Illness Index , Cross-Sectional Studies , Interleukin-33/immunology , Vitamin A/blood
17.
Allergol. immunopatol ; 48(2): 130-136, mar.-abr. 2020. tab
Article in English | IBECS | ID: ibc-191815

ABSTRACT

BACKGROUND: Several studies suggest that early-life exposure to animal allergens constitutes a relevant risk factor for the development of allergic sensitization. OBJECTIVES: The aim of the present study was to determine the role of interleukin-33 in children sensitive to cat allergen with allergic rhinitis and/or asthma. METHODS: The study included 51 children aged 5-18 years, both sexes, allergic to cats. Sensitization to cat allergen was confirmed by skin prick tests or specific IgE. Children were evaluated for the presence of bronchial asthma, atopic dermatitis, allergic rhinitis. A questionnaire evaluating the occurrence of allergic symptoms in children after contact with the cat and dog was performed. Mothers completed a questionnaire regarding cat exposure: during pregnancy and having a cat at home. A blood sample was taken from all children to measure the level of IL-33 in the serum. RESULTS: Keeping a cat in the home, once in the past, or having a cat in the home during the mother's pregnancy, revealed a statistically significant relationship with IL-33 levels in the studied patients. Also, daily contact with a cat during pregnancy affected the level of IL-33. Higher levels of IL-33 were shown in people with hypersensitivity to cat and pollen allergens and cat and other animals. In patients with bronchial asthma higher levels of IL-33 were found than in patients without bronchial asthma. CONCLUSIONS: Increased serum levels of IL-33 is related with keeping cats during pregnancy and in early childhood and can be associated with the development of asthma in children


No disponible


Subject(s)
Humans , Animals , Male , Female , Child , Adolescent , Cats , Interleukin-33/immunology , Allergens/immunology , Hypersensitivity/diagnosis , Cats/immunology , Hypersensitivity/immunology , Pets/immunology , Rhinitis/immunology , Rhinitis/diagnosis , Asthma/diagnosis , Asthma/immunology , Surveys and Questionnaires , Linear Models
18.
Rev. bras. reumatol ; 56(5): 451-457, Sept.-Oct. 2016. tab
Article in English | LILACS | ID: lil-798098

ABSTRACT

ABSTRACT A better understanding of the inflammatory mechanisms of rheumatoid arthritis and the development of biological therapy revolutionized its treatment, enabling an interference in the synovitis – structural damage – functional disability cycle. Interleukin 33 was recently described as a new member of the interleukin-1 family, whose common feature is its pro-inflammatory activity. Its involvement in the pathogenesis of a variety of diseases, including autoimmune diseases, raises the interest in the possible relationship with rheumatoid arthritis. Its action has been evaluated in experimental models of arthritis as well as in serum, synovial fluid and membrane of patients with rheumatoid arthritis. It has been shown that the administration of interleukin-33 exacerbates collagen-induced arthritis in experimental models, and a positive correlation between cytokine concentrations in serum and synovial fluid of patients with rheumatoid arthritis and disease activity was found. This review discusses evidence for the role of interleukin-33 with a focus on rheumatoid arthritis.


RESUMO A melhor compreensão dos mecanismos inflamatórios da artrite reumatoide e o desenvolvimento da terapia biológica revolucionaram o tratamento da doença, permitindo uma interferência no ciclo sinovite–dano estrutural–incapacidade funcional. A interleucina 33 foi recentemente descrita como um novo membro da família da interleucina 1, cuja característica comum é a atividade pró-inflamatória. Por estar envolvida na patogênese de uma grande variedade de doenças, incluindo doenças autoimunes, a interleucina 33 começa a ser estudada na doença reumatoide. Ela tem sido avaliada em modelos experimentais de artrite, no soro, no líquido e membrana sinoviais de pacientes com artrite reumatoide. Demonstrou-se que a administração da interleucina 33 exacerba a artrite induzida por colágeno em modelos experimentais, e concentrações dessa citocina no soro e no líquido sinovial de pacientes com artrite reumatoide correlacionaram-se positivamente com a atividade da doença. Esse manuscrito apresenta a interleucina 33 e discute as evidências do seu papel em diferentes doenças, com ênfase na artrite reumatoide.


Subject(s)
Humans , Animals , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/pathology , Interleukin-33/immunology , Interleukin-33/blood , Arthritis, Experimental/pathology , Arthritis, Experimental/blood , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/blood , Synovial Fluid , Synovitis , Interleukins
SELECTION OF CITATIONS
SEARCH DETAIL