Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 911
1.
Poult Sci ; 103(5): 103586, 2024 May.
Article En | MEDLINE | ID: mdl-38442474

Intestinal inflammation is a primary contributor to poor growth performance during poultry production. Chlorogenic acid (CGA) is a natural phenolic acid that exhibits superior anti-inflammatory activity and improved intestinal health. To investigate the protective effects and molecular mechanisms of CGA during intestinal inflammation in lipopolysaccharide (LPS)-challenged broilers, we randomly divided 288 one-day-old male Cobb broilers into 4 groups: a control group fed a basal diet (CON group), a basal diet + LPS group (LPS group), and 2 basal diet groups fed 500 or 750 mg/kg CGA + LPS (CGA_500 or CGA_750 groups). Broilers were injected with LPS or saline at 15, 17, 19, and 21 d old. Chlorogenic acid supplementation improved the growth performance of LPS-challenged broilers by increasing average daily gain (ADG) and reducing feed/gain (F/G) ratios (P < 0.05). CGA also improved intestinal barrier function in LPS-challenged boilers by enhancing jejunum morphology and integrity, decreasing intestinal permeability, and increasing occludin 3, zonula occludens-1, and mucin 2 expression (P < 0.05). CGA supplementation also improved systemic and jejunum antioxidant capacity by significantly enhancing glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities (P < 0.05), and reducing malonaldehyde (MDA) and protein carbonyl (PCO) levels (P < 0.05). Chlorogenic acid supplementation reduced systemic and jejunum pro-inflammatory cytokines (interleukin (IL)-1ß, IL-6, and IL-12) and increased anti-inflammatory cytokines (IL-10) in LPS-challenged broilers (P < 0.05) by inhibiting the toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway (P < 0.05). In addition, the protective effects of CGA toward intestinal inflammation and apoptosis appeared to be correlated with inhibited endoplasmic reticulum (ER) stress (P < 0.05). In summary, CGA supplementation improved intestinal morphology and integrity by inhibiting TLR4/NF-κB and ER stress pathways, which potentially reduced oxidative stress and inflammation, and ultimately improved the growth performance of LPS-challenged broilers.


Chickens , Chlorogenic Acid , Dietary Supplements , Endoplasmic Reticulum Stress , Lipopolysaccharides , NF-kappa B , Poultry Diseases , Animals , Chlorogenic Acid/administration & dosage , Chlorogenic Acid/pharmacology , Lipopolysaccharides/pharmacology , Male , NF-kappa B/metabolism , Poultry Diseases/chemically induced , Poultry Diseases/drug therapy , Endoplasmic Reticulum Stress/drug effects , Dietary Supplements/analysis , Diet/veterinary , Inflammation/veterinary , Inflammation/drug therapy , Inflammation/chemically induced , Random Allocation , Animal Feed/analysis , Intestines/drug effects , Intestines/pathology , Intestinal Diseases/veterinary , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/prevention & control , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage
2.
In Vivo ; 38(2): 647-651, 2024.
Article En | MEDLINE | ID: mdl-38418161

BACKGROUND/AIM: Non-steroidal anti-inflammatory drugs (NSAIDs), the most widely used pharmaceuticals, induce various adverse effects, including gastrointestinal injuries, such as ulcers and bleeding. Animal models of NSAID-induced small intestinal injury (NSI) have been extensively employed for the development of preventive and therapeutic agents. However, some experimental variations related to feeding times have been observed following NSI induction. This study aimed to investigate the impact of feeding time on an NSI mouse model. MATERIALS AND METHODS: The mice were divided into eight groups: normal, sham, and model groups (with feeding times of 2 h, 6 h, 10 h, 14 h, 18 h, and 22 h; n=10 in each group). The mice were fasted for 18 h before the injection of indomethacin (15 mg/kg, subcutaneously), except for the normal group. Food supply was halted at specific time points (2 h, 6 h, 10 h, 14 h, 18 h, and 22 h); however, the normal and sham groups were continuously fed throughout the experiment. The length of the small intestine was measured, and histological analysis was performed 24 h after induction. RESULTS: Up to 14 h after induction, NSI, indicated by small intestine shortening, remained consistent, with a reduction in length of approximately 10-20%. However, feeding for more than 14 h significantly exacerbated NSI, both anatomically and histologically. CONCLUSION: The ulcerative changes observed in the small intestine 14 h after indomethacin injection may be closely associated with the influence of food on NSI.


Intestinal Diseases , Mice , Animals , Intestinal Diseases/chemically induced , Intestinal Diseases/pathology , Intestinal Diseases/prevention & control , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Indomethacin/adverse effects , Intestine, Small/pathology , Disease Models, Animal , Ulcer/pathology
3.
Benef Microbes ; 14(3): 239-253, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37646075

Nonsteroidal anti-inflammatory drugs (NSAIDs) induce a broad spectrum of gastro-intestinal adverse effects, including ulceration and bleeding. The pathophysiology of NSAID enteropathy is complex and incompletely understood, but some evidence showed that NSAIDs impair the intestinal barrier and cause a gut dysbiosis. Identifying new treatments aiming to reverse or attenuate NSAID-induced adverse effects would have a significant impact on a high number of patients. The aim of this work is to assess the effects of the probiotic yeast Saccharomyces boulardii CNCM I-745 (Sb) on a model of NSAID-induced enteropathy. Four groups of mice were tested: Control, Indomethacin, Sb, and Sb + Indomethacin. A clinical score was evaluated throughout the experiment. Faecal calprotectin, microbiota and haemoglobin analyses were performed. At the end of the treatments, the small intestine, colon, and caecum lengths, and intestinal permeability were measured. Sections of ileum and jejunum were observed to assess a histological score and ileal cytokines were measured by immunoassay. Indomethacin-treated animals showed an increase in their clinical scores, reflecting a worsening of their general state. Mice co-treated with Sb and indomethacin displayed an improvement of their clinical score in comparison with mice treated with indomethacin alone. Sb prevented the indomethacin-induced shortening of the small intestine and caecum, and significantly attenuated the severity of intestinal lesions. Sb also prevented the increase in faecal calprotectin, reduced faecal haemoglobin, and prevented the increase of intestinal permeability in mice treated with indomethacin. Sb also counteracted the increase of faecal bacteria associated with the pathogenesis of NSAID-enteropathy. In conclusion, our results show a protective effect of Sb in a model of indomethacin-induced enteropathy. Sb improved the intestinal barrier function and exerted a positive action on gut microbiota composition.


Drug-Related Side Effects and Adverse Reactions , Intestinal Diseases , Probiotics , Saccharomyces boulardii , Humans , Animals , Mice , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Indomethacin/toxicity , Saccharomyces cerevisiae , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Models, Theoretical , Hemoglobins , Leukocyte L1 Antigen Complex
4.
Br J Pharmacol ; 180(24): 3215-3233, 2023 12.
Article En | MEDLINE | ID: mdl-37519261

BACKGROUND AND PURPOSE: Nonsteroidal anti-inflammatory drugs (NSAIDs) can be associated with severe adverse digestive effects. This study examined the protective effects of the probiotic Saccharomyces boulardii CNCM I-745 in a rat model of diclofenac-induced enteropathy. EXPERIMENTAL APPROACH: Enteropathy was induced in 40-week-old male rats by intragastric diclofenac (4 mg·kg-1 BID for 14 days). S. boulardii CNCM I-745 (3 g·kg-1 BID by oral gavage) was administered starting 14 days before (preventive protocol) or along with (curative protocol) diclofenac administration. Ileal damage, inflammation, barrier integrity, gut microbiota composition and toll-like receptors (TLRs)-nuclear factor κB (NF-κB) pathway were evaluated. KEY RESULTS: Diclofenac elicited intestinal damage, along with increments of myeloperoxidase, malondialdehyde, tumour necrosis factor and interleukin-1ß, overexpression of TLR2/4, myeloid differentiation primary response 88 (Myd88) and NF-κB p65, increased faecal calprotectin and butyrate levels, and decreased blood haemoglobin levels, occludin and butyrate transporter monocarboxylate transporter 1 (MCT1) expression. In addition, diclofenac provoked a shift of bacterial taxa in both faecal and ileal samples. Treatment with S. boulardii CNCM I-745, in both preventive and curative protocols, counteracted the majority of these deleterious changes. Only preventive administration of the probiotic counteracted NSAID-induced decreased expression of MCT1 and increase in faecal butyrate levels. Occludin expression, after probiotic treatment, did not significantly change. CONCLUSIONS AND IMPLICATIONS: Treatment with S. boulardii CNCM I-745 prevents diclofenac-induced enteropathy through anti-inflammatory and antioxidant activities. Such effects are likely to be related to increased tissue butyrate bioavailability, through an improvement of butyrate uptake by the enteric mucosa.


Intestinal Diseases , Saccharomyces boulardii , Male , Rats , Animals , Saccharomyces boulardii/physiology , Diclofenac , NF-kappa B , Occludin , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Anti-Inflammatory Agents, Non-Steroidal , Butyrates
5.
Gastroenterology ; 165(3): 733-745.e9, 2023 09.
Article En | MEDLINE | ID: mdl-37263310

BACKGROUND & AIMS: At least 20%-30% of patients with intestinal failure receiving long-term parenteral nutrition will develop intestinal failure-associated liver disease (IFALD), for which there are few therapeutic options. SEFA-6179 is a first-in-class structurally engineered medium-chain fatty acid analogue that acts through GPR84, PPARα, and PPARγ agonism. We hypothesized that SEFA-6179 would prevent biochemical and histologic liver injury in a preterm piglet model of IFALD. METHODS: Preterm Yorkshire piglets were delivered by cesarean section, and parenteral nutrition was provided for 14 days via implanted central venous catheters. Animals were treated with either medium-chain triglyceride vehicle control or SEFA-6179. RESULTS: Compared to medium-chain triglyceride vehicle at day of life 15, SEFA-6179 prevented biochemical cholestasis (direct bilirubin: 1.9 vs <0.2 mg/dL, P = .01; total bilirubin: 2.7 vs 0.4 mg/dL, P = .02; gamma glutamyl transferase: 172 vs 30 U/L, P = .01). SEFA-6179 also prevented steatosis (45.6 vs 13.9 mg triglycerides/g liver tissue, P = .009), reduced bile duct proliferation (1.6% vs 0.5% area cytokeratin 7 positive, P = .009), and reduced fibrosis assessed by a masked pathologist (median Ishak score: 3 vs 1, P = 0.007). RNA sequencing of liver tissue demonstrated that SEFA-6179 broadly impacted inflammatory, metabolic, and fibrotic pathways, consistent with its in vitro receptor activity (GPR84/PPARα/PPARγ agonist). CONCLUSIONS: In a preterm piglet model of IFALD, SEFA-6179 treatment prevented biochemical cholestasis and steatosis and reduced bile duct proliferation and fibrosis. SEFA-6179 is a promising first-in-class therapy for the prevention and treatment of IFALD that will be investigated in an upcoming phase II clinical trial.


Cholestasis , Intestinal Diseases , Intestinal Failure , Liver Diseases , Liver Failure , Pregnancy , Animals , Female , Swine , Cesarean Section , PPAR alpha/metabolism , PPAR gamma/metabolism , Liver/metabolism , Liver Diseases/prevention & control , Liver Diseases/complications , Intestinal Diseases/prevention & control , Intestinal Diseases/complications , Cholestasis/metabolism , Bilirubin , Fatty Acids/metabolism , Fibrosis , Triglycerides/metabolism
6.
FASEB J ; 37(6): e22948, 2023 06.
Article En | MEDLINE | ID: mdl-37130016

Bryostatin-1 (Bryo-1) exerts antioxidative stress effects in multiple diseases, and we confirmed that it improves intestinal barrier dysfunction in experimental colitis. Nevertheless, there are few reports on its action on intestinal ischemia/reperfusion (I/R). In this study, we mainly explored the effect of Bryo-1 on intestinal I/R injury and determined the mechanism. C57BL/6J mice underwent temporary superior mesenteric artery (SMA) obturation to induce I/R, on the contrary, Caco-2 cells suffered to oxygen and glucose deprivation/reperfusion (OGD/R) to establish the in vitro model. RAW264.7 cells were stimulated with LPS to induce macrophage inflammation. The drug gradient experiment was used to demonstrate in vivo and in vitro models. Bryo-1 ameliorated the intestinal I/R-induced injury of multiple organs and epithelial cells. It also alleviated intestinal I/R-induced barrier disruption of intestines according to the histology, intestinal permeability, intestinal bacterial translocation rates, and tight junction protein expression results. Bryo-1 significantly inhibited oxidative stress damages and inflammation, which may contribute to the restoration of intestinal barrier function. Further, Bryo-1 significantly activated Nrf2/HO-1 signaling in vivo. However, the deletion of Nrf2 in Caco-2 and RAW264.7 cells attenuated the protective functions of Bryo-1 and significantly abolished the anti-inflammatory effect of Bryo-1 on LPS-induced macrophage inflammation. Bryo-1 protects intestines against I/R-induced injury. It is associated with intestinal barrier protection, as well as inhibition of inflammation and oxidative stress partly through Nrf2/HO-1 signaling.


Intestinal Diseases , Reperfusion Injury , Animals , Humans , Mice , Bryostatins/pharmacology , Caco-2 Cells , Inflammation/metabolism , Intestinal Diseases/prevention & control , Ischemia , Lipopolysaccharides/pharmacology , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reperfusion , Reperfusion Injury/metabolism
7.
Pharmacol Res Perspect ; 10(5): e00998, 2022 10.
Article En | MEDLINE | ID: mdl-36082825

Advances in pharmacomicrobiomics have shed light on the pathophysiology of drug-induced enteropathy associated with the therapeutic use of certain non-steroidal anti-inflammatory drugs, anticancer chemotherapies and immunosuppressants. The toxicity pathway results from the post-glucuronidation release and digestive accumulation of an aglycone generated in the context of intestinal dysbiosis characterized by the expansion of ß-glucuronidase-expressing bacteria. The active aglycone could trigger direct or indirect inflammatory signaling on the gut epithelium. Therefore, taming bacterial ß-glucuronidase (GUS) activity is a druggable target for preventing drug-induced enteropathy. In face of the limitations of antibiotic strategies that can worsen intestinal dysbiosis and impair immune functions, we hereby propose the use of a recombinant probiotic capable of mimicking repressive conditions of GUS through an inducible plasmid vector.


Glucuronidase , Intestinal Diseases , Probiotics , Bacteria/metabolism , Dysbiosis/chemically induced , Dysbiosis/complications , Dysbiosis/microbiology , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Humans , Intestinal Diseases/chemically induced , Intestinal Diseases/complications , Intestinal Diseases/prevention & control , Probiotics/therapeutic use
8.
Life Sci ; 306: 120851, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35926590

AIMS: The lung is an important target organ damage in intestinal ischemia/reperfusion (II/R), but mechanisms involved in II/R-induced pulmonary artery (PA) dysfunction, as well as its treatment, are not clear. The present study aimed to investigate the mechanisms involved in the II/R-induced PA dysfunction and a possible protective role of acute simvastatin pretreatment. MAIN METHODS: Male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min followed by 2 h reperfusion (II/R) or sham-operated surgery (sham). In some rats, simvastatin (20 mg/kg, oral gavage) was administrated 1 h before II/R. KEY FINDINGS: II/R reduced acetylcholine-induced relaxation and phenylephrine-induced contraction of PA segments, which were prevented by acute simvastatin pretreatment in vivo or restored by inducible nitric oxide synthase (iNOS) inhibition in situ with 1400 W. Elevated reactive oxygen species (ROS) levels and higher nuclear translocation of nuclear factor kappa B (NFκB) subunit p65 were observed in PA of II/R rats and prevented by simvastatin. Moreover, simvastatin increased superoxide dismutase (SOD) activity and endothelial nitric oxide synthase (eNOS) expression in PA of the II/R group as well as prevented the increased levels of interleukin (IL)-1ß and IL-6 in lung explants following II/R. SIGNIFICANCE: The study suggests that pretreatment with a single dose of simvastatin prevents the II/R-induced increase of inflammatory factors and oxidative stress, as well as PA endothelial dysfunction and adrenergic hyporreactivity. Therefore, acute simvastatin administration could be therapeutic for pulmonary vascular disease in patients suffering from intestinal ischemic events.


Intestinal Diseases , Mesenteric Ischemia , Reperfusion Injury , Animals , Intestinal Diseases/drug therapy , Intestinal Diseases/prevention & control , Ischemia , Male , Nitric Oxide Synthase Type II/metabolism , Pulmonary Artery/metabolism , Rats , Rats, Wistar , Reperfusion , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Simvastatin/pharmacology
9.
Life Sci ; 296: 120445, 2022 May 01.
Article En | MEDLINE | ID: mdl-35245522

AIMS: This study tested the protective effect of purified paraprobiotic Enterococcus faecalis (EC-12) and an E. faecalis-based formulation (Med LanS) on irinotecan-induced intestinal mucositis murine model. MAIN METHODS: C57BL/6 male mice received saline, irinotecan (75 mg/Kg, i.p.), EC-12 (0.3, 1, or 3 × 107 CFU/Kg, p.o.) + irinotecan or Med Lan-S (3 × 107 CFU/Kg, p.o.) + irinotecan. Body mass variation was assessed daily, and blood samples were collected for evaluating bacteremia and leukocyte count. The ileum was harvested for myeloperoxidase assay, histopathology, quantitative PCR, and immunofluorescence for macrophages (F4/80), TLR4, and IL-18 binding protein (IL-18BP). KEY FINDINGS: The best therapeutic strategy was EC-12 administration at 3 × 107 CFU/Kg, starting 1 week before irinotecan. EC-12 and Med Lan-S did not prevent the irinotecan-induced body mass loss or leukopenia but attenuated the neutrophil infiltration in the intestine and increased the villus/crypt ratio (P < 0.05). Additionally, EC-12 and Med Lan-S reduced the mRNA expression of Cldn-2, Ocln, and Tlr4 versus the irinotecan group (P < 0.05). Irinotecan also augmented the expression of Il-18, IL-18BP, the immunofluorescence of F4/80, and TLR4, while only EC-12 prevented the expression of all these markers. Remarkably, EC-12 and Med Lan inhibited the irinotecan-induced bacterial translocation to the blood. SIGNIFICANCE: Paraprobiotic E. faecalis EC-12 prevents the development of intestinal mucositis by downregulating the inflammatory response. Med Lan-S also protects from mucositis. Possibly, the complexity of the formulation accounts for an innate immune-driven protective mechanism.


Enterococcus faecalis , Intestinal Diseases/prevention & control , Irinotecan/adverse effects , Mucositis/prevention & control , Probiotics/pharmacology , Animals , Bacteremia/prevention & control , Claudins/genetics , Gene Expression Regulation/drug effects , Intestinal Diseases/chemically induced , Intestinal Diseases/pathology , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred C57BL , Mucositis/chemically induced , Mucositis/pathology , Occludin/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
10.
Food Funct ; 13(3): 1360-1369, 2022 Feb 07.
Article En | MEDLINE | ID: mdl-35044411

Bacterial endotoxin invasion reduces intestinal barrier functions, such as intestinal bacterial translocation and enteric infection. In this study, we investigated whether sodium butyrate (NaB) alleviates lipopolysaccharide (LPS)-induced inflammation by reducing intestinal damage and regulating the microflora. Rats were divided into four groups for the intraperitoneal injection of LPSs and intragastric gavage with NaB: Con, LPS, LPS + NaB, and NaB. The results showed that NaB alleviated intestinal villus injury and inflammatory infiltration caused by LPS. NaB supplementation decreased the mRNA levels of toll-like receptor (TLR)-4, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the trend was most pronounced in the jejunum. The morphology of the intestinal nucleus and mitochondria was further observed by transmission electron microscopy. The results showed that NaB supplementation alleviated LPS-induced nuclear atrophy, apoptosis, mitochondrial damage, and rupture. Moreover, NaB improved the LPS-induced inflammatory response by regulating the intestinal barrier. Furthermore, 16S rRNA sequencing showed that the LPS increased the abundance of the harmful bacterium Bacteroides, while the abundance of beneficial bacteria decreased. In the LPS + NaB group, the intestinal microbiota destroyed by the LPS was rebalanced, including a decrease in Bacteroides and an increase in Bifidobacterium and Odoribacter. In conclusion, NaB alleviates LPS-induced enteritis by regulating inflammatory cytokines, maintaining the mucosal barrier, and restoring the microbiota changes.


Anti-Inflammatory Agents/pharmacology , Butyric Acid/pharmacology , Animals , Anti-Inflammatory Agents/administration & dosage , Butyric Acid/administration & dosage , Dietary Supplements , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Intestinal Diseases/chemically induced , Intestinal Diseases/prevention & control , Lipopolysaccharides , Male , Rats , Rats, Sprague-Dawley
11.
Curr Med Sci ; 42(1): 26-38, 2022 Feb.
Article En | MEDLINE | ID: mdl-35041135

OBJECTIVE: The systemic inflammatory response is regarded as the major cause of endotoxin-induced coagulopathy, which is a strong predictor of mortality in patients with severe sepsis. Simvastatin plays an important role in reducing inflammation. In addition, the gut has long been hypothesized to be the "motor" of critical illness, driving or aggravating sepsis by the increased intestinal permeability and bacterial translocation. Whether simvastatin plays a role in severe endotoxin-induced coagulopathy through the gut is unclear. METHODS: In this study, mice were administered 20 mg/kg simvastatin by gavage for 2 weeks and then intraperitoneally injected with 50 mg/kg endotoxin. Twelve h later, cytokine release, coagulation dysfunction, organ damage, and survival were assessed. Besides, the intestinal barrier, permeability, bacteria abundance, and translocation were evaluated. RESULTS: We found that the severity of endotoxin-induced coagulopathy was significantly improved in simvastatin-pretreated mice, who showed attenuated depletion of coagulation factors and platelets, decreased plasminogen activator inhibitor-1 (PAI-1) expression, reduced organ fibrin deposition, and improved survival time. Also, simvastatin reduced epithelial apoptosis and improved intestinal barrier function by upregulating antimicrobial peptides, lysozyme, and mucins. Simvastatin increased Lactobacillales counts, while the lipopolysaccharide group showed increased Desulfovibrio and Mucispirillum, which can produce harmful toxins. Finally, the decreased intestinal permeability in the simvastatin group caused reduced bacterial translocation in the organs and blood, both in terms of quantity and species. CONCLUSION: Simvastatin improves the prognosis of severe endotoxemia, and the intestinal microenvironment participates in this process.


Blood Coagulation Disorders/prevention & control , Endotoxemia/prevention & control , Endotoxins/pharmacology , Gastrointestinal Microbiome , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Intestinal Diseases/prevention & control , Simvastatin/pharmacology , Animals , Blood Coagulation Disorders/chemically induced , Disease Models, Animal , Endotoxemia/chemically induced , Endotoxins/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Male , Mice , Mice, Inbred C57BL , Simvastatin/administration & dosage
12.
Zhonghua Gan Zang Bing Za Zhi ; 30(10): 1124-1128, 2022 Oct 20.
Article Zh | MEDLINE | ID: mdl-36727240

Long-term parenteral nutrition-associated liver dysfunction is caused by intestinal failure and associated complications rather than the parenteral nutrition administration. Intestinal failure-associated liver disease has a diverse etiology, so its prevention and treatment usually require multiple measures at the same time. This article provides a summary of the preventative as well as treatment options for intestinal failure-associated liver disease.


Intestinal Diseases , Intestinal Failure , Liver Diseases , Liver Failure , Humans , Intestinal Diseases/etiology , Intestinal Diseases/prevention & control , Liver Diseases/prevention & control , Liver Diseases/complications , Parenteral Nutrition/adverse effects , Liver Failure/therapy
13.
Oxid Med Cell Longev ; 2021: 6221012, 2021.
Article En | MEDLINE | ID: mdl-34950418

Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin's effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets' fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.


Diarrhea/prevention & control , Dietary Supplements , Dysbiosis/prevention & control , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome , Intestinal Diseases/prevention & control , Quercetin/administration & dosage , Animal Feed/analysis , Animals , Antioxidants/administration & dosage , Bacteria/classification , Bacteria/growth & development , Diarrhea/microbiology , Diarrhea/pathology , Dysbiosis/microbiology , Dysbiosis/pathology , Female , Intestinal Diseases/microbiology , Intestinal Diseases/pathology , Swine , Weaning
14.
Oxid Med Cell Longev ; 2021: 9927864, 2021.
Article En | MEDLINE | ID: mdl-34795844

Bisdemethoxycurcumin is one of the three curcuminoids of turmeric and exhibits good antioxidant activity in animal models. This study is aimed at investigating the effect of bisdemethoxycurcumin on small intestinal mitochondrial dysfunction in lipopolysaccharide- (LPS-) treated broilers, especially on the mitochondrial thioredoxin 2 system and mitochondrial biogenesis. A total of 320 broiler chickens were randomly assigned into four experimental diets using a 2 × 2 factorial arrangement with diet (0 and 150 mg/kg bisdemethoxycurcumin supplementation) and stress (saline or LPS challenge) for 20 days. Broilers received a dose of LPS (1 mg/kg body weight) or sterile saline intraperitoneally on days 16, 18, and 20 of the trial. Bisdemethoxycurcumin mitigated the mitochondrial dysfunction of jejunum and ileum induced by LPS, as evident by the reduced reactive oxygen species levels and the increased mitochondrial membrane potential. Bisdemethoxycurcumin partially reversed the decrease in the mitochondrial DNA copy number and the depletion of ATP levels. Bisdemethoxycurcumin activated the mitochondrial antioxidant response, including the prevention of lipid peroxidation, enhancement of manganese superoxide dismutase activity, and the upregulation of the mitochondrial glutaredoxin 5 and thioredoxin 2 system. The enhanced mitochondrial respiratory complex activities in jejunum and ileum were also attributed to bisdemethoxycurcumin treatment. In addition, bisdemethoxycurcumin induced mitochondrial biogenesis via transcriptional regulation of proliferator-activated receptor-gamma coactivator-1alpha pathway. In conclusion, our results demonstrated the potential of bisdemethoxycurcumin to attenuate small intestinal mitochondrial dysfunction, which might be mediated via activating the mitochondrial antioxidant system and mitochondrial biogenesis in LPS-treated broilers.


Antioxidants/metabolism , Diarylheptanoids/pharmacology , Intestinal Diseases/prevention & control , Intestine, Small/drug effects , Lipopolysaccharides/toxicity , Mitochondria/drug effects , Protective Agents/pharmacology , Animals , Chickens , Gene Expression Regulation , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Intestinal Diseases/chemically induced , Intestinal Diseases/metabolism , Intestinal Diseases/pathology , Intestine, Small/metabolism , Intestine, Small/pathology , Male , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism
15.
BMC Cancer ; 21(1): 1032, 2021 Sep 16.
Article En | MEDLINE | ID: mdl-34530750

BACKGROUND: Radiation induced enteropathy is a common complication of radiotherapy for pelvic tumors and adversely affects patient quality of life. Probiotics are thought to restore bowel microflora to optimal levels and reinforce intestinal barrier capacity. Although probiotics are effective in the treatment of radiation induced enteropathy, less is known about their efficacy to prevent radiation induced enteropathy. METHODS: This double-blind randomized placebo-controlled study will investigate the efficacy of probiotics to prevent radiation-induced enteropathy in patients with gynecologic or urologic cancer who received pelvic radiotherapy. The study is designed to enroll 248 eligible patients, who will be randomized 1:1 to a probiotic or placebo group. Toxicities will be evaluated using Common Terminology Criteria for Adverse Events (CTCAE) v5.0. DISCUSSION: The primary aim of this study is to provide high level evidence for the ability of probiotics to prevent acute radiation induced enteropathy. The secondary aims are to determine the effects of probiotics on the incidence of chronic radiation induced enteropathy and the safety of probiotics in patients with gynecologic or urologic cancer. TRIAL REGISTRATION: ClinicalTrials.gov ( NCT03978949 , Registered on 7 June 2019).


Genital Neoplasms, Female/radiotherapy , Intestinal Diseases/prevention & control , Probiotics/therapeutic use , Radiation Injuries/prevention & control , Urologic Neoplasms/radiotherapy , Double-Blind Method , Female , Humans , Incidence , Intestinal Diseases/epidemiology , Male , Placebos/therapeutic use , Prospective Studies , Radiation Injuries/epidemiology , Republic of Korea
16.
BMC Microbiol ; 21(1): 249, 2021 09 18.
Article En | MEDLINE | ID: mdl-34536996

BACKGROUND: Probiotics are widely used in intestinal microbiota imbalance caused by sepsis, however, the protective mechanism is still unclear. This study aimed to explore protective effect of Lacticaseibacillus rhamnosus TR08 on intestinal injury in septic mice. RESULTS: The levels of serum inflammatory factors were reduced significantly in septic mice treated with L. rhamnosus TR08. The levels of sIgA in terminal ileum were significantly higher in probiotic treatment group than sepsis group. Intestinal pathological damage in septic mice improved and the expression of tight junction proteins increased after probiotic treatment. Sequencing of fecal microbiota showed that the abundance and diversity of probiotic treatment group were significantly better than those of sepsis group, and beneficial bacteria increased while some bacteria decreased in the phylum level. CONCLUSION: L. rhamnosus TR08 could improve the integrity of intestinal barrier, enhance the intestinal mucosal immunity in septic mice, and rebalance the intestinal microecosystem.


Dysbiosis/prevention & control , Intestinal Diseases/prevention & control , Lacticaseibacillus rhamnosus/physiology , Probiotics/therapeutic use , Sepsis/complications , Animals , Bacteria/classification , Bacteria/genetics , Dysbiosis/microbiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Immunoglobulin A/analysis , Immunoglobulin A/immunology , Inflammation/blood , Inflammation/prevention & control , Intestinal Diseases/etiology , Intestinal Diseases/microbiology , Intestines/immunology , Intestines/pathology , Male , Mice , Probiotics/administration & dosage , Sepsis/therapy
18.
J Fish Dis ; 44(10): 1619-1637, 2021 Oct.
Article En | MEDLINE | ID: mdl-34237181

Anti-nutritional factors in dietary components can have a negative impact on the intestinal barrier. Here, we present soya bean-induced changes in the intestine of juvenile zebrafish and the effect of yeast ß-glucan through a transcriptomic approach. The inclusion of soya bean meal affected the expression of several intestinal barrier function-related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, elovl6, slc51a, gpat2 and ATP-dependent peptidase activity (lonrf, clpxb) were altered in the intestinal tissue. The expression of immune-related genes like nlrc3, nlrp12, gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA repair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean fed group. Furthermore, our study suggests the plausible effect of yeast ß-glucan through the modulation of several genes that regulate immune responses and barrier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed soya bean meal and the efficacy of ß-glucan to counter these subtle inflammatory responses.


Fish Diseases/prevention & control , Glycine max/chemistry , Inflammation/veterinary , Intestinal Diseases/prevention & control , Polysaccharides/metabolism , Transcriptome/drug effects , Zebrafish , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Fish Diseases/immunology , Gene Expression Regulation/drug effects , Inflammation/immunology , Inflammation/prevention & control , Intestinal Diseases/immunology , Intestines , Polysaccharides/administration & dosage , Polysaccharides/chemistry , Saccharomyces cerevisiae/chemistry
19.
Nutrients ; 13(6)2021 May 30.
Article En | MEDLINE | ID: mdl-34070845

Fermented rice bran (FRB) is known to protect mice intestines against dextran sodium sulfate (DSS)-induced inflammation; however, the restoration of post-colitis intestinal homeostasis using FRB supplementation is currently undocumented. In this study, we observed the effects of dietary FRB supplementation on intestinal restoration and the development of fibrosis after DSS-induced colitis. DSS (1.5%) was introduced in the drinking water of mice for 5 days. Eight mice were sacrificed immediately after the DSS treatment ended. The remaining mice were divided into three groups, comprising the following diets: control, 10% rice bran (RB), and 10% FRB-supplemented. Diet treatment was continued for 2 weeks, after which half the population of mice from each group was sacrificed. The experiment was continued for another 3 weeks before the remaining mice were sacrificed. FRB supplementation could reduce the general observation of colitis and production of intestinal pro-inflammatory cytokines. FRB also increased intestinal mRNA levels of anti-inflammatory cytokine, tight junction, and anti-microbial proteins. Furthermore, FRB supplementation suppressed markers of intestinal fibrosis. This effect might have been achieved via the canonical Smad2/3 activation and the non-canonical pathway of Tgf-ß activity. These results suggest that FRB may be an alternative therapeutic agent against inflammation-induced intestinal fibrosis.


Diet/methods , Fermentation , Intestinal Diseases/prevention & control , Oryza , Animals , Dextran Sulfate , Dietary Supplements , Disease Models, Animal , Female , Fibrosis , Inflammation/physiopathology , Mice , Mice, Inbred C57BL
20.
Nutrients ; 13(3)2021 Mar 09.
Article En | MEDLINE | ID: mdl-33803197

Fibrosis is a severe complication of chronic inflammatory disorders, such as inflammatory bowel disease (IBD). Current strategies are not fully effective in treating fibrosis; therefore, innovative anti-fibrotic approaches are urgently needed. TGF-ß1 plays a central role in the fibrotic process by inducing myofibroblast differentiation and excessive extracellular matrix (ECM) protein deposition. Here, we explored the potential anti-fibrotic impact of two high concentration multi-strain probiotic formulations on TGF-ß1-activated human intestinal colonic myofibroblast CCD-18Co. Human colonic fibroblast CCD-18Co cells were cultured in the presence of TGF-ß1 to develop a fibrotic phenotype. Cell viability and growth were measured using the Trypan Blue dye exclusion test. The collagen-I, α-SMA, and pSmad2/3 expression levels were evaluated by Western blot analysis. Fibrosis markers were also analyzed by immunofluorescence and microscopy. The levels of TGF-ß1 in the culture medium were assessed by ELISA. The effects of commercially available probiotic products VSL#3® and Vivomixx® were evaluated as the soluble fraction of bacterial lysates. The results suggested that the soluble fraction of Vivomixx® formulation, but not VSL#3®, was able to antagonize the pro-fibrotic effects of TGF-ß1 on CCD-18Co cells, being able to prevent all of the cellular and molecular parameters that are related to the fibrotic phenotype. The mechanism underlying the observed effect appeared to be associated with inhibition of the TGF-ß1/Smad signaling pathway. To our knowledge, this study provides the first experimental evidence that Vivomixx® could be considered to be a promising candidate against intestinal fibrosis, being able to antagonize TGF-ß1 pro-fibrotic effects. The differences that were observed in our fibrosis model between the two probiotics used could be attributable to the different number of strains in different proportions.


Cell Extracts/pharmacology , Inflammatory Bowel Diseases/microbiology , Intestinal Diseases/prevention & control , Intestines/pathology , Probiotics/chemistry , Cell Differentiation/drug effects , Cell Growth Processes/drug effects , Cell Survival/drug effects , Cells, Cultured , Extracellular Matrix Proteins/metabolism , Fibrosis , Humans , Inflammatory Bowel Diseases/complications , Intestinal Diseases/microbiology , Intestinal Diseases/pathology , Intestines/microbiology , Myofibroblasts/drug effects , Phenotype , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
...