Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 15.804
Filter
1.
Zhonghua Er Ke Za Zhi ; 62(7): 643-648, 2024 Jul 02.
Article in Chinese | MEDLINE | ID: mdl-38955682

ABSTRACT

Objective: To investigate the association between intestinal colonization of segmented filamentous bacteria (SFB) and the risk of rotavirus infection, and the possible mechanisms by which SFB resist rotavirus infection. Methods: This case-control study enrolled 50 children aged 0 to 5 years who present to the outpatient Department of Children's Hospital, Zhejiang University School of Medicine with diarrhea and positive stool tests for rotavirus. The children were divided into rotavirus enteritis group and control group consisting of 55 children with non-gastrointestinal and non-infectious surgical diseases.The age and sex composition of the two groups was matched. The DNA of the fecal flora was extracted and SFB was detected by real-time fluorescence quantitative PCR analysis. The children in the rotavirus enteritis group and the control group were subgrouped by age and sex to analyze the differences in SFB positivity rates between different groups, and further compare and analyze the differences in SFB positivity rates between these two groups of children in the ≤2 years old subgroup and the >2-5 years old subgroup. Neutralization test was performed with p3340 protein and rotavirus to determine the relationship between rotavirus infection rate and p3340 concentration in Vero cells. χ2 test or Fisher's exact probability method was used for comparison between the two groups. Results: There were 50 children in the rotavirus enteritis group with an age of (1.7±0.9) years, and 55 children in the control group with an age of (1.8±1.1) years. The positive rate of SFB in children with rotavirus enteritis showed a declining trend across ages groups, with the highest rate of 10/14 in the ≤1 year old group, followed by 67% (14/21) in the >1-2 years old group, 9/15 in the >2-5 years old group, and there was no statistically significant difference (P=0.867). The positive rate of SFB in the control group was 12/15 in the ≤1 year old group, 95% (19/20) in the >1-2 years old group, 50% (10/20) in the >2-5 years old group, with statistical significance (P=0.004). The positive rate of SFB in children with rotavirus enteritis was 74% (20/27) in males and 56% (13/23) in females (χ2=1.71, P=0.192). In the control group, it was 79% (22/28) in males and 70% (19/27) in females (χ2=0.49, P=0.485). The positive rate of SFB was 66% (33/50) in the rotavirus enteritis group and 75% (41/55) in the control group, with no statistically significant (χ2=0.56, P=0.454). In the children ≤2 years old, the SFB positivity rate was 69% (24/35) in the rotavirus enteritis group and 89% (31/35) in the control group, with a statistically significant difference (χ2=4.16, P=0.041). However, in the children >2-5 years old, no statistically significant difference was observed, with the positive rate of SFB being 9/15 in the rotavirus enteritis group and 50% (10/20) in the control group (P=0.734). Pearson correlation analysis revealed a negative correlation between rotavirus infection and SFB positivity (r=-0.87,P<0.001). As the concentration of the p3340 specific protein increased, the luminescence intensity of the luciferase in the Vero cells, which were suitable for cultivating rotavirus, exhibited a decreasing trend (F=4.17, P=0.001). Conclusions: SFB colonization in infants less than 2 years old is associated with a reduced risk of rotavirus infection. Cloning of specific SFB functional protein p3340 neutralizes rotavirus infection of Vero cells, and this mechanism of targeting rotavirus infection differs from the common antiviral mechanism.


Subject(s)
Feces , Rotavirus Infections , Rotavirus , Humans , Infant , Male , Female , Case-Control Studies , Child, Preschool , Feces/virology , Feces/microbiology , Diarrhea/virology , Diarrhea/microbiology , Enteritis/virology , Enteritis/microbiology , Infant, Newborn , Intestines/virology , Intestines/microbiology , Animals
4.
Sci Rep ; 14(1): 16215, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003416

ABSTRACT

The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.


Subject(s)
Aging , Brain-Gut Axis , Cognitive Dysfunction , Gastrointestinal Microbiome , Malus , Polysaccharides , Animals , Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Malus/chemistry , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Aging/drug effects , Brain-Gut Axis/drug effects , Male , Oxidative Stress/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Maze Learning/drug effects , Mice, Inbred C57BL , Intestines/drug effects , Intestines/microbiology , Brain/metabolism , Brain/drug effects
5.
Nat Commun ; 15(1): 5778, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987259

ABSTRACT

Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Inflammatory Bowel Diseases , Mice, Inbred C57BL , Gastrointestinal Microbiome/physiology , Animals , Humans , Mice , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/metabolism , Colitis/microbiology , Colitis/metabolism , Colitis/chemically induced , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice, Knockout , Ribonucleases/metabolism , Male , Feces/microbiology , Female , Intestines/microbiology , Antimicrobial Peptides/metabolism
6.
Trop Anim Health Prod ; 56(6): 205, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001933

ABSTRACT

This study aimed to establish an accurate epidemiological surveillance tool for the detection of different C. perfringens types from 76 diseased and 34 healthy animals in Dakhalia Governorate, Egypt. A total of 110 intestinal content samples were randomly collected from camels, sheep, and cattle. C. perfringens was isolated and biochemically identified by the VITEK2 system. Toxinotyping and genotyping of C. perfringens isolates were specified by a multiscreen ELISA and real-time qPCR (rt-qPCR). The occurrence of C. perfringens was highest among camels (20% in healthy and 25% in diseased) and was lowest in cattle (23.1% and 14.7%). The cpa toxin was detected in all isolates by rt-qPCR and in 7 isolates by ELISA, ext toxin was detected in 7 isolates by rt-qPCR and in 6 isolates by ELISA, and cpb toxin was detected in 2 isolates by both rt-qPCR and ELISA. Four types of C. perfringens were identified by rt-qPCR, type A (65.2%), B (4.3%), C (4.3%), and D (26.1%), and three types by ELISA, type D (17.4%), A (8.7%) and C (4.3%). Our study indicated the prevalence of infection in Dakahlia by C. perfringens type A and D, particularly camels, and recommends adopting an appropriate vaccination strategy among the studied animals.


Subject(s)
Bacterial Toxins , Camelus , Cattle Diseases , Clostridium Infections , Clostridium perfringens , Enzyme-Linked Immunosorbent Assay , Sheep Diseases , Animals , Egypt/epidemiology , Clostridium perfringens/isolation & purification , Cattle , Cross-Sectional Studies , Clostridium Infections/veterinary , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Enzyme-Linked Immunosorbent Assay/veterinary , Sheep , Cattle Diseases/microbiology , Cattle Diseases/epidemiology , Cattle Diseases/diagnosis , Bacterial Toxins/analysis , Sheep Diseases/microbiology , Sheep Diseases/epidemiology , Sheep Diseases/diagnosis , Real-Time Polymerase Chain Reaction/veterinary , Prevalence , Intestines/microbiology , Genotype
7.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931207

ABSTRACT

BACKGROUND: Chronic kidney disease increases uremic toxins concentrations, which have been associated with intestinal dysbiosis. Sorghum bicolor L. Moench has dietary fiber and bioactive compounds, while Bifidobacterium longum can promote beneficial health effects. METHODS: It is a controlled, randomized, and single-blind clinical trial. Thirty-nine subjects were randomly separated into two groups: symbiotic group (SG), which received 100 mL of unfermented probiotic milk with Bifidobacterium longum strain and 40 g of extruded sorghum flakes; and the control group (CG), which received 100 mL of pasteurized milk and 40 g of extruded corn flakes for seven weeks. RESULTS: The uremic toxins decreased, and gastrointestinal symptoms improved intragroup in the SG group. The acetic, propionic, and butyric acid production increased intragroup in the SG group. Regarding α-diversity, the Chao1 index was enhanced in the SG intragroup. The KEGG analysis revealed that symbiotic meal increased the intragroup energy and amino sugar metabolism, in addition to enabling essential amino acid production and metabolism, sucrose degradation, and the biosynthesis of ribonucleotide metabolic pathways. CONCLUSIONS: The consumption of symbiotic meal reduced BMI, improved short-chain fatty acid (SCFA) synthesis and gastrointestinal symptoms, increased diversity according to the Chao1 index, and reduced uremic toxins in chronic kidney disease patients.


Subject(s)
Bifidobacterium longum , Gastrointestinal Microbiome , Probiotics , Renal Insufficiency, Chronic , Sorghum , Humans , Renal Insufficiency, Chronic/therapy , Probiotics/administration & dosage , Male , Female , Gastrointestinal Microbiome/drug effects , Middle Aged , Single-Blind Method , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Biomarkers/blood , Aged , Dysbiosis , Adult , Intestines/microbiology
8.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931211

ABSTRACT

Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.


Subject(s)
Chickens , Gastrointestinal Microbiome , Iron , Pisum sativum , Prebiotics , Animals , Gastrointestinal Microbiome/drug effects , Iron/metabolism , Plant Extracts/pharmacology , Intestines/microbiology , Seeds , Bifidobacterium/metabolism , Cotyledon , Lactobacillus/metabolism , Cation Transport Proteins
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 635-640, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38932552

ABSTRACT

Slow wound healing has been a troublesome problem in clinic. In China, traditional methods such as antibiotics and silver sulfadiazine are used to treat skin wound, but the abuse use has many disadvantages, such as chronic wounds and pathogen resistance. Studies have shown that the microorganisms with symbiotic relationship with organisms have benefits on skin wound. Therefore, the way to develop and utilize probiotics to promote wound healing has become a new research direction. In this paper, we reviewed the studies on the bacteriotherapy in the world, described how the probiotics can play a role in promoting wound healing through local wound and intestine, and introduced some mature probiotics products and clinical trials, aiming to provide foundations for further development of bacteriotherapy and products.


Subject(s)
Probiotics , Wound Healing , Probiotics/therapeutic use , Humans , Skin/microbiology , Intestines/microbiology
10.
Toxins (Basel) ; 16(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38922142

ABSTRACT

Previous studies have shown that feeding mice with food containing mantle tissue from Japanese scallops results in aggravated liver and kidney damage, ultimately resulting in mortality within weeks. The aim of this study is to evaluate the toxicity of scallop mantle in China's coastal areas and explore the impact of scallop mantle toxins (SMT) on intestinal barrier integrity and gut microbiota in mice. The Illumina MiSeq sequencing of V3-V4 hypervariable regions of 16S ribosomal RNA was employed to study the alterations in gut microbiota in the feces of SMT mice. The results showed that intestinal flora abundance and diversity in the SMT group were decreased. Compared with the control group, significant increases were observed in serum indexes related to liver, intestine, inflammation, and kidney functions among SMT-exposed mice. Accompanied by varying degrees of tissue damage observed within these organs, the beneficial bacteria of Muribaculaceae and Marinifilaceae significantly reduced, while the harmful bacteria of Enterobacteriaceae and Helicobacter were significantly increased. Taken together, this article elucidates the inflammation and glucose metabolism disorder caused by scallop mantle toxin in mice from the angle of gut microbiota and metabolism. SMT can destroy the equilibrium of intestinal flora and damage the intestinal mucosal barrier, which leads to glucose metabolism disorder and intestinal dysfunction and may ultimately bring about systemic toxicity.


Subject(s)
Gastrointestinal Microbiome , Intestinal Mucosa , Pectinidae , Animals , Gastrointestinal Microbiome/drug effects , Pectinidae/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Mice , Marine Toxins/toxicity , Male , Bacteria/drug effects , Bacteria/genetics , Intestines/microbiology , Intestines/drug effects , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Intestinal Barrier Function
11.
Front Immunol ; 15: 1368545, 2024.
Article in English | MEDLINE | ID: mdl-38835764

ABSTRACT

There is a rapidly growing interest in how the avian intestine is affected by dietary components and feed additives. The paucity of physiologically relevant models has limited research in this field of poultry gut health and led to an over-reliance on the use of live birds for experiments. The development of complex 3D intestinal organoids or "mini-guts" has created ample opportunities for poultry research in this field. A major advantage of the floating chicken intestinal organoids is the combination of a complex cell system with an easily accessible apical-out orientation grown in a simple culture medium without an extracellular matrix. The objective was to investigate the impact of a commercial proprietary blend of organic acids and essential oils (OA+EO) on the innate immune responses and kinome of chicken intestinal organoids in a Salmonella challenge model. To mimic the in vivo prolonged exposure of the intestine to the product, the intestinal organoids were treated for 2 days with 0.5 or 0.25 mg/mL OA+EO and either uninfected or infected with Salmonella and bacterial load in the organoids was quantified at 3 hours post infection. The bacteria were also treated with OA+EO for 1 day prior to challenge of the organoids to mimic intestinal exposure. The treatment of the organoids with OA+EO resulted in a significant decrease in the bacterial load compared to untreated infected organoids. The expression of 88 innate immune genes was investigated using a high throughput qPCR array, measuring the expression of 88 innate immune genes. Salmonella invasion of the untreated intestinal organoids resulted in a significant increase in the expression of inflammatory cytokine and chemokines as well as genes involved in intracellular signaling. In contrast, when the organoids were treated with OA+EO and challenged with Salmonella, the inflammatory responses were significantly downregulated. The kinome array data suggested decreased phosphorylation elicited by the OA+EO with Salmonella in agreement with the gene expression data sets. This study demonstrates that the in vitro chicken intestinal organoids are a new tool to measure the effect of the feed additives in a bacterial challenge model by measuring innate immune and protein kinases responses.


Subject(s)
Animal Feed , Chickens , Intestines , Organoids , Animals , Intestines/immunology , Intestines/drug effects , Intestines/microbiology , Immunity, Innate , Oils, Volatile/pharmacology , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Poultry Diseases/microbiology , Poultry Diseases/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects
12.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
13.
BMC Microbiol ; 24(1): 202, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851699

ABSTRACT

BACKGROUND: Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS: We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA ß-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS: Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.


Subject(s)
Anti-Bacterial Agents , Bacteroides Infections , Bacteroides , Carbapenems , Humans , Europe , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Bacteroides Infections/microbiology , Bacteroides/genetics , Bacteroides/drug effects , Bacteroides/isolation & purification , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Microbial Sensitivity Tests , Genes, Bacterial/genetics , Intestines/microbiology , Bacterial Proteins/genetics
14.
Curr Microbiol ; 81(8): 243, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935166

ABSTRACT

Clostridium perfringens is one of the critical causative agents causing diarrhea in piglets, with significant economic losses to the pig industry. Under normal gut microbiota homeostasis and well-managed barns, diarrhea caused by C. perfringens could be controlled. Some reports show that probiotics, such as Bacillus subtilis, are beneficial in preventing necrotic enteritis (NE) in chickens, but few reports on piglets. Clostridium perfringens was found in the piglets' diarrhea with intestinal microbiota dysbiosis in our survey. Bacillus subtilis G2B9-Q, which was isolated from the feces of healthy pigs, was found to have anti-Clostridium activity after screening. Clostridium perfringens was used to challenge mice by intraperitoneal injection for modeling to evaluate the anti-infective activity of cell-free supernatant (CFS) of B. subtilis G2B9-Q and different concentrations of B. subtilis G2B9-Q by oral administration. The results showed that G2B9-Q can mitigate intestinal lesions caused by C. perfringens infection, reduce inflammatory reactions, and modulate intestinal microbiota. The CFS of G2B9-Q can alleviate the pathological damage of intestinal tissues caused by C. perfringens infection, reduce the concentration of TNF-α and IL-10 in the sera of mice, as well as the relative expression levels of alpha toxin (CPA), perfringolysin O (PFO) toxin, IL-10, IL-22, and TNF-α in the jejunum and colon tissues, and alleviate the changes in gut microbiota structure caused by C. perfringens infection, which showed better therapeutic effects and indicated that the metabolites of G2B9-Q are essential mediators for their beneficial effects. Therefore, the CFS of G2B9-Q could potentially replace antibiotics in treating C. perfringens infection.


Subject(s)
Bacillus subtilis , Clostridium Infections , Clostridium perfringens , Gastrointestinal Microbiome , Probiotics , Animals , Clostridium Infections/immunology , Clostridium Infections/microbiology , Bacillus subtilis/genetics , Clostridium perfringens/immunology , Mice , Probiotics/administration & dosage , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Intestines/immunology , Swine , Diarrhea/microbiology , Diarrhea/immunology , Feces/microbiology , Disease Models, Animal
15.
Nutrients ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38892496

ABSTRACT

The imbalance of gut microbiota is an important factor leading to inflammatory bowel disease (IBD). Diffusible signal factor (DSF) is a novel quorum-sensing signal that regulates bacterial growth, metabolism, pathogenicity, and host immune response. This study aimed to explore the therapeutic effect and underlying mechanisms of DSF in a zebrafish colitis model induced by sodium dextran sulfate (DSS). The results showed that intake of DSF can significantly improve intestinal symptoms in the zebrafish colitis model, including ameliorating the shortening of the intestine, reducing the increase in the goblet cell number, and restoring intestinal pathological damage. DSF inhibited the upregulation of inflammation-related genes and promoted the expression of claudin1 and occludin1 to protect the tightness of intestinal tissue. The gut microbiome analysis demonstrated that DSF treatment helped the gut microbiota of the zebrafish colitis model recover to normal at the phylum and genus levels, especially in terms of pathogenic bacteria; DSF treatment downregulated the relative abundance of Aeromonas hydrophila and Staphylococcus aureus, and it was confirmed in microbiological experiments that DSF could effectively inhibit the colonization and infection of these two pathogens in the intestine. This study suggests that DSF can alleviate colitis by inhibiting the proliferation of intestinal pathogens and inflammatory responses in the intestine. Therefore, DSF has the potential to become a dietary supplement that assists in the antibiotic and nutritional treatment of IBD.


Subject(s)
Colitis , Dextran Sulfate , Disease Models, Animal , Gastrointestinal Microbiome , Quorum Sensing , Zebrafish , Animals , Gastrointestinal Microbiome/drug effects , Colitis/chemically induced , Colitis/microbiology , Colitis/drug therapy , Quorum Sensing/drug effects , Intestines/microbiology , Aeromonas hydrophila , Inflammation , Staphylococcus aureus/drug effects
16.
Food Funct ; 15(12): 6759-6767, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842261

ABSTRACT

The safety of the carrageenan (CGN) consumption as a food additive is under debate, with negative effects being associated with the products of hydrolysis of CGN. Moreover, there is an increasing need to integrate gut microbiome analysis in the scientific risk assessment of food additives. The objective of this study was to test the effects of CGN consumption on the gut microbiota and the intestinal homeostasis of young male and female mice. Female and male ICR-CD1 mice (8 weeks old) orally received 540 mg kg-1 day-1 of CGN, representing the maximum-level exposure assessment scenario surveyed for children, over the course of two weeks. Fecal material and peritoneal immune cells were analyzed to determine changes in the fecal microbiota, based on the analysis of bacterial 16S rRNA gene amplicon sequences and short-chain fatty acid (SCFA) concentrations, and some immune functions and redox parameters of peritoneal leukocytes. Non-significant microbiota taxonomical changes associated with CGN intake were found in the mouse stools, resulting the housing time in an increase in bacterial groups belonging to the Bacteroidota phylum. The PICRUSt2 functional predictions showed an overall increase in functional clusters of orthologous genes (COGs) involved in carbohydrate transport and metabolism. A significant increase in the cytotoxicity of fecal supernatants was observed in CGN-fed mice, which correlated with worsening of immune functions and oxidative parameters. The altered immunity and oxidative stress observed in young mice after the consumption of CGN, along with the fecal cytotoxicity shown towards intestinal epithelial cells, may be associated with the gut microbiota's capacity to degrade CGN. The characterization of the gut microbiota's ability to hydrolyze CGN should be included in the risk assessment of this food additive.


Subject(s)
Bacteria , Carrageenan , Feces , Food Additives , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred ICR , Animals , Gastrointestinal Microbiome/drug effects , Mice , Male , Female , Food Additives/metabolism , Feces/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Intestines/microbiology , Intestines/drug effects , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile/metabolism
17.
Sci Total Environ ; 943: 173795, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38851338

ABSTRACT

Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. Nitrate (NO3-) is a widespread pollutant in aquatic ecosystems, which can cause rapid changes in microbial community structure and function. However, the effect of gut microbiota reshaped by nitrate­nitrogen (NO3-N) on BAs profiles remains unclarified. To test this, intestinal targeted BAs metabolomics and fecal metagenomic sequencing were performed on Bufo gargarizans tadpoles treated with different concentrations of NO3-N. NO3-N exposure induced a reduction in the abundance of microbiota with bile acid-inducible enzymes (BAIs) and/or hydroxysteroid dehydrogenases (HSDHs), thus inhibiting the conversion of primary BAs to secondary BAs. Inhibition of BAs biotransformation decreased protective hydrophilic BAs (UDCA) and increased toxic hydrophobic BAs (CA and CDCA), which may contribute to intestinal histopathological damage. Moreover, we found that NO3-N treatment increased microbial virulence factors and decreased Glycoside hydrolases, further highlighting the deleterious risk of NO3-N. Overall, this study shed light on the complex interactions of NO3-N, gut microbiota, and BAs, and emphasized the hazardous effects of NO3-N pollution on the health of amphibians.


Subject(s)
Bile Acids and Salts , Bufonidae , Gastrointestinal Microbiome , Larva , Nitrates , Water Pollutants, Chemical , Animals , Gastrointestinal Microbiome/drug effects , Larva/drug effects , Nitrates/toxicity , Water Pollutants, Chemical/toxicity , Bile Acids and Salts/metabolism , Intestines/drug effects , Intestines/microbiology
18.
J Hazard Mater ; 475: 134925, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889458

ABSTRACT

The polychaete Perinereis aibuhitensis is used for bioremediation; however, its ability to remove fluorene, a common environmental pollutant, from sediments remains unclear, especially at low concentrations of fluorene (10 mg/kg). In this study, we explored the mechanism of intestinal injury induced by low concentrations of fluorene and the reason intestinal injury is alleviated in high fluorene concentration groups (100 and 1000 mg/kg) using histology, ecological biomarkers, gut microbiome, and metabolic response analyses. The results show that P. aibuhitensis showed high tolerance to fluorene in sediments, with clearance rates ranging 25-50 %. However, the remediation effect at low fluorene concentrations (10 mg/kg) was poor. This is attributed to promoting the growth of harmful microorganisms such as Microvirga, which can cause metabolic disorders, intestinal flora imbalances, and the generation of harmful substances such as 2-hydroxyfluorene. These can result in severe intestinal injury in P. aibuhitensis, reducing its fluorene clearance rate. However, high fluorene concentrations (100 and 1000 mg/kg) may promote the growth of beneficial microorganisms such as Faecalibacterium, which can replace the dominant harmful microorganisms and improve metabolism to reverse the intestinal injury caused by low fluorene concentrations, ultimately restoring the fluorene-removal ability of P. aibuhitensis. This study demonstrates an effective method for evaluating the potential ecological risks of fluorene pollution in marine sediments and provides guidance for using P. aibuhitensis for remediation.


Subject(s)
Fluorenes , Gastrointestinal Microbiome , Intestines , Metabolomics , Polychaeta , Water Pollutants, Chemical , Animals , Fluorenes/toxicity , Fluorenes/metabolism , Polychaeta/drug effects , Polychaeta/metabolism , Polychaeta/microbiology , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Intestines/microbiology , Intestines/drug effects , Gastrointestinal Microbiome/drug effects , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Biodegradation, Environmental
19.
Nat Commun ; 15(1): 5498, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944647

ABSTRACT

IncX3 plasmids carrying the New Delhi metallo-ß-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary ß-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.


Subject(s)
Anti-Bacterial Agents , Chickens , Conjugation, Genetic , Escherichia coli , Plasmids , beta-Lactamases , Animals , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism , Chickens/microbiology , Humans , Escherichia coli/genetics , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Amoxicillin/pharmacology , Promoter Regions, Genetic/genetics , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Gene Expression Regulation, Bacterial/drug effects , Intestines/microbiology
20.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928401

ABSTRACT

Light pollution is a potential risk for intestinal health in humans and animals. The gut microbiota is associated with the development of intestinal inflammation induced by extended exposure to light, but the underlying mechanism is not yet clear. The results of this study showed that extended exposure to light (18L:6D) damaged intestinal morphology, downregulated the expression of tight junction proteins, and upregulated the expression of the NLRP3 inflammasome and the concentration of pro-inflammatory cytokines. In addition, extended exposure to light significantly decreased the abundance of Lactobacillus, Butyricicoccus, and Sellimonas and increased the abundance of Bifidobacterium, unclassified Oscillospirales, Family_XIII_UCG-001, norank_f__norank_o__Clostridia_vadinBB60_group, and Defluviitaleaceae_UCG-01. Spearman correlation analysis indicated that gut microbiota dysbiosis positively correlated with the activation of the NLRP3 inflammasome. The above results indicated that extended exposure to light induced intestinal injury by NLRP3 inflammasome activation and gut microbiota dysbiosis. Antibiotic depletion intestinal microbiota treatment and cecal microbiota transplantation (CMT) from the 12L:12D group to 18L:6D group indicated that the gut microbiota alleviated intestinal inflammatory injury induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome. In conclusion, our findings indicated that the gut microbiota can alleviate intestinal inflammation induced by extended exposure to light via inhibiting the activation of the NLRP3 inflammasome.


Subject(s)
Chickens , Gastrointestinal Microbiome , Inflammasomes , Light , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Chickens/microbiology , Light/adverse effects , Dysbiosis/microbiology , Intestines/microbiology , Intestines/pathology , Cytokines/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...