Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38.399
Filter
1.
Theranostics ; 14(12): 4730-4746, 2024.
Article in English | MEDLINE | ID: mdl-39239523

ABSTRACT

Rationale: Mechanical force plays crucial roles in extracellular vesicle biogenesis, release, composition and activity. However, it is unknown whether mechanical force regulates apoptotic vesicle (apoV) production. Methods: The effects of mechanical unloading on extracellular vesicles of bone marrow were evaluated through morphology, size distribution, yield, and protein mass spectrometry analysis using hindlimb unloading (HU) mouse model. Apoptosis resistance and aging related phenotype were assessed using HU mouse model in vivo and cell microgravity model in vitro. The therapeutic effects of apoVs on HU mouse model were assessed by using microcomputed tomography, histochemical and immunohistochemical, as well as histomorphometry analyses. SiRNA and chemicals were used for gain and loss-of-function assay. Results: In this study, we show that loss of mechanical force led to cellular apoptotic resistance and aging related phenotype, thus reducing the number of apoVs in the circulation due to down-regulated expression of Piezo1 and reduced calcium influx. And systemic infusion of apoVs was able to rescue Piezo1 expression and calcium influx, thereby, rescuing mechanical unloading-induced cellular apoptotic resistance, senescent cell accumulation. Conclusions: This study identified a previously unknown role of mechanical force in maintaining apoptotic homeostasis and eliminating senescent cells. Systemic infusion of mesenchymal stem cell-derived apoVs can effectively rescue apoptotic resistance and eliminate senescent cells in mechanical unloading mice.


Subject(s)
Apoptosis , Cellular Senescence , Extracellular Vesicles , Animals , Mice , Apoptosis/drug effects , Extracellular Vesicles/metabolism , Cellular Senescence/drug effects , Senotherapeutics/pharmacology , Ion Channels/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mice, Inbred C57BL , Hindlimb Suspension , Calcium/metabolism , Male , Stress, Mechanical
2.
Sci Rep ; 14(1): 20387, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223222

ABSTRACT

Classical swine fever virus (CSFV) p7 viroporin plays crucial roles in cellular ion balance and permeabilization. The antiviral drug amantadine effectively inhibits viral replication by blocking the activity of CSFV p7 viroporin. However, little information is available for the binding mode of amantadine with CSFV p7 viroporin, due to the lack of a known polymer structure for CSFV p7. In this study, we employed AlphaFold2 to predict CSFV p7 structures. Subsequently, we conducted a docking study to investigate the binding sites of amantadine to CSFV p7. Computational analysis showed that CSFV p7 forms a pore channel in a hexameric structure. Furthermore, molecular dynamics (MD) simulations and mutant analyses further suggest that CSFV p7 likely exists as a hexamer. Docking studies and MD simulations showed that amantadine interacts with the hydrophibic regions of tetramer and pentamer, as well as with the hydrophobic pore channel of the hexamer. Considering the potential hexameric assembly of CSFV p7, along with docking results, MD simulations, and the characteristics of the gated ion channels, we propose a model of CSFV p7 ion channel based on its hexameric configuration. In this model, residues E21, Y25, and R34 are suggested to selectively recruit and dehydrate ions, while residues L28 and L31 likely act as hydrophobic constrictors, thereby restricting the free movement of water. The binding of amantadine to residues I20, E21, V24 and Y25 effectively blocks ion transport. However, this proposed molecular model requires experimental validation. Our findings give a structural insight into the models of CSFV p7 as an ion channel and provide a molecular explanation for the inhibition effects of amantadine on CSFV p7-mediated ion channel conductance.


Subject(s)
Amantadine , Antiviral Agents , Classical Swine Fever Virus , Ion Channels , Molecular Docking Simulation , Molecular Dynamics Simulation , Viral Proteins , Amantadine/pharmacology , Classical Swine Fever Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Ion Channels/metabolism , Ion Channels/chemistry , Ion Channels/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/chemistry , Animals , Swine , Binding Sites , Protein Binding
3.
Handb Clin Neurol ; 203: 1-23, 2024.
Article in English | MEDLINE | ID: mdl-39174242

ABSTRACT

Ion channels are membrane proteins that allow the passage of ions across the membrane. They characteristically contain a pore where the selectivity of certain ion species is determined and gates that open and close the pore are found. The pore is often connected to additional domains or subunits that regulate its function. Channels are grouped into families based on their selectivity for specific ions and the stimuli that control channel opening and closing, such as voltage or ligands. Ion channels are fundamental to the electrical properties of excitable tissues. Dysfunction of channels can lead to abnormal electrical signaling of neurons and muscle cells, accompanied by clinical manifestations, known as channelopathies. Many naturally occurring toxins target ion channels and affect excitable cells where the channels are expressed. Furthermore, ion channels, as membrane proteins and key regulators of a number of physiologic functions, are an important target for drugs in clinical use. In this chapter, we give a general overview of the classification, genetics and structure-function features of the main ion channel families, and address some pharmacologic aspects relevant to neurologic channelopathies.


Subject(s)
Channelopathies , Ion Channels , Humans , Channelopathies/metabolism , Channelopathies/genetics , Ion Channels/metabolism , Animals , Structure-Activity Relationship
4.
Handb Clin Neurol ; 203: 39-58, 2024.
Article in English | MEDLINE | ID: mdl-39174253

ABSTRACT

Periodic paralysis is a rare, dominantly inherited disorder of skeletal muscle in which episodic attacks of weakness are caused by a transient impairment of fiber excitability. Attacks of weakness are often elicited by characteristic environmental triggers, which were the basis for clinically delineating subtypes of periodic paralysis and are an important distinction for optimal disease management. All forms of familial periodic paralysis are caused by mutations of ion channels, often selectively expressed in skeletal muscle, that destabilize the resting potential. The missense mutations usually alter channel function through gain-of-function changes rather than producing a complete loss-of-function null. The knowledge of which channel gene harbors a variant, whether that variant is expected to (or known to) alter function, and how altered function impairs fiber excitability aides in the interpretation of patient signs and symptoms, the interpretation of gene test results, and how to optimize therapeutic intervention for symptom management and improve quality of life.


Subject(s)
Paralyses, Familial Periodic , Humans , Paralyses, Familial Periodic/genetics , Paralyses, Familial Periodic/diagnosis , Paralyses, Familial Periodic/therapy , Mutation/genetics , Ion Channels/genetics , Muscle, Skeletal/physiopathology
5.
J Exp Med ; 221(10)2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39167075

ABSTRACT

Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-15 , Ion Channels , Radiation Tolerance , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Ion Channels/metabolism , Ion Channels/genetics , Radiation Tolerance/genetics , Mice , Interleukin-15/metabolism , Interleukin-15/genetics , Cell Line, Tumor , Janus Kinase 2/metabolism , Janus Kinase 2/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Mice, Inbred C57BL , Female , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Male , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Signal Transduction
6.
Cell Mol Life Sci ; 81(1): 331, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107572

ABSTRACT

The rising incidences of atherosclerosis have necessitated efforts to identify novel targets for therapeutic interventions. In the present study, we observed increased expression of the mechanosensitive calcium channel Piezo1 transcript in mouse and human atherosclerotic plaques, correlating with infiltration of PIEZO1-expressing macrophages. In vitro administration of Yoda1, a specific agonist for PIEZO1, led to increased foam cell apoptosis and enhanced phagocytosis by macrophages. Mechanistically, PIEZO1 activation resulted in intracellular F-actin rearrangement, elevated mitochondrial ROS levels and induction of mitochondrial fragmentation upon PIEZO1 activation, as well as increased expression of anti-inflammatory genes. In vivo, ApoE-/- mice treated with Yoda1 exhibited regression of atherosclerosis, enhanced stability of advanced lesions, reduced plaque size and necrotic core, increased collagen content, and reduced expression levels of inflammatory markers. Our findings propose PIEZO1 as a novel and potential therapeutic target in atherosclerosis.


Subject(s)
Apoptosis , Atherosclerosis , Foam Cells , Ion Channels , Macrophages , Phagocytosis , Animals , Ion Channels/metabolism , Ion Channels/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Mice , Foam Cells/metabolism , Foam Cells/pathology , Humans , Macrophages/metabolism , Mice, Inbred C57BL , Thiophenes/pharmacology , Male , Reactive Oxygen Species/metabolism , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Mitochondria/metabolism , Pyrazines , Thiadiazoles
7.
J Am Chem Soc ; 146(33): 23230-23239, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39116214

ABSTRACT

TMEM175 is a lysosomal potassium and proton channel that is associated with the development of Parkinson's disease. Advances in understanding the physiological roles of TMEM175 have been hampered by the absence of selective inhibitors, and studies involving genetic perturbations have yielded conflicting results. Here, we report the discovery and characterization of the first reported TMEM175-selective inhibitors, 2-phenylpyridin-4-ylamine (2-PPA), and AP-6. Cryo-EM structures of human TMEM175 bound by 2-PPA and AP-6 reveal that they act as pore blockers, binding at distinct sites in the pore and occluding the ion permeation pathway. Acute inhibition of TMEM175 by 2-PPA or AP-6 increases the level of lysosomal macromolecule catabolism, thereby accelerating macropinocytosis and other digestive processes. These inhibitors may serve as valuable tools to study the roles of TMEM175 in regulating lysosomal function and provide useful templates for future therapeutic development in Parkinson's disease.


Subject(s)
Lysosomes , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Lysosomes/metabolism , Drug Discovery , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Ion Channels/chemistry , Pyridines/chemistry , Pyridines/pharmacology , Models, Molecular , Cryoelectron Microscopy , Potassium Channels
8.
Nat Commun ; 15(1): 7023, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174529

ABSTRACT

Neutrophil infiltration and subsequent extracellular trap formation (NETosis) is a contributing factor in sterile inflammation. Furthermore, neutrophil extracellular traps (NETs) are prothrombotic, as they provide a scaffold for platelets and red blood cells to attach to. In circulation, neutrophils are constantly exposed to hemodynamic forces such as shear stress, which in turn regulates many of their biological functions such as crawling and NETosis. However, the mechanisms that mediate mechanotransduction in neutrophils are not fully understood. In this study, we demonstrate that shear stress induces NETosis, dependent on the shear stress level, and increases the sensitivity of neutrophils to NETosis-inducing agents such as adenosine triphosphate and lipopolysaccharides. Furthermore, shear stress increases intracellular calcium levels in neutrophils and this process is mediated by the mechanosensitive ion channel Piezo1. Activation of Piezo1 in response to shear stress mediates calpain activity and cytoskeleton remodeling, which consequently induces NETosis. Thus, activation of Piezo1 in response to shear stress leads to a stepwise sequence of cellular events that mediates NETosis and thereby places neutrophils at the centre of localized inflammation and prothrombotic effects.


Subject(s)
Calcium , Extracellular Traps , Ion Channels , Mechanotransduction, Cellular , Neutrophils , Stress, Mechanical , Neutrophils/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Humans , Extracellular Traps/metabolism , Calcium/metabolism , Adenosine Triphosphate/metabolism , Calpain/metabolism , Lipopolysaccharides/pharmacology , Cytoskeleton/metabolism , Neutrophil Infiltration , Inflammation/metabolism
9.
BMC Neurosci ; 25(1): 37, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174899

ABSTRACT

BACKGROUND: Adipose and muscle tissue wasting outlines the cachectic process during tumor progression. The sympathetic nervous system (SNS) is known to promote tumor progression and research suggests that it might also contribute to cancer-associated cachexia (CAC) energetic expenditure through fat wasting. METHODS: We sympathectomized L5178Y-R tumor-bearing male BALB/c mice by intraperitoneally administering 6-hydroxydopamine to evaluate morphometric, inflammatory, and molecular indicators of CAC and tumor progression. RESULTS: Tumor burden was associated with cachexia indicators, including a 10.5% body mass index (BMI) decrease, 40.19% interscapular, 54% inguinal, and 37.17% visceral adipose tissue loss, a 12% food intake decrease, and significant (p = 0.038 and p = 0.0037) increases in the plasmatic inflammatory cytokines IL-6 and IFN-γ respectively. Sympathectomy of tumor-bearing mice was associated with attenuated BMI and visceral adipose tissue loss, decreased interscapular Ucp-1 gene expression to basal levels, and 2.6-fold reduction in Mmp-9 relative gene expression, as compared with the unsympathectomized mice control group. CONCLUSION: The SNS contributes to CAC-associated morphometric and adipose tissue alterations and promotes tumor progression in a murine model.


Subject(s)
Cachexia , Disease Progression , Mice, Inbred BALB C , Sympathetic Nervous System , Animals , Cachexia/metabolism , Cachexia/pathology , Cachexia/etiology , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology , Male , Mice , Uncoupling Protein 1/metabolism , Cell Line, Tumor , Ion Channels/metabolism , Matrix Metalloproteinase 9/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidopamine , Sympathectomy, Chemical , Interleukin-6/metabolism , Body Mass Index , Neoplasms/complications , Neoplasms/pathology , Neoplasms/metabolism
10.
ACS Nano ; 18(34): 22709-22733, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39136685

ABSTRACT

Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.


Subject(s)
Ion Channels , Nanotechnology , Ion Channels/metabolism , Humans , Animals , Cell Membrane/metabolism , Cell Membrane/chemistry , Ion Channel Gating/drug effects
11.
Sci Adv ; 10(32): eadn0367, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121219

ABSTRACT

The development of noninvasive approaches to precisely control neural activity in mammals is highly desirable. Here, we used the ion channel transient receptor potential ankyrin-repeat 1 (TRPA1) as a proof of principle, demonstrating remote near-infrared (NIR) activation of endogenous neuronal channels in mice through an engineered nanoagonist. This achievement enables specific neurostimulation in nongenetically modified mice. Initially, target-based screening identified flavins as photopharmacological agonists, allowing for the photoactivation of TRPA1 in sensory neurons upon ultraviolet A/blue light illumination. Subsequently, upconversion nanoparticles (UCNPs) were customized with an emission spectrum aligned to flavin absorption and conjugated with flavin adenine dinucleotide, creating a nanoagonist capable of NIR activation of TRPA1. Following the intrathecal injection of the nanoagonist, noninvasive NIR stimulation allows precise bidirectional control of nociception in mice through remote activation of spinal TRPA1. This study demonstrates a noninvasive NIR neurostimulation method with the potential for adaptation to various endogenous ion channels and neural processes by combining photochemical toolboxes with customized UCNPs.


Subject(s)
Infrared Rays , Nanoparticles , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/agonists , Mice , Nanoparticles/chemistry , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Sensory Receptor Cells/drug effects , Ion Channels/metabolism , Nociception/drug effects
12.
Nat Commun ; 15(1): 7566, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217145

ABSTRACT

Cells establish the asymmetrical distribution of phospholipids and alter their distribution by phospholipid scrambling (PLS) to adapt to environmental changes. Here, we demonstrate that a protein complex, consisting of the ion channel Tmem63b and the thiamine transporter Slc19a2, induces PLS upon calcium (Ca2+) stimulation. Through revival screening using a CRISPR sgRNA library on high PLS cells, we identify Tmem63b as a PLS-inducing factor. Ca2+ stimulation-mediated PLS is suppressed by deletion of Tmem63b, while human disease-related Tmem63b mutants induce constitutive PLS. To search for a molecular link between Ca2+ stimulation and PLS, we perform revival screening on Tmem63b-overexpressing cells, and identify Slc19a2 and the Ca2+-activated K+ channel Kcnn4 as PLS-regulating factors. Deletion of either of these genes decreases PLS activity. Biochemical screening indicates that Tmem63b and Slc19a2 form a heterodimer. These results demonstrate that a Tmem63b/Slc19a2 heterodimer induces PLS upon Ca2+ stimulation, along with Kcnn4 activation.


Subject(s)
Calcium , Phospholipid Transfer Proteins , Phospholipids , Humans , Calcium/metabolism , Phospholipid Transfer Proteins/metabolism , Phospholipid Transfer Proteins/genetics , Phospholipids/metabolism , HEK293 Cells , Ion Channels/metabolism , Ion Channels/genetics , Animals , CRISPR-Cas Systems
13.
Nat Commun ; 15(1): 7020, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147733

ABSTRACT

Mechanosensitive PIEZO2 ion channels play roles in touch, proprioception, and inflammatory pain. Currently, there are no small molecule inhibitors that selectively inhibit PIEZO2 over PIEZO1. The TMEM120A protein was shown to inhibit PIEZO2 while leaving PIEZO1 unaffected. Here we find that TMEM120A expression elevates cellular levels of phosphatidic acid and lysophosphatidic acid (LPA), aligning with its structural resemblance to lipid-modifying enzymes. Intracellular application of phosphatidic acid or LPA inhibits PIEZO2 but not PIEZO1 activity. Extended extracellular exposure to the non-hydrolyzable phosphatidic acid and LPA analog carbocyclic phosphatidic acid (ccPA) also inhibits PIEZO2. Optogenetic activation of phospholipase D (PLD), a signaling enzyme that generates phosphatidic acid, inhibits PIEZO2 but not PIEZO1. Conversely, inhibiting PLD leads to increased PIEZO2 activity and increased mechanical sensitivity in mice in behavioral experiments. These findings unveil lipid regulators that selectively target PIEZO2 over PIEZO1, and identify the PLD pathway as a regulator of PIEZO2 activity.


Subject(s)
Ion Channels , Lysophospholipids , Phosphatidic Acids , Ion Channels/metabolism , Ion Channels/genetics , Animals , Phosphatidic Acids/metabolism , Humans , Mice , Lysophospholipids/metabolism , HEK293 Cells , Phospholipase D/metabolism , Phospholipase D/genetics , Mechanotransduction, Cellular , Mice, Inbred C57BL , Male , Optogenetics
14.
Cells ; 13(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39195253

ABSTRACT

Density reversal of senescent red blood cells has been known for a long time, yet the identity of the candidate ion transporter(s) causing the senescent cells to swell is still elusive. While performing fractionation of RBCs from healthy individuals in Percoll density gradient and characterization of the separated fractions, we identified a subpopulation of cells in low-density fraction (1.02% ± 0.47) showing signs of senescence such as loss of membrane surface area associated with a reduction in band 3 protein abundance, and Phosphatidylserine (PS) exposure to the outer membrane. In addition, we found that these cells are overloaded with Na+ and Ca2+. Using a combination of blockers and activators of ion pumps and channels, we revealed reduced activity of Plasma membrane Ca2+ ATPase and an increase in Ca2+ and Na+ leaks through ion channels in senescent-like cells. Our data revealed that Ca2+ overload in these cells is a result of reduced PMCA activity and facilitated Ca2+ uptake via a hyperactive Piezo1 channel. However, we could not exclude the contribution of other Ca2+-permeable ion channels in this scenario. In addition, we found, as a universal mechanism, that an increase in intracellular Ca2+ reduced the initially high selectivity of Piezo1 channel for Ca2+ and allowed higher Na+ uptake, Na+ accumulation, and swelling.


Subject(s)
Calcium , Erythrocytes , Ion Channels , Humans , Erythrocytes/metabolism , Ion Channels/metabolism , Calcium/metabolism , Cellular Senescence , Sodium/metabolism , Plasma Membrane Calcium-Transporting ATPases/metabolism
15.
Channels (Austin) ; 18(1): 2393088, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39169878

ABSTRACT

Mechanosensitive ion channel Piezo1 is known to mediate a variety of inflammatory pathways and is also involved in the occurrence and development of many orthopedic diseases. Although its role in the inflammatory mechanism of knee osteoarthritis (KOA) has been reported, a systematic explanation is yet to be seen. This article aims to summarize the role of inflammatory responses in the pathogenesis of KOA and elucidate the mechanism by which the Piezo1-mediated inflammatory response contributes to the pathogenesis of KOA, providing a theoretical basis for the prevention and treatment of knee osteoarthritis. The results indicate that in the mechanism leading to knee osteoarthritis, Piezo1 can mediate the inflammatory response through chondrocytes and synovial cells, participating in the pathological progression of KOA. Piezo1 has the potential to become a new target for the prevention and treatment of this disease. Additionally, as pain is one of the most severe manifestations in KOA patients, the inflammatory response mediated by Piezo1, which causes the release of inflammatory mediators and pro-inflammatory factors leading to pain, can be further explored.


Subject(s)
Inflammation , Ion Channels , Osteoarthritis, Knee , Ion Channels/metabolism , Humans , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Inflammation/metabolism , Animals , Chondrocytes/metabolism , Mechanotransduction, Cellular
16.
Proc Natl Acad Sci U S A ; 121(36): e2407765121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39207733

ABSTRACT

Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.


Subject(s)
Calcium , Cytosol , Erythrocytes , Ion Channels , Ion Channels/metabolism , Humans , Erythrocytes/metabolism , Calcium/metabolism , Cytosol/metabolism , Hemolysis
17.
Nat Commun ; 15(1): 7504, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209849

ABSTRACT

OSCA/TMEM63 channels, which have transporter-like architectures, are bona fide mechanosensitive (MS) ion channels that sense high-threshold mechanical forces in eukaryotic cells. The activation mechanism of these transporter-like channels is not fully understood. Here we report cryo-EM structures of a dimeric OSCA/TMEM63 pore mutant OSCA1.1-F516A with a sequentially extracellular dilated pore in a detergent environment. These structures suggest that the extracellular pore sequential dilation resembles a flower blooming and couples to a sequential contraction of each monomer subunit towards the dimer interface and subsequent extrusion of the dimer interface lipids. Interestingly, while OSCA1.1-F516A remains non-conducting in the native lipid environment, it can be directly activated by lyso-phosphatidylcholine (Lyso-PC) with reduced single-channel conductance. Structural analysis of OSCA1.1-F516A in lyso-PC-free and lyso-PC-containing lipid nanodiscs indicates that lyso-PC induces intracellular pore dilation by attracting the M6b to upward movement away from the intracellular side thus extending the intracellular pore. Further functional studies indicate that full activation of MS OSCA/TMEM63 dimeric channels by high-threshold mechanical force also involves the opening of both intercellular and extracellular pores. Our results provide the fundamental activation paradigm of the unique transporter-like MS OSCA/TMEM63 channels, which is likely applicable to functional branches of the TMEM63/TMEM16/TMC superfamilies.


Subject(s)
Cryoelectron Microscopy , Humans , Mechanotransduction, Cellular , HEK293 Cells , Protein Multimerization , Models, Molecular , Mutation , Ion Channels/metabolism , Ion Channels/chemistry , Ion Channels/genetics
18.
Nat Commun ; 15(1): 7250, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179582

ABSTRACT

The otopetrin (OTOP) proteins were recently characterized as extracellular proton-activated proton channels. Several recent OTOP channel structures demonstrated that the channels form a dimer with each subunit adopting a double-barrel architecture. However, the structural mechanisms underlying some basic functional properties of the OTOP channels remain unresolved, including extracellular pH activation, proton conducting pathway, and rapid desensitization. In this study, we performed structural and functional characterization of the Caenorhabditis elegans OTOP8 (CeOTOP8) and mouse OTOP2 (mOTOP2) and illuminated a set of conformational changes related to the proton-conducting process in OTOP. The structures of CeOTOP8 reveal the conformational change at the N-terminal part of TM12 that renders the channel in a transiently proton-transferring state, elucidating an inter-barrel, Glu/His-bridged proton passage within each subunit. The structures of mOTOP2 reveal the conformational change at the N-terminal part of TM6 that exposes the central glutamate to the extracellular solution for protonation. In addition, the structural comparison between CeOTOP8 and mOTOP2, along with the structure-based mutagenesis, demonstrates that an inter-subunit movement at the OTOP channel dimer interface plays a central role in regulating channel activity. Combining the structural information from both channels, we propose a working model describing the multi-step conformational changes during the proton conducting process.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Ion Channels , Protons , Animals , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Mice , Ion Channels/metabolism , Ion Channels/chemistry , Ion Channels/genetics , Models, Molecular , Protein Conformation , Hydrogen-Ion Concentration , Crystallography, X-Ray , Protein Multimerization
19.
Nanoscale ; 16(34): 15984-15994, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39141323

ABSTRACT

The presence of non-essential metals in the environment as contaminants is prone to cause hazardous health problems following accumulation in the human body and the ensuing toxic effects. This calls for continuous discovery and innovation in the realm of developing easy-to-operate, cheap and sensitive sensors. Herein, we describe the proof of concept approach for designing a molecular receptor-like, chimeric sensor based on the pore-forming peptide alamethicin (Alm), tethered via a linker with an ultrashort peptide nucleic acid (PNA) moiety, capable of generating functional ion channel oligomers in planar lipid membranes. The working principle of the sensor exploits the ability of Hg2+ ions to complex mismatching thymine-thymine sequences between the PNA receptor moiety on Alm oligomers and free, thymine-based, single-stranded DNAs (ssDNAs) in solution, thus creating a stable base pair at the oligomer entrance. This generates a transducing mechanism which converts the metal ion complexation into a specific electrical signature of the self-assembled Alm oligomers, enabling selective Hg2+ ion detection. The platform is programmable, whereby the simple exchange of the PNA sequence and its ssDNA counterpart in solution rendered the system selective for Cu2+ ion detection. With further optimization, the presented solution has the potential to translate into miniaturized, cost-effective biosensors suitable for the real-time, label-free and continuous detection of metal ions or other biomolecules.


Subject(s)
Copper , DNA, Single-Stranded , Mercury , Peptide Nucleic Acids , Mercury/analysis , Mercury/chemistry , Peptide Nucleic Acids/chemistry , Copper/chemistry , DNA, Single-Stranded/chemistry , Alamethicin/chemistry , Ion Channels/metabolism , Ion Channels/chemistry , Biosensing Techniques , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Ions/chemistry
20.
Sci Rep ; 14(1): 19822, 2024 08 27.
Article in English | MEDLINE | ID: mdl-39192025

ABSTRACT

Our study probed the differences in ion channel gene expression in the endometrium of women with Recurrent Implantation Failure (RIF) compared to fertile women. We analyzed the relative expression of genes coding for T-type Ca2+, ENaC, CFTR, and KCNQ1 channels in endometrial samples from 20 RIF-affected and 10 control women, aged 22-35, via microarray analysis and quantitative real-time PCR. Additionally, we examined DNA methylation in the regulatory region of KCNQ1 using ChIP real-time PCR. The bioinformatics component of our research included Gene Ontology analysis, protein-protein interaction networks, and signaling pathway mapping to identify key biological processes and pathways implicated in RIF. This led to the discovery of significant alterations in the expression of ion channel genes in RIF women's endometrium, most notably an overexpression of CFTR and reduced expression of SCNN1A, SCNN1B, SCNN1G, CACNA1H, and KCNQ1. A higher DNA methylation level of KCNQ1's regulatory region was also observed in RIF patients. Gene-set enrichment analysis highlighted a significant presence of genes involved with ion transport and membrane potential regulation, particularly in sodium and calcium channel complexes, which are vital for cation movement across cell membranes. Genes were also enriched in broader ion channel and transmembrane transporter complexes, underscoring their potential extensive role in cellular ion homeostasis and signaling. These findings suggest a potential involvement of ion channels in the pathology of implantation failure, offering new insights into the mechanisms behind RIF and possible therapeutic targets.


Subject(s)
DNA Methylation , Embryo Implantation , Endometrium , Humans , Female , Endometrium/metabolism , Adult , Embryo Implantation/genetics , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Gene Expression Regulation , Young Adult , Ion Channels/genetics , Ion Channels/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Gene Expression Profiling , Infertility, Female/genetics , Infertility, Female/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL