Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.718
Filter
1.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951553

ABSTRACT

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Subject(s)
Actins , Calcium , Cytoskeleton , Ion Channels , Mechanotransduction, Cellular , Humans , Ion Channels/metabolism , Actins/metabolism , HEK293 Cells , Cytoskeleton/metabolism , Calcium/metabolism , Calcium Signaling/physiology , Finite Element Analysis , Animals , Microscopy, Fluorescence/methods
2.
FASEB J ; 38(13): e23778, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38959010

ABSTRACT

The mechanosensitive ion channels Transient Receptor Potential Vanilloid 4 (TRPV4) and PIEZO1 transduce physiologic and supraphysiologic magnitudes of mechanical signals in the chondrocyte, respectively. TRPV4 activation promotes chondrogenesis, while PIEZO1 activation by supraphysiologic deformations drives cell death. The mechanisms by which activation of these channels discretely drives changes in gene expression to alter cell behavior remain to be determined. To date, no studies have contrasted the transcriptomic response to activation of these channels nor has any published data attempted to correlate these transcriptomes to alterations in cellular function. This study used RNA sequencing to comprehensively investigate the transcriptomes associated with activation of TRPV4 or PIEZO1, revealing that TRPV4 and PIEZO drive distinct transcriptomes and also exhibit unique co-regulated clusters of genes. Notably, activation of PIEZO1 through supraphysiologic deformation induced a transient inflammatory profile that overlapped with the interleukin (IL)-1-responsive transcriptome and contained genes associated with cartilage degradation and osteoarthritis progression. However, both TRPV4 and PIEZO1 were also shown to elicit anabolic effects. PIEZO1 expression promoted a pro-chondrogenic transcriptome under unloaded conditions, and daily treatment with PIEZO1 agonist Yoda1 significantly increased sulfated glycosaminoglycan deposition in vitro. These findings emphasize the presence of a broad "mechanome" with distinct effects of TRPV4 and PIEZO1 activation in chondrocytes, suggesting complex roles for PIEZO1 in both the physiologic and pathologic responses of chondrocytes. The identification of transcriptomic profiles unique to or shared by PIEZO1 and TRPV4 (distinct from IL-1-induced inflammation) could inform future therapeutic designs targeting these channels for the management and treatment of osteoarthritis.


Subject(s)
Chondrocytes , Ion Channels , TRPV Cation Channels , Transcriptome , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , Chondrocytes/metabolism , Ion Channels/metabolism , Ion Channels/genetics , Animals , Mechanotransduction, Cellular , Mice , Chondrogenesis , Humans
3.
CNS Neurosci Ther ; 30(6): e14809, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923822

ABSTRACT

BACKGROUND: As physical signals, mechanical cues regulate the neural cells in the brain. The mechanosensitive channels (MSCs) perceive the mechanical cues and transduce them by permeating specific ions or molecules across the plasma membrane, and finally trigger a series of intracellular bioelectrical and biochemical signals. Emerging evidence supports that wide-distributed, high-expressed MSCs like Piezo1 play important roles in several neurophysiological processes and neurological disorders. AIMS: To systematically conclude the functions of MSCs in the brain and provide a novel mechanobiological perspective for brain diseases. METHOD: We summarized the mechanical cues and MSCs detected in the brain and the research progress on the functional roles of MSCs in physiological conditions. We then concluded the pathological activation and downstream pathways triggered by MSCs in two categories of brain diseases, neurodegenerative diseases and place-occupying damages. Finally, we outlined the methods for manipulating MSCs and discussed their medical potential with some crucial outstanding issues. RESULTS: The MSCs present underlying common mechanisms in different brain diseases by acting as the "transportation hubs" to transduce the distinct signal patterns: the upstream mechanical cues and the downstream intracellular pathways. Manipulating the MSCs is feasible to alter the complicated downstream processes, providing them promising targets for clinical treatment. CONCLUSIONS: Recent research on MSCs provides a novel insight into brain diseases. The common mechanisms mediated by MSCs inspire a wide range of therapeutic potentials targeted on MSCs in different brain diseases.


Subject(s)
Brain Diseases , Ion Channels , Mechanotransduction, Cellular , Humans , Animals , Ion Channels/metabolism , Ion Channels/physiology , Brain Diseases/metabolism , Brain Diseases/physiopathology , Mechanotransduction, Cellular/physiology , Brain/metabolism
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928429

ABSTRACT

Krause's corpuscles are typical of cutaneous mucous epithelia, like the lip vermillion or the glans clitoridis, and are associated with rapidly adapting low-threshold mechanoreceptors involved in gentle touch or vibration. PIEZO1 and PIEZO2 are transmembrane mechano-gated proteins that form a part of the cationic ion channels required for mechanosensitivity in mammalian cells. They are involved in somatosensitivity, especially in the different qualities of touch, but also in pain and proprioception. In the present study, immunohistochemistry and immunofluorescence were used to analyze the occurrence and cellular location of PIEZO1 and PIEZO2 in human clitoral Krause's corpuscles. Both PIEZO1 and PIEZO2 were detected in Krause's corpuscles in both the axon and the terminal glial cells. The presence of PIEZOs in the terminal glial cells of Kraus's corpuscles is reported here for the first time. Based on the distribution of PIEZO1 and PIEZO2, it may be assumed they could be involved in mechanical stimuli, sexual behavior, and sexual pleasure.


Subject(s)
Axons , Clitoris , Ion Channels , Neuroglia , Humans , Ion Channels/metabolism , Axons/metabolism , Neuroglia/metabolism , Female , Adult , Mechanoreceptors/metabolism , Immunohistochemistry , Middle Aged
5.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928173

ABSTRACT

In different areas of the heart, action potential waveforms differ due to differences in the expressions of sodium, calcium, and potassium channels. One of the characteristics of myocardial infarction (MI) is an imbalance in oxygen supply and demand, leading to ion imbalance. After MI, the regulation and expression levels of K+, Ca2+, and Na+ ion channels in cardiomyocytes are altered, which affects the regularity of cardiac rhythm and leads to myocardial injury. Myocardial fibroblasts are the main effector cells in the process of MI repair. The ion channels of myocardial fibroblasts play an important role in the process of MI. At the same time, a large number of ion channels are expressed in immune cells, which play an important role by regulating the in- and outflow of ions to complete intracellular signal transduction. Ion channels are widely distributed in a variety of cells and are attractive targets for drug development. This article reviews the changes in different ion channels after MI and the therapeutic drugs for these channels. We analyze the complex molecular mechanisms behind myocardial ion channel regulation and the challenges in ion channel drug therapy.


Subject(s)
Ion Channels , Myocardial Infarction , Myocytes, Cardiac , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Humans , Ion Channels/metabolism , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocardium/metabolism , Myocardium/pathology , Signal Transduction , Fibroblasts/metabolism
6.
Cancer Med ; 13(11): e7389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38864475

ABSTRACT

BACKGROUND: Ion channels play an important role in tumorigenesis and progression of cervical cancer. Multiple long non-coding RNA genes are widely involved in ion channel-related signaling regulation. However, the association and potential clinical application of lncRNAs in the prognosis of cervical cancer are still poorly explored. METHODS: Thirteen patients with cervical cancer were enrolled in current study. Whole transcriptome (involving both mRNAs and lncRNAs) sequencing was performed on fresh tumor and adjacent normal tissues that were surgically resected from patients. A comprehensive cervical cancer-specific lncRNA landscape was obtained by our custom pipeline. Then, a prognostic scoring model of ion-channel-related lncRNAs was established by regression algorithms. The performance of the predictive model as well as its association with the clinical characteristics and tumor microenvironment (TME) status were further evaluated. RESULTS: To comprehensively identify cervical cancer-specific lncRNAs, we sequenced 26 samples of cervical cancer patients and integrated the transcriptomic results. We built a custom analysis pipeline to improve the accuracy of lncRNA identification and functional annotation and obtained 18,482 novel lncRNAs in cervical cancer. Then, 159 ion channel- and tumorigenesis-related (ICTR-) lncRNAs were identified. Based on nine ICTR-lncRNAs, we also established a prognostic scoring model and validated its accuracy and robustness in assessing the prognosis of patients with cervical cancer. Besides, the TME was characterized, and we found that B cells, activated CD8+ T, and tertiary lymphoid structures were significantly associated with ICTR-lncRNAs signature scores. CONCLUSION: We provided a thorough landscape of cervical cancer-specific lncRNAs. Through integrative analyses, we identified ion-channel-related lncRNAs and established a predictive model for assessing the prognosis of patients with cervical cancer. Meanwhile, we characterized its association with TME status. This study improved our knowledge of the prominent roles of lncRNAs in regulating ion channel in cervical cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Ion Channels , RNA, Long Noncoding , Tumor Microenvironment , Uterine Cervical Neoplasms , Humans , RNA, Long Noncoding/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/mortality , Female , Prognosis , Ion Channels/genetics , Ion Channels/metabolism , Tumor Microenvironment/genetics , Biomarkers, Tumor/genetics , Gene Expression Profiling , Middle Aged , Transcriptome
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 557-560, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845507

ABSTRACT

Endothelial cells have important physiological functions and regulatory effects related to the occurrence and development of various diseases. Piezo1 is a mechanically sensitive ion channel protein, which is widely distributed in various tissues of the body and participates in the occurrence and development of various diseases. Piezo1 is highly expressed in endothelial cells and plays an important regulatory role in endothelial cell function. This article reviews the structure and function of Piezo1, the physiological function and pathological damage mechanism of endothelial cells, and the role of endothelial cell Piezo1 in various diseases, in order to understand the function and regulation mechanism of endothelial cell Piezo1, and provide new targets and strategies for the treatment of related diseases.


Subject(s)
Endothelial Cells , Ion Channels , Ion Channels/metabolism , Ion Channels/physiology , Humans , Endothelial Cells/metabolism
8.
Theranostics ; 14(8): 3282-3299, 2024.
Article in English | MEDLINE | ID: mdl-38855179

ABSTRACT

Rationale: Pharmacological targeting of mitochondrial ion channels is developing as a new direction in cancer therapy. The opening or closing of these channels can impact mitochondrial function and structure by interfering with intracellular ion homeostasis, thereby regulating cell fate. Nevertheless, their abnormal expression or regulation poses challenges in eliminating cancer cells, and further contributes to metastasis, recurrence, and drug resistance. Methods: We developed an engineered mitochondrial targeted delivery system with self-reinforcing potassium ion (K+) influx via amphiphilic mitochondrial targeting polymer (TMP) as carriers to co-deliver natural K+ channel agonists (Dinitrogen oxide, DZX) and artificial K+ channel molecules (5F8). Results: Using this method, DZX specifically activated natural K+ channels, whereas 5F8 assembled artificial K+ channels on the mitochondrial membrane, leading to mitochondrial K+ influx, as well as oxidative stress and activation of the mitochondrial apoptotic pathway. Conclusion: The synergistic effect of 5F8 and DZX presents greater effectiveness in killing cancer cells than DZX alone, and effectively inhibited tumor recurrence and lung metastasis following surgical resection of breast cancer tumors in animal models. This strategy innovatively integrates antihypertensive drugs with artificial ion channel molecules for the first time to effectively inhibit tumor recurrence and metastasis by disrupting intracellular ion homeostasis, which will provide a novel perspective for postoperative tumor therapy.


Subject(s)
Homeostasis , Mitochondria , Animals , Mitochondria/metabolism , Mitochondria/drug effects , Humans , Homeostasis/drug effects , Mice , Cell Line, Tumor , Female , Neoplasm Recurrence, Local/prevention & control , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Apoptosis/drug effects , Potassium/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Ion Channels/metabolism , Potassium Channels/metabolism , Mice, Nude , Neoplasm Metastasis
9.
J Cell Mol Med ; 28(11): e18472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842129

ABSTRACT

Excessive load on the temporomandibular joint (TMJ) is a significant factor in the development of TMJ osteoarthritis, contributing to cartilage degeneration. The specific mechanism through which excessive load induces TMJ osteoarthritis is not fully understood; however, mechanically-activated (MA) ion channels play a crucial role. Among these channels, Piezo1 has been identified as a mediator of chondrocyte catabolic responses and is markedly increased in osteoarthritis. Our observations indicate that, under excessive load conditions, endoplasmic reticulum stress in chondrocytes results in apoptosis of the TMJ chondrocytes. Importantly, using the Piezo1 inhibitor GsMTx4 demonstrates its potential to alleviate this condition. Furthermore, Piezo1 mediates endoplasmic reticulum stress in chondrocytes by inducing calcium ion influx. Our research substantiates the role of Piezo1 as a pivotal ion channel in mediating chondrocyte overload. It elucidates the link between excessive load, cell apoptosis, and calcium ion influx through Piezo1. The findings underscore Piezo1 as a key player in the pathogenesis of TMJ osteoarthritis, shedding light on potential therapeutic interventions for this condition.


Subject(s)
Apoptosis , Calcium , Chondrocytes , Endoplasmic Reticulum Stress , Ion Channels , Osteoarthritis , Temporomandibular Joint , Chondrocytes/metabolism , Chondrocytes/pathology , Ion Channels/metabolism , Ion Channels/genetics , Animals , Temporomandibular Joint/metabolism , Temporomandibular Joint/pathology , Calcium/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Humans , Mice , Signal Transduction , Spider Venoms , Intercellular Signaling Peptides and Proteins
10.
Sci Adv ; 10(25): eado4722, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905330

ABSTRACT

Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.


Subject(s)
Lipid Bilayers , Membrane Proteins , Single Molecule Imaging , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Single Molecule Imaging/methods , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Ion Channels/metabolism , Ion Channels/chemistry , Diffusion , Cell Membrane/metabolism , Cell Membrane/chemistry
11.
Methods Mol Biol ; 2796: 23-34, 2024.
Article in English | MEDLINE | ID: mdl-38856893

ABSTRACT

Solid-state NMR allows for the study of membrane proteins under physiological conditions. Here we describe a method for detection of bound ions in the selectivity filter of ion channels using solid-state NMR. This method employs standard 1H-detected solid-state NMR setup and experiment types, which is enabled by using 15N-labelled ammonium ions to mimic potassium ions.


Subject(s)
Ammonium Compounds , Ion Channels , Nitrogen Isotopes , Nitrogen Isotopes/analysis , Ammonium Compounds/chemistry , Ammonium Compounds/analysis , Ion Channels/metabolism , Ion Channels/chemistry , Ions/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Magnetic Resonance Spectroscopy/methods
12.
Methods Mol Biol ; 2796: 87-95, 2024.
Article in English | MEDLINE | ID: mdl-38856896

ABSTRACT

Voltage-gated ion channels (VGICs) are integral membrane proteins crucial for transmitting electrical signals in excitable cells. Understanding the kinetics of these ion channels requires conducting patch-clamp experiments using genetically modified cell lines that express a single type of ion channel gene. However, this process relies on the continuous maintenance of cell lines to ensure an adequate supply of sample cells for patch-clamp experiments. Advancements in automated patch-clamp methods have enabled researchers to significantly increase the number of patch-clamped cells per experiment, from just a few cells to as many as 384 cells. Despite this progress, the manual task of preparing the cell samples remains a significant bottleneck in the kinetic screening of VGICs. Here we describe a method to address this challenge by generating ready-to-record (RTR) VGIC-expressing cells that can be frozen and stored separately from patch-clamp experiments. This decoupling of the cell sample preparation process from the patch-clamp experiments offers a streamlined approach to studying VGICs on manual or an automated patch-clamp system.


Subject(s)
Ion Channels , Patch-Clamp Techniques , Patch-Clamp Techniques/methods , Humans , Kinetics , Ion Channels/metabolism , Ion Channels/genetics , HEK293 Cells , Animals , Cell Line , Ion Channel Gating
13.
Methods Mol Biol ; 2796: 105-118, 2024.
Article in English | MEDLINE | ID: mdl-38856898

ABSTRACT

Ion channels are transmembrane proteins essential for cellular functions and are important drug targets. Surface plasmon resonance (SPR) is a powerful technique for investigating protein-protein and protein-small molecule ligand interactions. SPR has been underutilized for studies of ion channels, even though it could provide a wealth of information on the mechanisms of ion channel regulation and aid in ion channel drug discovery. Here we provide a detailed description of the use of SPR technology for investigating inter-domain interactions in KCNH potassium-selective and voltage-gated ion channels.


Subject(s)
Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Humans , Protein Binding , Ion Channels/metabolism , Ion Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/chemistry , Protein Interaction Domains and Motifs , Ligands , Animals
14.
Methods Mol Biol ; 2796: 119-138, 2024.
Article in English | MEDLINE | ID: mdl-38856899

ABSTRACT

Ion channels comprise one of the largest targets for drug development and treatment and have been a subject of enduring fascination since first discovered in the 1950s. Over the past decades, thousands of publications have explored the cellular biology and molecular physiology of these proteins, and many channel structures have been determined since the late 1990s. Trying to connect the dots between ion channel function and structure, voltage clamp fluorometry (VCF) emerges as a powerful tool because it allows monitoring of the conformational rearrangements underlying the different functional states of the channel. This technique represents an elegant harmonization of molecular biology, electrophysiology, and fluorescence. In the following chapter, we will provide a concise guide to performing VCF on Xenopus laevis oocytes using the two-electrode voltage clamp (TEVC) modality. This is the most widely used configuration on Xenopus oocytes for its relative simplicity and demonstrated success in a number of different ion channels utilizing a variety of attached labels.


Subject(s)
Fluorometry , Ion Channels , Oocytes , Patch-Clamp Techniques , Xenopus laevis , Animals , Patch-Clamp Techniques/methods , Fluorometry/methods , Oocytes/metabolism , Ion Channels/metabolism , Ion Channel Gating
15.
Methods Mol Biol ; 2796: 271-289, 2024.
Article in English | MEDLINE | ID: mdl-38856907

ABSTRACT

Ion channels are membrane proteins that may also have intracellular and extracellular domains that interact with other ligands. In many cases, these interaction sites are highly mobile and may undergo changes in the configuration upon binding with regulatory signaling molecules. Isothermal titration calorimetry (ITC) is a powerful technique to quantify protein-ligand interactions of purified samples in solution. This chapter describes a fragment-based analysis method using ITC to quantify the interactions between a domain of the voltage-gated Kv7 channel and the calcium-regulated protein calmodulin. This example can be used to quantify the interactions between specific domains of other ion channels and their regulatory signaling proteins.


Subject(s)
Calmodulin , Calorimetry , Protein Binding , Calorimetry/methods , Calmodulin/metabolism , Calmodulin/chemistry , Ligands , Ion Channels/metabolism , Ion Channels/chemistry , Humans , Binding Sites
16.
Methods Mol Biol ; 2796: 249-270, 2024.
Article in English | MEDLINE | ID: mdl-38856906

ABSTRACT

Patch-clamp technique provides a unique possibility to record the ion channels' activity. This method enables tracking the changes in their functional states at controlled conditions on a real-time scale. Kinetic parameters evaluated for the patch-clamp signals form the fundamentals of electrophysiological characteristics of the channel functioning. Nevertheless, the noisy series of ionic currents flowing through the channel protein(s) seem to be bountiful of information, and the standard data processing techniques likely unravel only its part. Rapid development of artificial intelligence (AI) techniques, especially machine learning (ML), gives new prospects for whole channelology. Here we consider the question of the AI applications in the patch-clamp signal analysis. It turns out that the AI methods may not only enable for automatizing of signal analysis, but also they can be used in finding inherent patterns of channel gating and allow the researchers to uncover the details of gating machinery, which had been never considered before. In this work, we outline the currently known AI methods that turned out to be utilizable and useful in the analysis of patch-clamp signals. This chapter can be considered an introductory guide to the application of AI methods in the analysis of the time series of channel currents (together with its advantages, disadvantages, and limitations), but we also propose new possible directions in this field.


Subject(s)
Ion Channels , Machine Learning , Patch-Clamp Techniques , Patch-Clamp Techniques/methods , Patch-Clamp Techniques/instrumentation , Ion Channels/metabolism , Humans , Ion Channel Gating/physiology , Animals
17.
Methods Mol Biol ; 2796: 139-156, 2024.
Article in English | MEDLINE | ID: mdl-38856900

ABSTRACT

Markov models are widely used to represent ion channel protein configurations as different states in the model's topology. Such models allow for dynamic simulation of ion channel kinetics through the simulated application of voltage potentials across a cell membrane. In this chapter, we present a general method for creating Markov models of ion channel kinetics using computational optimization alongside a fully featured example model of a cardiac potassium channel. Our methods cover designing training protocols, iteratively testing potential model topologies for structure identification, creation of algorithms for model simulation, as well as methods for assessing the quality of fit for a finalized model.


Subject(s)
Algorithms , Ion Channels , Markov Chains , Ion Channels/metabolism , Ion Channels/chemistry , Kinetics , Computer Simulation , Humans , Ion Channel Gating , Computational Biology/methods , Molecular Dynamics Simulation , Software
18.
Cell Rep ; 43(6): 114334, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38850532

ABSTRACT

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.


Subject(s)
Ion Channels , Humans , Ion Channels/metabolism , Ion Channels/chemistry , Animals , Protein Subunits/metabolism , HEK293 Cells , Mechanotransduction, Cellular , Mice , Mutation , Amino Acid Sequence , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Lipid Bilayers/metabolism
19.
Biomolecules ; 14(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38927086

ABSTRACT

This retrospective begins with Galvani's experiments on frogs at the end of the 18th century and his discovery of 'animal electricity'. It goes on to illustrate the numerous contributions to the field of physical chemistry in the second half of the 19th century (Nernst's equilibrium potential, based on the work of Wilhelm Ostwald, Max Planck's ion electrodiffusion, Einstein's studies of Brownian motion) which led Bernstein to propose his membrane theory in the early 1900s as an explanation of Galvani's findings and cell excitability. These processes were fully elucidated by Hodgkin and Huxley in 1952 who detailed the ionic basis of resting and action potentials, but without addressing the question of where these ions passed. The emerging question of the existence of ion channels, widely debated over the next two decades, was finally accepted and, a decade later, many of them began to be cloned. This led to the possibility of modelling the activity of individual neurons in the brain and then that of simple circuits. Taking advantage of the remarkable advances in computer science in the new millennium, together with a much deeper understanding of brain architecture, more ambitious scientific goals were dreamed of to understand the brain and how it works. The retrospective concludes by reviewing the main efforts in this direction, namely the construction of a digital brain, an in silico copy of the brain that would run on supercomputers and behave just like a real brain.


Subject(s)
Brain , Ion Channels , Animals , Humans , Brain/metabolism , Brain/physiology , Ion Channels/metabolism , History, 20th Century , History, 19th Century , Electricity , History, 18th Century , Models, Neurological
20.
Sci Adv ; 10(23): eadj3289, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838160

ABSTRACT

Tissue stiffening is a predominant feature of fibrotic disorders, but the response of macrophages to changes in tissue stiffness and cellular context in fibrotic diseases remains unclear. Here, we found that the mechanosensitive ion channel Piezo1 was up-regulated in hepatic fibrosis. Macrophages lacking Piezo1 showed sustained inflammation and impaired spontaneous resolution of early liver fibrosis. Further analysis revealed an impairment of clearance of apoptotic cells by macrophages in the fibrotic liver. Macrophages showed enhanced efferocytosis when cultured on rigid substrates but not soft ones, suggesting stiffness-dependent efferocytosis of macrophages required Piezo1 activation. Besides, Piezo1 was involved in the efficient acidification of the engulfed cargo in the phagolysosomes and affected the subsequent expression of anti-inflammation genes after efferocytosis. Pharmacological activation of Piezo1 increased the efferocytosis capacity of macrophages and accelerated the resolution of inflammation and fibrosis. Our study supports the antifibrotic role of Piezo1-mediated mechanical sensation in liver fibrosis, suggesting that targeting PIEZO1 to enhance macrophage efferocytosis could induce fibrosis regression.


Subject(s)
Ion Channels , Liver Cirrhosis , Macrophages , Phagocytosis , Ion Channels/metabolism , Ion Channels/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Animals , Macrophages/metabolism , Mice , Humans , Apoptosis , Mice, Inbred C57BL , Disease Models, Animal , Efferocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...