Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.594
Filter
1.
Funct Plant Biol ; 512024 Aug.
Article in English | MEDLINE | ID: mdl-39088691

ABSTRACT

Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.


Subject(s)
Antioxidants , Brassica napus , Homeostasis , Photosynthesis , Salt Tolerance , Seedlings , Sodium Chloride , Brassica napus/drug effects , Brassica napus/metabolism , Brassica napus/enzymology , Photosynthesis/drug effects , Antioxidants/metabolism , Salt Tolerance/drug effects , Homeostasis/drug effects , Sodium Chloride/pharmacology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Sodium/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Fluorescence , Potassium/metabolism , Ions/metabolism , Calcium/metabolism
2.
Sci Rep ; 14(1): 16133, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997414

ABSTRACT

Nickel(Ni)-containing materials have been widely used in a wide range of medical applications, including orthopaedics. Despite their excellent properties, there is still a problem with the release of nickel ions into the patient's body, which can cause changes in the behaviour of surrounding cells and tissues. This study aims to evaluate the effects of Ni on bone cells with an emphasis on the determination of Ni localization in cellular compartments in time. For these purposes, one of the most suitable models for studying the effects induced by metal implants was used-the patient's osteoarthritic cells. Thanks to this it was possible to simulate the pathophysiological conditions in the patient's body, as well as to evaluate the response of the cells which come into direct contact with the material after the implantation of the joint replacement. The largest differences in cell viability, proliferation and cell cycle changes occurred between Ni 0.5 mM and 1 mM concentrations. Time-dependent localization of Ni in cells showed that there is a continuous transport of Ni ions between the nucleus and the cytoplasm, as well as between the cell and the environment. Moreover, osteoarthritic osteoblasts showed faster changes in concentration and ability to accumulate more Ni, especially in the nucleus, than physiological osteoblasts. The differences in Ni accumulation process explains the higher sensitivity of patient osteoblasts to Ni and may be crucial in further studies of implant-derived cytotoxic effects.


Subject(s)
Cell Proliferation , Cell Survival , Nickel , Osteoarthritis , Osteoblasts , Nickel/metabolism , Osteoblasts/metabolism , Osteoblasts/drug effects , Humans , Osteoarthritis/metabolism , Osteoarthritis/pathology , Cell Survival/drug effects , Cell Proliferation/drug effects , Ions/metabolism , Cell Cycle/drug effects , Cells, Cultured
3.
Biomolecules ; 14(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39062545

ABSTRACT

Cell-to-cell communication is fundamental to the organization and functionality of multicellular organisms. Intercellular signals orchestrate a variety of cellular responses, including gene expression and protein function changes, and contribute to the integrated functions of individual tissues. Dictyostelium discoideum is a model organism for cell-to-cell interactions mediated by chemical signals and multicellular formation mechanisms. Upon starvation, D. discoideum cells exhibit coordinated cell aggregation via cyclic adenosine 3',5'-monophosphate (cAMP) gradients and chemotaxis, which facilitates the unicellular-to-multicellular transition. During this process, the calcium signaling synchronizes with the cAMP signaling. The resulting multicellular body exhibits organized collective migration and ultimately forms a fruiting body. Various signaling molecules, such as ion signals, regulate the spatiotemporal differentiation patterns within multicellular bodies. Understanding cell-to-cell and ion signaling in Dictyostelium provides insight into general multicellular formation and differentiation processes. Exploring cell-to-cell and ion signaling enhances our understanding of the fundamental biological processes related to cell communication, coordination, and differentiation, with wide-ranging implications for developmental biology, evolutionary biology, biomedical research, and synthetic biology. In this review, I discuss the role of ion signaling in cell motility and development in D. discoideum.


Subject(s)
Cell Movement , Cyclic AMP , Dictyostelium , Signal Transduction , Dictyostelium/metabolism , Dictyostelium/growth & development , Dictyostelium/genetics , Dictyostelium/cytology , Cyclic AMP/metabolism , Chemotaxis , Cell Communication , Ions/metabolism , Cell Differentiation , Calcium Signaling
4.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892004

ABSTRACT

Vedolizumab (VDZ) is used for treating inflammatory bowel disease (IBD) patients. A study investigating colonic epithelial barrier function ex vivo following VDZ is lacking. This work aims to evaluate ex vivo the colonic epithelial barrier function in IBD patients at baseline and during VDZ treatment, and to investigate the relationships between barrier function and clinical parameters. Colonic specimens were obtained from 23 IBD patients before, and at 24 and 52 weeks after VDZ treatment, and from 26 healthy volunteers (HV). Transepithelial electrical resistance (TEER, permeability to ions) and paracellular permeability were measured in Ussing chambers. IBD patients showed increased epithelial permeability to ions (TEER, 13.80 ± 1.04 Ω × cm2 vs. HV 20.70 ± 1.52 Ω × cm2, p < 0.001) without changes in paracellular permeability of a 4 kDa probe. VDZ increased TEER (18.09 ± 1.44 Ω × cm2, p < 0.001) after 52 weeks. A clinical response was observed in 58% and 25% of patients at week 24, and in 62% and 50% at week 52, in ulcerative colitis and Crohn's disease, respectively. Clinical and endoscopic scores were strongly associated with TEER. TEER < 14.65 Ω × cm2 predicted response to VDZ (OR 11; CI 2-59). VDZ reduces the increased permeability to ions observed in the colonic epithelium of IBD patients before treatment, in parallel to a clinical, histological (inflammatory infiltrate), and endoscopic improvement. A low TEER predicts clinical response to VDZ therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , Colon , Inflammatory Bowel Diseases , Intestinal Mucosa , Permeability , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Female , Adult , Middle Aged , Permeability/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Colon/drug effects , Colon/metabolism , Colon/pathology , Ions/metabolism , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/therapeutic use , Electric Impedance , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Aged
5.
Front Immunol ; 15: 1379365, 2024.
Article in English | MEDLINE | ID: mdl-38915413

ABSTRACT

Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy. In this review, we discuss seven metal ions related to anti-tumor immunity, elucidate their roles in immunotherapy, and provide novel insights into tumor immunotherapy and clinical applications.


Subject(s)
Immunotherapy , Metals , Neoplasms , Tumor Microenvironment , Tumor Microenvironment/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Metals/immunology , Animals , Immunotherapy/methods , Ions/metabolism , T-Lymphocytes/immunology
6.
Nat Commun ; 15(1): 5140, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886375

ABSTRACT

Holliday junction resolution is a crucial process in homologous recombination and DNA double-strand break repair. Complete Holliday junction resolution requires two stepwise incisions across the center of the junction, but the precise mechanism of metal ion-catalyzed Holliday junction cleavage remains elusive. Here, we perform a metal ion-triggered catalysis in crystals to investigate the mechanism of Holliday junction cleavage by MOC1. We capture the structures of MOC1 in complex with a nicked Holliday junction at various catalytic states, including the ground state, the one-metal ion binding state, and the two-metal ion binding state. Moreover, we also identify a third metal ion that may aid in the nucleophilic attack on the scissile phosphate. Further structural and biochemical analyses reveal a metal ion-mediated allosteric regulation between the two active sites, contributing to the enhancement of the second strand cleavage following the first strand cleavage, as well as the precise symmetric cleavage across the Holliday junction. Our work provides insights into the mechanism of metal ion-catalyzed Holliday junction resolution by MOC1, with implications for understanding how cells preserve genome integrity during the Holliday junction resolution phase.


Subject(s)
DNA, Cruciform , DNA, Cruciform/metabolism , DNA, Cruciform/chemistry , DNA, Cruciform/genetics , Metals/metabolism , Metals/chemistry , Holliday Junction Resolvases/metabolism , Holliday Junction Resolvases/chemistry , Catalytic Domain , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Crystallography, X-Ray , Ions/metabolism , DNA Breaks, Double-Stranded , Models, Molecular , Allosteric Regulation
7.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890574

ABSTRACT

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Subject(s)
Antioxidants , Glycine max , Nitrates , Plant Growth Regulators , Salt Tolerance , Seedlings , Glycine max/physiology , Glycine max/drug effects , Glycine max/metabolism , Glycine max/growth & development , Seedlings/physiology , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Antioxidants/metabolism , Plant Growth Regulators/metabolism , Nitrates/metabolism , Ammonium Compounds/metabolism , Salt Stress , Ions/metabolism
9.
ACS Chem Neurosci ; 15(11): 2132-2143, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38743904

ABSTRACT

Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.


Subject(s)
Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Animals , Male , Mice , Infarction, Middle Cerebral Artery/metabolism , Homeostasis/physiology , Stroke/metabolism , Calcium/metabolism , Disease Models, Animal , Zinc/metabolism , Brain/metabolism , Brain/pathology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Potassium/metabolism , Copper/metabolism , Ions/metabolism
10.
Methods Mol Biol ; 2799: 151-175, 2024.
Article in English | MEDLINE | ID: mdl-38727907

ABSTRACT

In vertebrate central neurons, NMDA receptors are glutamate- and glycine-gated ion channels that allow the passage of Na+ and Ca2+ ions into the cell when these neurotransmitters are simultaneously present. The passage of Ca2+ is critical for initiating the cellular processes underlying various forms of synaptic plasticity. These Ca2+ ions can autoregulate the NMDA receptor signal through multiple distinct mechanisms to reduce the total flux of cations. One such mechanism is the ability of Ca2+ ions to exclude the passage of Na+ ions resulting in a reduced unitary current conductance. In contrast to the well-characterized Mg2+ block, this "channel block" mechanism is voltage-independent. In this chapter, we discuss theoretical and experimental considerations for the study of channel block by Ca2+ using single-channel patch-clamp electrophysiology. We focus on two classic methodologies to quantify the dependence of unitary channel conductance on external concentrations of Ca2+ as the basis for quantifying Ca2+ block.


Subject(s)
Calcium , Ion Channel Gating , Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Female , Humans , HEK293 Cells , Ions/metabolism , Oocytes , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium/metabolism , Xenopus , Calcium/metabolism
11.
Chembiochem ; 25(13): e202400237, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38712989

ABSTRACT

C-terminal truncated variants (A, VA, NVA, ANVA, FANVA and GFANVA) of our recently identified Cu(II) specific peptide "HGFANVA" were displayed on filamentous fd phages. Wild type fd-tet and engineered virus variants were treated with 100 mM Cu(II) solution at a final phage concentration of 1011 vir/ml and 1012 vir/ml. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) imaging before Cu(II) exposure showed ≈6-8 nm thick filamentous virus layer formation. Cu(II) treatment resulted in aggregated bundle-like assemblies with mineral deposition. HGFANVA phage formed aggregates with an excessive mineral coverage. As the virus concentration was 10-fold decreased, nanowire-like assemblies were observed for shorter peptide variants A, NVA and ANVA. Wild type fd phages did not show any mineral formation. Energy dispersive X-ray spectroscopy (EDX) analyses revealed the presence of C and N peaks on phage organic material. Cu peak was only detected for engineered viruses. Metal ion binding of viruses was next investigated by enzyme-linked immunosorbent assay (ELISA) analyses. Engineered viruses were able to bind Cu(II) forming mineralized intertwined structures although no His (H) unit was displayed. Such genetically reprogrammed virus based biological materials can be further applied for bioremediation studies to achieve a circular economy.


Subject(s)
Copper , Copper/chemistry , Copper/metabolism , Ions/chemistry , Ions/metabolism , Peptides/chemistry , Peptides/metabolism
12.
Nature ; 630(8016): 493-500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718835

ABSTRACT

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.


Subject(s)
Deep Learning , Ligands , Models, Molecular , Proteins , Software , Humans , Antibodies/chemistry , Antibodies/metabolism , Antigens/metabolism , Antigens/chemistry , Deep Learning/standards , Ions/chemistry , Ions/metabolism , Molecular Docking Simulation , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Binding , Protein Conformation , Proteins/chemistry , Proteins/metabolism , Reproducibility of Results , Software/standards
13.
PLoS One ; 19(5): e0303822, 2024.
Article in English | MEDLINE | ID: mdl-38771746

ABSTRACT

This paper provides a comprehensive and computationally efficient case study for uncertainty quantification (UQ) and global sensitivity analysis (GSA) in a neuron model incorporating ion concentration dynamics. We address how challenges with UQ and GSA in this context can be approached and solved, including challenges related to computational cost, parameters affecting the system's resting state, and the presence of both fast and slow dynamics. Specifically, we analyze the electrodiffusive neuron-extracellular-glia (edNEG) model, which captures electrical potentials, ion concentrations (Na+, K+, Ca2+, and Cl-), and volume changes across six compartments. Our methodology includes a UQ procedure assessing the model's reliability and susceptibility to input uncertainty and a variance-based GSA identifying the most influential input parameters. To mitigate computational costs, we employ surrogate modeling techniques, optimized using efficient numerical integration methods. We propose a strategy for isolating parameters affecting the resting state and analyze the edNEG model dynamics under both physiological and pathological conditions. The influence of uncertain parameters on model outputs, particularly during spiking dynamics, is systematically explored. Rapid dynamics of membrane potentials necessitate a focus on informative spiking features, while slower variations in ion concentrations allow a meaningful study at each time point. Our study offers valuable guidelines for future UQ and GSA investigations on neuron models with ion concentration dynamics, contributing to the broader application of such models in computational neuroscience.


Subject(s)
Models, Neurological , Neurons , Neurons/physiology , Uncertainty , Ions/metabolism , Membrane Potentials/physiology , Action Potentials/physiology , Humans , Animals , Neuroglia/metabolism , Neuroglia/physiology
14.
Biomed Pharmacother ; 174: 116574, 2024 May.
Article in English | MEDLINE | ID: mdl-38593706

ABSTRACT

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.


Subject(s)
Cell Death , Gastrointestinal Neoplasms , Metals , Humans , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/drug therapy , Animals , Cell Death/drug effects , Ferroptosis/drug effects , Ions/metabolism , Antineoplastic Agents/pharmacology
15.
FEMS Yeast Res ; 242024 Jan 09.
Article in English | MEDLINE | ID: mdl-38658183

ABSTRACT

Maintenance of asymmetric ion concentrations across cellular membranes is crucial for proper yeast cellular function. Disruptions of these ionic gradients can significantly impact membrane electrochemical potential and the balance of other ions, particularly under stressful conditions such as exposure to acetic acid. This weak acid, ubiquitous to both yeast metabolism and industrial processes, is a major inhibitor of yeast cell growth in industrial settings and a key determinant of host colonization by pathogenic yeast. Acetic acid toxicity depends on medium composition, especially on the pH (H+ concentration), but also on other ions' concentrations. Regulation of ion fluxes is essential for effective yeast response and adaptation to acetic acid stress. However, the intricate interplay among ion balancing systems and stress response mechanisms still presents significant knowledge gaps. This review offers a comprehensive overview of the mechanisms governing ion homeostasis, including H+, K+, Zn2+, Fe2+/3+, and acetate, in the context of acetic acid toxicity, adaptation, and tolerance. While focus is given on Saccharomyces cerevisiae due to its extensive physiological characterization, insights are also provided for biotechnologically and clinically relevant yeast species whenever available.


Subject(s)
Acetic Acid , Adaptation, Physiological , Homeostasis , Ions , Saccharomyces cerevisiae , Stress, Physiological , Acetic Acid/metabolism , Acetic Acid/pharmacology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae/growth & development , Ions/metabolism , Hydrogen-Ion Concentration
16.
Appl Environ Microbiol ; 90(4): e0014624, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38557120

ABSTRACT

The metal-resistant bacterium Cupriavidus metallidurans occurs in metal-rich environments. In auriferous soils, the bacterium is challenged by a mixture of copper ions and gold complexes, which exert synergistic toxicity. The previously used, self-made Au(III) solution caused a synergistic toxicity of copper and gold that was based on the inhibition of the CupA-mediated efflux of cytoplasmic Cu(I) by Au(I) in this cellular compartment. In this publication, the response of the bacterium to gold and copper was investigated by using a commercially available Au(III) solution instead of the self-made solution. The new solution was five times more toxic than the previously used one. Increased toxicity was accompanied by greater accumulation of gold atoms by the cells. The contribution of copper resistance determinants to the commercially available Au(III) solution and synergistic gold-copper toxicity was studied using single- and multiple-deletion mutants. The commercially available Au(III) solution inhibited periplasmic Cu(I) homeostasis, which is required for the allocation of copper ions to copper-dependent proteins in this compartment. The presence of the gene for the periplasmic Cu(I) and Au(I) oxidase, CopA, decreased the cellular copper and gold content. Transcriptional reporter gene fusions showed that up-regulation of gig, encoding a minor contributor to copper resistance, was strictly glutathione dependent. Glutathione was also required to resist synergistic gold-copper toxicity. The new data indicated a second layer of synergistic copper-gold toxicity caused by the commercial Au(III) solution, inhibition of the periplasmic copper homeostasis in addition to the cytoplasmic one.IMPORTANCEWhen living in auriferous soils, Cupriavidus metallidurans is not only confronted with synergistic toxicity of copper ions and gold complexes but also by different gold species. A previously used gold solution made by using aqua regia resulted in the formation of periplasmic gold nanoparticles, and the cells were protected against gold toxicity by the periplasmic Cu(I) and Au(I) oxidase CopA. To understand the role of different gold species in the environment, another Au(III) solution was commercially acquired. This compound was more toxic due to a higher accumulation of gold atoms by the cells and inhibition of periplasmic Cu(I) homeostasis. Thus, the geo-biochemical conditions might influence Au(III) speciation. The resulting Au(III) species may subsequently interact in different ways with C. metallidurans and its copper homeostasis system in the cytoplasm and periplasm. This study reveals that the geochemical conditions may decide whether bacteria are able to form gold nanoparticles or not.


Subject(s)
Cupriavidus , Metal Nanoparticles , Copper/metabolism , Gold/toxicity , Gold/metabolism , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Cupriavidus/genetics , Cupriavidus/metabolism , Bacterial Proteins/metabolism , Ions/metabolism , Soil , Glutathione/metabolism , Oxidoreductases/metabolism
17.
Eur Biophys J ; 53(4): 183-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38647542

ABSTRACT

The sensitivity of cytosol water's microwave dielectric (MD) response to D-glucose uptake in Red Blood Cells (RBCs) allows the detailed study of cellular mechanisms as a function of controlled exposures to glucose and other related analytes like electrolytes. However, the underlying mechanism behind the sensitivity to glucose exposure remains a topic of debate. In this research, we utilize MDS within the frequency range of 0.5-40 GHz to explore how ionic redistributions within the cell impact the microwave dielectric characteristics associated with D-glucose uptake in RBC suspensions. Specifically, we compare glucose uptake in RBCs exposed to the physiological concentration of Ca2+ vs. Ca-free conditions. We also investigate the potential involvement of Na+/K+ redistribution in glucose-mediated dielectric response by studying RBCs treated with a specific Na+/K+ pump inhibitor, ouabain. We present some insights into the MD response of cytosol water when exposed to Ca2+ in the absence of D-glucose. The findings from this study confirm that ion-induced alterations in bound/bulk water balance do not affect the MD response of cytosol water during glucose uptake.


Subject(s)
Cytosol , Erythrocytes , Glucose , Microwaves , Water , Cytosol/metabolism , Glucose/metabolism , Water/metabolism , Erythrocytes/metabolism , Erythrocytes/drug effects , Erythrocytes/cytology , Calcium/metabolism , Humans , Biological Transport , Ions/metabolism , Ouabain/pharmacology , Sodium/metabolism
18.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38601983

ABSTRACT

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Subject(s)
Calcium Channels , Calcium , Calcium/metabolism , Calcium Channels/metabolism , Signal Transduction , Excitation Contraction Coupling , Ions/metabolism , Calcium Signaling/physiology , Calcium Channels, L-Type/metabolism
19.
Nature ; 627(8005): 905-914, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448589

ABSTRACT

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Subject(s)
Bacteriophages , Capsid , DNA, Viral , Genome, Viral , Virion , Virus Assembly , Bacteriophages/chemistry , Bacteriophages/genetics , Bacteriophages/growth & development , Bacteriophages/metabolism , Capsid/chemistry , Capsid/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Diffusion , DNA, Viral/chemistry , DNA, Viral/genetics , DNA, Viral/metabolism , Ions/analysis , Ions/chemistry , Ions/metabolism , Static Electricity , Virion/chemistry , Virion/genetics , Virion/metabolism , Virus Assembly/genetics , Water/analysis , Water/chemistry , Water/metabolism
20.
Phytopathology ; 114(5): 961-970, 2024 May.
Article in English | MEDLINE | ID: mdl-38478730

ABSTRACT

Citrus Huanglongbing (HLB) caused by 'Candidatus Liberibacter asiaticus' (CLas) is the most devastating citrus disease worldwide. CLas induces systemic and chronic reactive oxygen species (ROS) production, which has been suggested to be a primary cause of cell death in phloem tissues and subsequent HLB symptoms. Mitigating oxidative stress caused by CLas using horticultural approaches has been suggested as a useful strategy to reduce HLB damages. To provide information regarding the application timing to mitigate ROS, we investigated monthly dynamics of CLas concentration, CLas-triggered ROS, and phloem cell death in the bark tissues of asymptomatic and symptomatic branches of HLB-positive Hamlin and Valencia sweet orange trees in the field. Healthy branches in the screenhouse were used as controls. CLas concentration exhibited significant variations over the course of the year, with two distinct peaks observed in Florida citrus groves-late spring/early summer and late fall. Within both Hamlin and Valencia asymptomatic tissues, CLas concentration demonstrated a negative correlation with the deviation between the monthly average mean temperature and the optimal temperature for CLas colonization in plants (25.7°C). However, such a correlation was not evident in symptomatic tissues of Hamlin or Valencia sweet oranges. ROS levels were consistently higher in symptomatic or asymptomatic branches than in healthy branches in most months. ROS concentrations were higher in symptomatic branches than in asymptomatic branches in most months. CLas triggered significant increases in ion leakage in most months for asymptomatic and symptomatic branches compared with healthy controls. In asymptomatic branches of Hamlin, a positive correlation was observed between CLas concentration and ROS concentrations, CLas concentration and ion leakage levels, as well as ROS and ion leakage. Intriguingly, such a relationship was not observed in Valencia asymptomatic branches or in the symptomatic branches of Hamlin and Valencia. This study sheds light on the pathogenicity of CLas by providing useful information on the temporal dynamics of ROS production, phloem cell death, and CLas growth, as well as provides useful information in determining the timing for application of antioxidants and antimicrobial agents to control HLB.


Subject(s)
Citrus sinensis , Plant Diseases , Reactive Oxygen Species , Rhizobiaceae , Reactive Oxygen Species/metabolism , Citrus sinensis/microbiology , Plant Diseases/microbiology , Rhizobiaceae/physiology , Phloem/microbiology , Plant Bark/microbiology , Liberibacter , Ions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL