Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.104
1.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727840

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Antifungal Agents , Biofilms , Candida albicans , Cell Membrane , Isothiocyanates , Oxidative Stress , Reactive Oxygen Species , Candida albicans/drug effects , Candida albicans/physiology , Biofilms/drug effects , Antifungal Agents/pharmacology , Isothiocyanates/pharmacology , Oxidative Stress/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Cell Cycle/drug effects , Hyphae/drug effects , Hyphae/growth & development , Ergosterol/metabolism
2.
Sci Rep ; 14(1): 10032, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693156

The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.


Cobalt , Coordination Complexes , Copper , Isothiocyanates , Molecular Docking Simulation , Nickel , Nickel/chemistry , Copper/chemistry , Humans , Isothiocyanates/chemistry , Isothiocyanates/pharmacology , Ligands , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Cobalt/chemistry , Cell Line, Tumor , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis
3.
Front Immunol ; 15: 1404086, 2024.
Article En | MEDLINE | ID: mdl-38803500

Since infections with antibiotic-resistant bacteria cause increasing problems worldwide, the identification of alternative therapies is of great importance. Plant-derived bioactives, including allyl-isothiocyanate (AITC), have received attention for their antimicrobial properties. The present study therefore investigates the impact of AITC on survival and antimicrobial peptide (AMP) levels in Drosophila melanogaster challenged with the fly pathogenic bacteria Pectobacterium carotovorum subsp. carotovorum and Leuconostoc pseudomesenteroides. AITC, a sulfur-containing compound derived from glucosinolates, exhibits antimicrobial properties and has been suggested to modulate AMP expression. By using D. melanogaster, we demonstrate that AITC treatment resulted in a concentration-dependent decrease of survival rates among female flies, particularly in the presence of the Gram-negative bacterium Pectobacterium carotovorum subsp. carotovorum, whereas AITC did not affect survival in male flies. Despite the ability of isothiocyanates to induce AMP expression in cell culture, we did not detect significant changes in AMP mRNA levels in infected flies exposed to AITC. Our findings suggest sex-specific differences in response to AITC treatment and bacterial infections, underlining the complexity of host-pathogen interactions and potential limitations of AITC as a preventive or therapeutic compound at least in D. melanogaster models of bacterial infections.


Antimicrobial Peptides , Drosophila melanogaster , Isothiocyanates , Animals , Isothiocyanates/pharmacology , Female , Male , Antimicrobial Peptides/pharmacology , Pectobacterium carotovorum/drug effects , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
4.
PLoS One ; 19(5): e0303490, 2024.
Article En | MEDLINE | ID: mdl-38753636

Due to over-prescription of antibiotics, antimicrobial resistance has emerged to be a critical concern globally. Many countries have tightened the control of antibiotic usage, which, in turn, promotes the search for alternatives to antibiotics. Quite a few phytochemicals have been investigated. Benzyl isothiocyanate (BITC) is an important secondary metabolite in cruciferous species and exhibited potent antimicrobial activity under in vitro conditions. In this research, we undertook a comparative mouse model study of BITC with gentamycin sulfate (positive antibiotic control) and ceftiofur hydrochloride (negative antibiotic control) against Pseudomonas aeruginosa infection. Our results showed that BITC exhibited comparable or better antimicrobial activity and lower infiltration of mouse immune cells upon comparing to gentamycin sulfate. Furthermore, BITC did not impose any toxicity to the air pouch skin tissues. In summary, our current study suggests that BITC could be an alternative to antibiotics and deserves further in vivo and clinical trial studies.


Anti-Bacterial Agents , Isothiocyanates , Pseudomonas Infections , Pseudomonas aeruginosa , Isothiocyanates/pharmacology , Animals , Pseudomonas aeruginosa/drug effects , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Disease Models, Animal , Female , Microbial Sensitivity Tests
5.
Life Sci Alliance ; 7(8)2024 Aug.
Article En | MEDLINE | ID: mdl-38755006

Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.


Epigenesis, Genetic , Glucose , NF-E2-Related Factor 2 , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Humans , Glucose/metabolism , Epigenesis, Genetic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Hyperglycemia/metabolism , Hyperglycemia/genetics , Chromatin/metabolism , Chromatin/genetics , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Transcription, Genetic/drug effects , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Sulfoxides/pharmacology
6.
Front Immunol ; 15: 1374541, 2024.
Article En | MEDLINE | ID: mdl-38807598

Objective: The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. Methods: In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. Results: Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. Conclusion: Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.


Acute Lung Injury , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents , COVID-19 Drug Treatment , COVID-19 , Disease Models, Animal , Immunomodulating Agents , SARS-CoV-2 , Animals , Mice , Acute Lung Injury/immunology , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , COVID-19/immunology , SARS-CoV-2/immunology , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Sulfoxides , Humans , Cytokines/metabolism , Spike Glycoprotein, Coronavirus/immunology , Lung/immunology , Lung/pathology , Lung/virology , Lung/drug effects , Male , Poly I-C , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
7.
J Histochem Cytochem ; 72(5): 275-287, 2024 05.
Article En | MEDLINE | ID: mdl-38725415

The TRPA1 ion channel is a sensitive detector of reactive chemicals, found primarily on sensory neurons. The phenotype exhibited by mice lacking TRPA1 suggests its potential as a target for pharmacological intervention. Antibody-based detection for distribution analysis is a standard technique. In the case of TRPA1, however, there is no antibody with a plausible validation in knockout animals or functional studies, but many that have failed in this regard. To this end we employed the single molecule in situ hybridization technique RNAscope on sensory neurons immediately after detection of calcium responses to the TRPA1 agonist allyl isothiocyanate. There is a clearly positive correlation between TRPA1 calcium imaging and RNAscope detection (R = 0.43), although less than what might have been expected. Thus, the technique of choice should be carefully considered to suit the research question. The marginal correlation between TRPV1 RNAscope and the specific agonist capsaicin indicates that such validation is advisable for every RNAscope target. Given the recent description of a long-awaited TRPA1 reporter mouse, TRPA1 RNAscope detection might still have its use cases, for detection of RNA at particular sites, for example, defined structurally or by other molecular markers.


Calcium , Isothiocyanates , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Isothiocyanates/pharmacology , Mice , Calcium/metabolism , Transient Receptor Potential Channels/metabolism , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/agonists , Capsaicin/pharmacology , In Situ Hybridization , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/agonists , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , Mice, Inbred C57BL , Calcium Channels/metabolism , Calcium Channels/genetics , Male
8.
Molecules ; 29(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38792178

Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.


Antimalarials , Isothiocyanates , Nasturtium , Plant Extracts , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Plasmodium falciparum/drug effects , Nasturtium/chemistry , Humans , Plant Leaves/chemistry , Seeds/chemistry , Chloroquine/pharmacology
9.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713944

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
10.
Sci Rep ; 14(1): 12091, 2024 05 27.
Article En | MEDLINE | ID: mdl-38802425

Estrogen receptor-negative [ER(-)] mammary cancer is the most aggressive type of breast cancer (BC) with higher rate of metastasis and recurrence. In recent years, dietary prevention of BC with epigenetically active phytochemicals has received increased attention due to its feasibility, effectiveness, and ease of implementation. In this regard, combinatorial phytochemical intervention enables more efficacious BC inhibition by simultaneously targeting multiple tumorigenic pathways. We, therefore, focused on investigation of the effect of sulforaphane (SFN)-rich broccoli sprouts (BSp) and withaferin A (WA)-rich Ashwagandha (Ash) combination on BC prevention in estrogen receptor-negative [ER(-)] mammary cancer using transgenic mice. Our results indicated that combinatorial BSp + Ash treatment significantly reduced tumor incidence and tumor growth (~ 75%) as well as delayed (~ 21%) tumor latency when compared to the control treatment and combinatorial BSp + Ash treatment was statistically more effective in suppressing BC compared to single BSp or Ash intervention. At the molecular level, the BSp and Ash combination upregulated tumor suppressors (p53, p57) along with apoptosis associated proteins (BAX, PUMA) and BAX:BCL-2 ratio. Furthermore, our result indicated an expressional decline of epigenetic machinery HDAC1 and DNMT3A in mammary tumor tissue because of combinatorial treatment. Interestingly, we have reported multiple synergistic interactions between BSp and Ash that have impacted both tumor phenotype and molecular expression due to combinatorial BSp and Ash treatment. Our RNA-seq analysis results also demonstrated a transcriptome-wide expressional reshuffling of genes associated with multiple cell-signaling pathways, transcription factor activity and epigenetic regulations due to combined BSp and Ash administration. In addition, we discovered an alteration of gut microbial composition change because of combinatorial treatment. Overall, combinatorial BSp and Ash supplementation can prevent ER(-) BC through enhanced tumor suppression, apoptosis induction and transcriptome-wide reshuffling of gene expression possibly influencing multiple cell signaling pathways, epigenetic regulation and reshaping gut microbiota.


Breast Neoplasms , Epigenesis, Genetic , Gastrointestinal Microbiome , Isothiocyanates , Sulfoxides , Withanolides , Isothiocyanates/pharmacology , Animals , Withanolides/pharmacology , Sulfoxides/pharmacology , Female , Mice , Epigenesis, Genetic/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Gastrointestinal Microbiome/drug effects , Mice, Transgenic , Plant Extracts/pharmacology , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Humans , Brassica/chemistry , Histone Deacetylase 1/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Anticarcinogenic Agents/pharmacology
11.
J Ethnopharmacol ; 328: 118108, 2024 Jun 28.
Article En | MEDLINE | ID: mdl-38574780

ETHNOPHARMACOLOGICAL RELEVANCE: Polygala fallax Hemsl. is a traditional folk medicine commonly used by ethnic minorities in the Guangxi Zhuang Autonomous Region, and has a traditional application in the treatment of liver disease. Polygala fallax Hemsl. polysaccharides (PFPs) are of interest for their potential health benefits. AIM OF THIS STUDY: This study explored the impact of PFPs on a mouse model of cholestatic liver injury (CLI) induced by alpha-naphthyl isothiocyanate (ANIT), as well as the potential mechanisms. MATERIALS AND METHODS: A mouse CLI model was constructed using ANIT (80 mg/kg) and intervened with different doses of PFPs or ursodeoxycholic acid. Their serum biochemical indices, hepatic oxidative stress indices, and hepatic pathological characteristics were investigated. Then RNA sequencing was performed on liver tissues to identify differentially expressed genes and signaling pathways and to elucidate the mechanism of liver protection by PFPs. Finally, Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting were used to verify the differentially expressed genes. RESULTS: Data analyses showed that PFPs reduced the levels of liver function-related biochemical indices, such as ALT, AST, AKP, TBA, DBIL, and TBIL. PFPs up-regulated the activities of SOD and GSH, down-regulated the contents of MDA, inhibited the release of IL-1ß, IL-6, and TNF-α, or promoted IL-10. Pathologic characterization of the liver revealed that PFPs reduced hepatocyte apoptosis or necrosis. The RNA sequencing indicated that the genes with differential expression were primarily enriched for the biosynthesis of primary bile acids, secretion or transportation of bile, the reactive oxygen species in chemical carcinogenesis, and the NF-kappa B signaling pathway. In addition, the results of qRT-PCR and Western blotting analysis were consistent with those of RNA sequencing analysis. CONCLUSIONS: In summary, this study showed that PFPs improved intrahepatic cholestasis and alleviated liver damage through the modulation of primary bile acid production, Control of protein expression related to bile secretion or transportation, decrease in inflammatory reactions, and inhibition of oxidative pressure. As a result, PFPs might offer a hopeful ethnic dietary approach for managing intrahepatic cholestasis.


Cholestasis, Intrahepatic , Cholestasis , Polygala , Rats , Mice , Animals , Rats, Sprague-Dawley , 1-Naphthylisothiocyanate/toxicity , China , Liver/metabolism , Cholestasis/chemically induced , Cholestasis/drug therapy , Cholestasis/metabolism , Cholestasis, Intrahepatic/chemically induced , Isothiocyanates/adverse effects , Isothiocyanates/metabolism , Bile Acids and Salts/metabolism
12.
Org Biomol Chem ; 22(16): 3249-3261, 2024 04 24.
Article En | MEDLINE | ID: mdl-38568016

A one-pot microwave assisted telescopic approach is reported for the chemo-selective synthesis of substituted 1,3-thiazetidines using readily available 2-aminopyridines/pyrazines/pyrimidine, substituted isothiocyanates and 1,2-dihalomethanes. The procedure involves thiourea formation from 2-aminopyridines/pyrazines/pyrimidine with the substituted isothiocyanates followed by a base catalysed nucleophilic attack of the CS bond on the 1,2-dihalomethane. Subsequently, a cyclization reaction occurs to yield substituted 1,3-thiazetidines. These four membered strained ring systems are reported to possess broad substrate scope with high functional group tolerance. The above synthetic sequence for the formation of four membered heterocycles is proven to be a modular and straightforward approach. Further the mechanistic pathway for the formation of 1,3-thiazetidines was supported by computational evaluations and X-ray crystallography analyses. The relevance of these thiazetidines in biological applications is evaluated by studying their ability to bind bio-macromolecules like proteins and nucleic acids.


Microwaves , Pyrimidines/chemistry , Pyrimidines/chemical synthesis , Crystallography, X-Ray , Proteins/chemistry , Thiazoles/chemistry , Thiazoles/chemical synthesis , Models, Molecular , Molecular Structure , Nucleic Acids/chemistry , Nucleic Acids/chemical synthesis , Isothiocyanates/chemistry , Isothiocyanates/chemical synthesis , Aminopyridines/chemistry , Aminopyridines/chemical synthesis
13.
Cell Signal ; 119: 111181, 2024 Jul.
Article En | MEDLINE | ID: mdl-38643946

Prohibitin (PHB) is a pleiotropic molecule with a variety of known functions and subcellular locations. PHB's function in breast cancer is poorly understood. Herein, we report that PHB is expressed in cancer types of diverse origin including breast cancer. The cancer patients with changes in PHB were reported to have significantly reduced 'overall survival' in comparison to the cases without alterations in PHB. The expression of PHB was increased by H2O2 and also by Moringin (MG), which is an isothiocyanate derived from the seeds of Moringa oleifera. MG interacted with PHB, DRP1, and SLP2 and inhibited the growth of MCF-7 and MDAMB-231 cells. The isothiocyanate triggered apoptosis in breast cancer cells as revealed by AO/PI assay, phosphatidylserine externalization, cell cycle analysis and DAPI staining. MG induced proapoptotic proteins expression such as cytochrome c, p53, and cleaved caspase-7. Further, cell survival proteins such as survivin, Bcl-2, and Bcl-xL were suppressed. A depolarization of membrane potential suggested that the apoptosis was triggered through mitochondria. The isothiocyanate suppressed the cancer cell migration and interacted with NF-κB subunits. MG suppressed p65 nuclear translocation induced by TNF-α. The reactive oxygen species generation was also induced by the isothiocyanate in breast cancer cells. MG also modulated the expression of lncRNAs. Collectively, the functions of PHB in breast cancer growth is evident from this study. The activities of MG against breast cancer might result from its ability to modulate multiple cancer-related targets.


Apoptosis , Breast Neoplasms , Isothiocyanates , Prohibitins , Signal Transduction , Humans , Isothiocyanates/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Female , Apoptosis/drug effects , Signal Transduction/drug effects , Repressor Proteins/metabolism , Cell Line, Tumor , MCF-7 Cells , Cell Movement/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , NF-kappa B/metabolism , Cell Proliferation/drug effects
14.
Food Chem ; 449: 138939, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38599103

Glucosinolate-derived isothiocyanates are valuable for human health as they exert health promoting effects. As thermal food processing could affect their levels in a structure dependent way, the stability and reactivity of 12 Brassicaceae isothiocyanates during aqueous heating at 100 °C and pH 5-8 were investigated. The formation of their corresponding amines and N,N'-dialk(en)yl thioureas was quantified. Further, the potential to form odor active compounds was investigated by HRGC-MS-olfactometry. A strong structure-reactivity relationship was found and shorter side chains and electron withdrawing groups increase the reactivity of isothiocyanates. 3-(Methylsulfonyl)-propyl isothiocyanate was least stable. The main products are the corresponding amines (up to 69% recovery) and formation of N,N'-dialk(en)yl thioureas is only relevant at neutral to basic pH values. Apart from allyl isothiocyanate also 3-(methylthio)propyl isothiocyanate is precursor to many sulfur-containing odor active compounds. Thus, the isothiocyanate-structure affects their levels but also contributes to the flavor of boiled Brassicaceae vegetables.


Brassicaceae , Hot Temperature , Isothiocyanates , Isothiocyanates/chemistry , Brassicaceae/chemistry , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Food Handling
15.
Food Funct ; 15(9): 4894-4904, 2024 May 07.
Article En | MEDLINE | ID: mdl-38597802

The contributions of cruciferous vegetables to human health are widely recognised, particularly at the molecular level, where their isothiocyanates play a significant role. However, compared to the well-studied isothiocyanate 4-(methylsulfinyl)butyl isothiocyanate (sulforaphane) produced from broccoli sprouts, less is known about the pharmacological effects of other isothiocyanates and the stage of vegetables preferable to obtain their benefits. We analysed the quantity and quality of isothiocyanates produced in both the sprouts and mature stages of eight cruciferous vegetables using gas chromatography-mass spectrometry (GC-MS). Additionally, we investigated the hepatoprotective effects of isothiocyanates in a mouse model of acute hepatitis induced by carbon tetrachloride (CCl4). Furthermore, we explored the detoxification enzyme-inducing activities of crude sprout extracts in normal rats. Among the eight cruciferous vegetables, daikon radish (Raphanus sativus L.) sprouts produced the highest amount of isothiocyanates, with 4-(methylsulfinyl)-3-butenyl isothiocyanate (sulforaphene) being the dominant compound. The amount of sulforaphene in daikon radish sprouts was approximately 30 times that of sulforaphane in broccoli sprouts. Sulforaphene demonstrated hepatoprotective effects similar to sulforaphane in ameliorating CCl4-induced hepatic injury in mice. A crude extract of 3-day-old daikon radish sprouts upregulated the detoxifying enzyme glutathione S-transferase (GST) in the liver, whereas the crude extract of broccoli sprouts showed limited upregulation. This study highlights that daikon radish sprouts and sulforaphene have the potential to serve as functional food materials with hepatoprotective effects. Furthermore, daikon radish sprouts may exhibit more potent hepatoprotective effects compared to broccoli sprouts.


Isothiocyanates , Liver , Raphanus , Vegetables , Isothiocyanates/pharmacology , Animals , Mice , Raphanus/chemistry , Male , Vegetables/chemistry , Rats , Liver/drug effects , Liver/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sulfoxides , Chemical and Drug Induced Liver Injury/prevention & control , Protective Agents/pharmacology , Protective Agents/chemistry , Brassica/chemistry , Humans , Rats, Sprague-Dawley , Brassicaceae/chemistry
16.
Mol Nutr Food Res ; 68(8): e2400063, 2024 Apr.
Article En | MEDLINE | ID: mdl-38600885

Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.


Isothiocyanates , Neoplasms , Isothiocyanates/pharmacology , Humans , Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Signal Transduction/drug effects , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , NF-kappa B/metabolism , Antineoplastic Agents, Phytogenic/pharmacology
17.
Mol Nutr Food Res ; 68(8): e2400087, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581346

SCOPE: Dietary isothiocyanate (ITC) exposure from cruciferous vegetable (CV) intake may improve non-muscle invasive bladder cancer (NMIBC) prognosis. This study aims to investigate whether genetic variations in key ITC-metabolizing/functioning genes modify the associations between dietary ITC exposure and NMIBC prognosis outcomes. METHODS AND RESULTS: In the Bladder Cancer Epidemiology, Wellness, and Lifestyle Study (Be-Well Study), a prospective cohort of 1472 incident NMIBC patients, dietary ITC exposure is assessed by self-reported CV intake and measured in plasma ITC-albumin adducts. Using Cox proportional hazards regression models, stratified by single nucleotide polymorphisms (SNPs) in nine key ITC-metabolizing/functioning genes, it is calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and progression. The rs15561 in N-acetyltransferase 1 (NAT1) is alter the association between CV intake and progression risk. Multiple SNPs in nuclear factor E2-related factor 2 (NRF2) and nuclear factor kappa B (NFκB) are modify the associations between plasma ITC-albumin adduct level and progression risk (pint < 0.05). No significant association is observed with recurrence risk. Overall, >80% study participants are present with at least one protective genotype per gene, showing an average 65% reduction in progression risk with high dietary ITC exposure. CONCLUSION: Despite that genetic variations in ITC-metabolizing/functioning genes may modify the effect of dietary ITCs on NMIBC prognosis, dietary recommendation of CV consumption may help improve NMIBC survivorship.


Diet , Isothiocyanates , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Male , Female , Isothiocyanates/pharmacology , Isothiocyanates/administration & dosage , Middle Aged , Prognosis , Aged , Prospective Studies , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Arylamine N-Acetyltransferase/genetics , Non-Muscle Invasive Bladder Neoplasms
18.
Bioconjug Chem ; 35(5): 633-637, 2024 May 15.
Article En | MEDLINE | ID: mdl-38656148

Zirconium-89 is the most widely used radioisotope for immunoPET because its physical half-life (78.2 h) suits the one of antibodies. Desferrioxamine B (DFO) is the standard chelator for the complexation of zirconium(IV), and its bifunctional version, containing a phenylisothiocyanate function, is the most commonly used for the conjugation of DFO to proteins. However, preliminary results have shown that the thiourea link obtained from the conjugation of isothiocyanate and lysines is sensitive to the ionizing radiation generated by the radioisotope, leading to the rupture of the link and the release of the chelator/radiometal complex. This radiolysis phenomenon could produce nonspecific signal and prevent the detection of bone metastasis, as free zirconium accumulates into the bones. The aim of this work was to study the stability of a selection of conjugation linkers in 89Zr-labeled immunoconjugates. We have synthesized several DFO-based bifunctional chelators appended with an isothiocyanate moiety, a bicyclononyne, or a squaramate ester. Two antibodies (trastuzumab and rituximab) were conjugated and radiolabeled with zirconium-89. The effect of increasing activities of zirconium-89 on the integrity of the bioconjugate bearing thiourea links was evaluated as well as the impact of the presence of a radioprotectant. The stability of the radiolabeled antibodies was studied over 7 days in PBS and human plasma. Radioconjugates' integrity was evaluated using iTLC and size-exclusion chromatography. This study shows that the nature of the linker between the chelator and biomolecule can have a strong impact on the stability of the 89Zr-labeled conjugates, as well as on the aggregation of the conjugates.


Immunoconjugates , Isothiocyanates , Radioisotopes , Zirconium , Zirconium/chemistry , Immunoconjugates/chemistry , Isothiocyanates/chemistry , Radioisotopes/chemistry , Chelating Agents/chemistry , Humans , Deferoxamine/chemistry
19.
Int J Mol Sci ; 25(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38612571

Osteosarcoma is a highly malignant, painful cancer with poor treatment opportunities and a bad prognosis. Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are non-selective cation channels that have been of great interest in cancer, as their expression is increased in some malignancies. In our study we aim to characterize the expression and functionality of the TRPA1 and TRPV1 channels in human and mouse osteosarcoma tissues and in a mouse cell line. TRPA1/Trpa1 and TRPV1/Trpv1 mRNA expressions were demonstrated by PCR gel electrophoresis and RNAscope in situ hybridization. The function of these channels was confirmed by their radioactive 45Ca2+ uptake in response to the TRPA1 agonist, Allyl-isothiocyanate (AITC), and TRPV1 agonist, capsaicin, in K7M2 cells. An ATP-based K2M7 cell viability luminescence assay was used to determine cell viability after AITC or capsaicin treatments. Both TRPA1/Trpa1 and TRPV1/Trpv1 were expressed similarly in human and mouse osteosarcoma tissues, while Trpa1 transcripts were more abundantly present in K7M2 cells. TRPA1 activation with 200 µM AITC induced a significant 45Ca2+ influx into K7M2 cells, and the antagonist attenuated this effect. In accordance with the lower Trpv1 expression, capsaicin induced a moderate 45Ca2+ uptake, which did not reach the level of statistical significance. Both AITC and capsaicin significantly reduced K7M2 cell viability, demonstrating EC50 values of 22 µM and 74 µM. The viability-decreasing effect of AITC was significantly but only partially antagonized by HC-030031, but the action of capsaicin was not affected by the TRPV1 antagonist capsazepine. We provide here the first data on the functional expression of the TRPA1 and TRPV1 ion channels in osteosarcoma, suggesting novel diagnostic and/or therapeutic perspectives.


Bone Neoplasms , Calcium Radioisotopes , Isothiocyanates , Osteosarcoma , TRPA1 Cation Channel , TRPV Cation Channels , Animals , Humans , Mice , Bone Neoplasms/genetics , Capsaicin/pharmacology , Osteosarcoma/genetics , TRPA1 Cation Channel/genetics , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
20.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38673850

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Isothiocyanates , NF-E2-Related Factor 2 , Quassins , Sulfoxides , Transcriptome , Animals , Cattle , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Isothiocyanates/pharmacology , Quassins/pharmacology , Sulfoxides/pharmacology , Transcriptome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Computer Simulation , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
...