Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Talanta ; 278: 126513, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38970965

ABSTRACT

In this work, the electrochemical behavior of the glycosylated flavonoid kaempferitrin was studied, and an electroanalytical methodology was developed for its determination in infusions of Bauhinia forficata using a boron-doped diamond electrode (BDD). The electrochemical behavior of the flavonoid was studied by cyclic voltammetry, and two irreversible oxidation peaks at 0.80 and 1.0 V vs Ag/AgCl were observed. The influence of the pH on the voltammograms was examined, and higher sensitivity was found at pH 7.0. The electrochemical process corresponding to peak 1 at 0.80 V is predominantly diffusion-controlled, as the study shows at varying scan rates. An analytical plot was obtained by square wave voltammetry at optimized experimental conditions (frequency = 100 s-1, amplitude = 90 mV, and step potential = 8 mV) in the concentration range from 3.4 µmol L-1 to 58 µmol L-1, with a linearity of 0.99. The limit of detection and limit of quantification values were 1.0 µmol L-1 and 3.4 µmol L-1, respectively. Three samples of Bauhinia forficata infusions (2 g of sample in 100 mL of water) were analyzed, and the KF values found were 5.0 × 10-4 mol L-1, 3.0 × 10-4 mol L-1, and 7.0 × 10-4 mol L-1, with recovery percentages of 98 %, 106 % and 94 %, respectively. Finally, experiments were performed with two other flavonoids (chrysin and apeginin) to compare and propose an electrochemical oxidation mechanism for kaempferitrin, which was supported by quantum chemical calculations.


Subject(s)
Electrochemical Techniques , Kaempferols , Oxidation-Reduction , Kaempferols/chemistry , Kaempferols/analysis , Electrochemical Techniques/methods , Glycosylation , Electrodes , Bauhinia/chemistry , Quantum Theory , Flavonoids/chemistry , Flavonoids/analysis , Limit of Detection , Diamond/chemistry
2.
PLoS One ; 19(7): e0306637, 2024.
Article in English | MEDLINE | ID: mdl-38985712

ABSTRACT

The Pelargonium genus encompasses around 280 species, most of which are used for medicinal purposes. While P. graveolens, P. odoratissimum, and P. zonale are known to exhibit antimicrobial activity, there is an evident absence of studies evaluating all three species to understand their chemical differences and biological effects. Through the analysis of the hydroalcoholic extracts of P. graveolens, P. odoratissimum, and P. zonale, using HPLC-DAD-MS/MS, quercetin and kaempferol derivatives were identified in these three species. Conversely, gallotannins and anthocyanins were uniquely detected in P. zonale. P. graveolens stood out due to the various types of myricetin derivatives that were not detected in P. odoratissimum and P. zonale extracts. Evaluation of their biological activities revealed that P. zonale displayed superior antibacterial and antibiofilm activities in comparison to the other two species. The antibacterial efficacy of P. zonale was observed towards the clinically relevant strains of Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus (MRSA) 333, Enterococcus faecalis ATCC 29212, and the Vancomycin-resistant E. faecalis INSPI 032. Fractionation analysis of P. zonale suggested that the antibacterial activity attributed to this plant is due to the presence of quercetin derivatives and kaempferol and its derivatives, alongside their synergistic interaction with gallotannins and anthocyanins. Lastly, the three Pelargonium species exhibited notable antioxidant activity, which may be attributed to their high content of total phenolic compounds.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Pelargonium , Plant Extracts , Pelargonium/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests , Chromatography, High Pressure Liquid , Gram-Positive Bacteria/drug effects , Tandem Mass Spectrometry , Biofilms/drug effects , Kaempferols/pharmacology , Kaempferols/chemistry , Kaempferols/metabolism , Quercetin/pharmacology , Quercetin/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry
3.
J Mol Model ; 29(4): 93, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36905478

ABSTRACT

Anthocyanidins, leucoanthocyanidins, and flavonols are natural compounds mainly known due to their reported biological activities, such as antiviral, antifungal, anti-inflammatory activities, and antioxidant activity. In the present study, we performed a comparative structural, conformational, electronic, and nuclear magnetic resonance analysis of the reactivity of the chemical structure of primary anthocyanidins, leucoanthocyanidins, and flavonoids. We focused our analysis on the following molecular questions: (i) differences in cyanidin catechols ( +)-catechin, leucocyanidin, and quercetin; (ii) the loss of hydroxyl presents in the R1 radical of leucoanthocyanidin in the functional groups linked to C4 (ring C); and (iii) the electron affinity of the 3-hydroxyl group (R7) in the flavonoids delphinidin, pelargonidin, cyanidin, quercetin, and kaempferol. We show unprecedented results for bond critical point (BCP) of leucopelargonidin and leucodelphirinidin. The BCP formed between hydroxyl hydrogen (R2) and ketone oxygen (R1) of kaempferol has the same degrees of covalence of quercetin. Kaempferol and quercetin exhibited localized electron densities between hydroxyl hydrogen (R2) and ketone oxygen (R1). Global molecular descriptors showed quercetin and leucocyanidin are the most reactive flavonoids in electrophilic reactions. Complementary, anthocyanidins are the most reactive in nucleophilic reactions, while the smallest gap occurs in delphinidin. Local descriptors indicate that anthocyanidins and flavonols are more prone to electrophilic attacks, while in leucoanthocyanidins, the most susceptible to attack are localized in the ring A. The ring C of anthocyanidins is more aromatic than the same found in flavonols and leucoanthocyanidins. METHODS: For the analysis of the molecular properties, we used the DFT to evaluate the formation of the covalent bonds and intermolecular forces. CAM-B3LYP functional with the def2TZV basis set was used for the geometry optimization. A broad analysis of quantum properties was performed using the assessment of the molecular electrostatic potential surface, electron localization function, Fukui functions, descriptors constructed from frontier orbitals, and nucleus independent chemical shift.


Subject(s)
Anthocyanins , Flavonols , Flavonols/chemistry , Anthocyanins/chemistry , Quercetin/chemistry , Kaempferols/chemistry , Flavonoids/chemistry , Hydrogen/chemistry , Oxygen
4.
Molecules ; 26(13)2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34206940

ABSTRACT

Ethanolic extracts of samples of temperate zone propolis, four from the UK and one from Poland, were tested against three Trypanosoma brucei strains and displayed EC50 values < 20 µg/mL. The extracts were fractionated, from which 12 compounds and one two-component mixture were isolated, and characterized by NMR and high-resolution mass spectrometry, as 3-acetoxypinobanksin, tectochrysin, kaempferol, pinocembrin, 4'-methoxykaempferol, galangin, chrysin, apigenin, pinostrobin, cinnamic acid, coumaric acid, cinnamyl ester/coumaric acid benzyl ester (mixture), 4',7-dimethoxykaempferol, and naringenin 4',7-dimethyl ether. The isolated compounds were tested against drug-sensitive and drug-resistant strains of T. brucei and Leishmania mexicana, with the highest activities ≤ 15 µM. The most active compounds against T. brucei were naringenin 4',7 dimethyl ether and 4'methoxy kaempferol with activity of 15-20 µM against the three T. brucei strains. The most active compounds against L. mexicana were 4',7-dimethoxykaempferol and the coumaric acid ester mixture, with EC50 values of 12.9 ± 3.7 µM and 13.1 ± 1.0 µM. No loss of activity was found with the diamidine- and arsenical-resistant or phenanthridine-resistant T. brucei strains, or the miltefosine-resistant L. mexicana strain; no clear structure activity relationship was observed for the isolated compounds. Temperate propolis yields multiple compounds with anti-kinetoplastid activity.


Subject(s)
Leishmania mexicana/drug effects , Propolis/analysis , Propolis/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma brucei brucei/drug effects , Cinnamates/chemistry , Flavanones/chemistry , Flavonoids/chemistry , Kaempferols/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , Poland , Propolis/chemistry , United Kingdom
5.
Bol. latinoam. Caribe plantas med. aromát ; 20(4): 339-350, jul. 2021. ilus, tab
Article in English | LILACS | ID: biblio-1349507

ABSTRACT

This study was aimed to explore the comparative efficacy of cinnamon bark extract, cinnamaldehyde and kaempferol against acetaminophen (APAP)-induced oxidative stress. Cinnamon bark extract, cinnamaldehyde and kaempferol were utilized or in-vivo analysis. From the results of in-vitro screening tests, cinnamon ethanolic extract was selected for in-vivo study in mouse model. For this, Balb/c albino mice were treated with cinnamon ethanolic extract (200 mg/kg), cinnamaldehyde (10 mg/kg) and kaempferol (10 mg/kg) orally for 14 days followed by single intraperitoneal administration of APAP during 8 hours. Blood and organ samples were collected for biochemical and histopathological analysis. The results showed that cinnamon bark ethanolic extract, cinnamaldehyde and kaempferol ameliorated APAP-induced oxidative stress and organ toxicity in mice. In conclusion, cinnamaldehyde and kaempferol possess comparable antioxidant potential even at 20-times less dose as compared to cinnamon bark ethanolic extract suggesting therapeutic potential in oxidative stress-related disorders.


Este estudio tuvo como objetivo explorar la eficacia comparativa del extracto de corteza de canela, cinamaldehído y kaempferol contra el estrés oxidativo inducido por acetaminofén (APAP). Se utilizaron extracto de corteza de canela, cinamaldehído y kaempferol para el análisis in vivo. De los resultados de las pruebas de detección in vitro, se seleccionó el extracto etanólico de canela para estudio in vivo en modelo de ratón. Para ello, los ratones albinos Balb/c fueron tratados con extracto etanólico de canela (200 mg/kg), cinamaldehído (10 mg/kg) y kaempferol (10 mg/kg) por vía oral durante 14 días, seguido de la administración intraperitoneal única de APAP durante 8 horas. Se recogieron muestras de sangre y órganos para análisis bioquímicos e histopatológicos. Los resultados mostraron que el extracto etanólico de la corteza de canela, el cinamaldehído y el kaempferol mejoraron el estrés oxidativo inducido por APAP y la toxicidad orgánica en ratones. En conclusión, el cinamaldehído y el kaempferol poseen un potencial antioxidante comparable, incluso a una dosis 20 veces menor en comparación con el extracto etanólico de la corteza de canela, lo que sugiere un potencial terapéutico en los trastornos relacionados con el estrés oxidativo.


Subject(s)
Animals , Mice , Acrolein/analogs & derivatives , Plant Extracts/administration & dosage , Cinnamomum zeylanicum/chemistry , Oxidative Stress/drug effects , Kaempferols/chemistry , Antioxidants/administration & dosage , Acrolein/chemistry , Chromatography, High Pressure Liquid , Disease Models, Animal , Phytochemicals , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Acetaminophen/toxicity , Mice, Inbred BALB C
6.
Molecules ; 26(8)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920405

ABSTRACT

The bioassay-guided fractionation of a CHCl3-MeOH extract from the stems of Cissus trifoliata identified an active fraction against PC3 prostate cancer cells. The treatment for 24 h showed an 80% reduction in cell viability (p ≤ 0.05) by a WST-1 assay at a concentration of 100 µg/mL. The HPLC-QTOF-MS analysis of the fraction showed the presence of coumaric and isoferulic acids, apigenin, kaempferol, chrysoeriol, naringenin, ursolic and betulinic acids, hexadecadienoic and octadecadienoic fatty acids, and the stilbene resveratrol. The exposure of PC3 cells to resveratrol (IC25 = 23 µg/mL) for 24 h induced significant changes in 847 genes (Z-score ≥ ±2). The functional classification tool of the DAVID v6.8 platform indicates that the underlying molecular mechanisms against the proliferation of PC3 cells were associated (p ≤ 0.05) with the process of differentiation and metabolism. These findings provide experimental evidence suggesting the potential of C. trifoliata as a promising natural source of anticancer compounds.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Cell Proliferation/drug effects , Cissus/chemistry , Neoplasm Proteins/genetics , Transcriptome , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Apigenin/chemistry , Apigenin/isolation & purification , Apigenin/pharmacology , Biological Assay , Cell Survival/drug effects , Flavanones/chemistry , Flavanones/isolation & purification , Flavanones/pharmacology , Flavones/chemistry , Flavones/isolation & purification , Flavones/pharmacology , Gene Expression Profiling , Humans , Kaempferols/chemistry , Kaempferols/isolation & purification , Kaempferols/pharmacology , Male , Microarray Analysis , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , PC-3 Cells , Pentacyclic Triterpenes/chemistry , Pentacyclic Triterpenes/isolation & purification , Pentacyclic Triterpenes/pharmacology , Plant Extracts/chemistry , Resveratrol/chemistry , Resveratrol/isolation & purification , Resveratrol/pharmacology , Betulinic Acid
7.
Molecules ; 26(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33466999

ABSTRACT

Equisetum myriochaetum is a semi-aquatic plant found on riverbanks that is commonly used in traditional medicine as a diuretic agent. Additionally, the genus Equisetum stands out for its content of the flavonoid kaempferol, a well-known antiproliferative agent. Therefore, in this study, E. myriochaetum ethanolic extract was tested in vitro against a cervical cancer cell line (SiHa). Additionally, the antioxidative activity was evaluated through a 2,2-diphenyl-1-picrilhidrazil (DPPH) assay. Finally, a molecular docking analysis of apigenin, kaempferol, and quercetin on the active site of ß-tubulin was performed to investigate their potential mechanism of action. All fractions of E. myriochaetum ethanolic extract showed antioxidative activity. Fraction 14 displayed an antiproliferative capacity with a half maximal inhibitory concentration (IC50) value of 6.78 µg/mL against SiHa cells.


Subject(s)
Antioxidants , Apigenin , Cell Proliferation/drug effects , Equisetum/chemistry , Kaempferols , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Plant Extracts , Quercetin , Tubulin/chemistry , Uterine Cervical Neoplasms , Antioxidants/chemistry , Antioxidants/pharmacology , Apigenin/chemistry , Apigenin/pharmacology , Cell Line, Tumor , Ethanol/chemistry , Female , Humans , Kaempferols/chemistry , Kaempferols/pharmacology , Neoplasm Proteins/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quercetin/chemistry , Quercetin/pharmacology , Tubulin/metabolism , Uterine Cervical Neoplasms/chemistry , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology
8.
Food Chem ; 342: 128390, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33268174

ABSTRACT

Carioca beans contribute to health maintenance around the world, and the evaluation of commercial postharvest storage (CPS) ensures their quality. This study aimed to evaluate the effect of CPS on technological, physicochemical and functional properties of carioca beans. Two genotypes (Pontal-PO and Madreperola-MP beans) were stored under CPS or controlled conditions and were evaluated after harvest and after three- and six-months storage. PO and MP hardened with time, but the cooking time did not differ. PO is darker than MP and both darkened over time. Storage time affected pH and acidity of the beans and MP presented better physicochemical properties than PO, with lower activity of peroxidase (p = 0.004) and polyphenoloxidase (p = 0.001) enzymes. Glycosylated kaempferol was suggested as a possible chemical marker to differentiate the aging of PO and MP beans. In conclusion, besides the technological differences, the storage was able to prevent physicochemical and functional alterations of beans.


Subject(s)
Food Storage/methods , Phaseolus/chemistry , Catechol Oxidase/metabolism , Dietary Fiber/analysis , Hardness , Humans , Humidity , Hydrogen-Ion Concentration , Kaempferols/analysis , Kaempferols/chemistry , Nutrients/analysis , Peroxidases/metabolism , Phaseolus/metabolism , Phytic Acid/analysis , Spectrophotometry , Temperature , Time Factors
9.
Bioorg Chem ; 105: 104335, 2020 12.
Article in English | MEDLINE | ID: mdl-33074116

ABSTRACT

Banisteriopsis argyrophylla belongs to the Malpighiaceae family, which is a species from Cerrado, also known as "cipó-prata" or "cipó-folha-de-prata." Several species of this family present biological potential. This work reports the chemical identification of the ethanol extract (EE) and its fractions from B. argyrophylla leaves and shows the analysis of the antioxidant activity and inhibitory effects on activities of α-amylase, α-glucosidase and lipase, and non-enzymatic glycation. The ethyl acetate fraction (EAF) and n-butanol fraction (BF) showed antioxidant activity, with IC50 values of 4.1 ± 0.1 and 4.8 ± 0.1 µg mL-1, respectively, by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, and IC50 values of 6046.3 ± 174.2 and 6264.2 ± 32.2 µmol Trolox eq g-1 by the oxygen radical absorbance capacity (ORAC) method. Furthermore, the DPPH method with these fractions presented electroactive species with antioxidant potential, as shown by the differential pulse voltammetry (DPV) method. The inhibitory effects of the EAF and BF were demonstrated by the following results: IC50 of 5.1 ± 0.3 and 2.5 ± 0.2 µg mL-1 for α-amylase, IC50 of 1093.5 ± 26.0 and 1250.8 ± 21.9 µg mL-1 for α-glucosidase, IC50 of 8.3 ± 4.1 and 4.4 ± 1.0 µg mL-1 for lipase, and IC50 of 1.3 ± 0.1 and 0.9 ± 0.1 µg mL-1 for glycation. Some bioactive compounds were identified by (-)-ESI-MS/MS, such as catechin, procyanidins, glycosylated flavonoids, kaempferol, and megastigmane glucosides. The antidiabetic activity of B.argyrophylla has been reported for the first time.


Subject(s)
Antioxidants/chemistry , Banisteriopsis/chemistry , Enzyme Inhibitors/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Glucosidases/metabolism , Antioxidants/pharmacology , Catechin/chemistry , Catechin/pharmacology , Cyclohexanones/chemistry , Cyclohexanones/pharmacology , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Glucosides/chemistry , Glucosides/pharmacology , Glycosylation , Humans , Hypoglycemic Agents/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Lipase/metabolism , Norisoprenoids/chemistry , Norisoprenoids/pharmacology , Plant Extracts/pharmacology , Proanthocyanidins/chemistry , Proanthocyanidins/pharmacology
10.
PLoS One ; 15(1): e0225514, 2020.
Article in English | MEDLINE | ID: mdl-31929529

ABSTRACT

Based on ethnopharmacological studies, a lot of plants, as well as its compounds, have been investigated for the potential use as wound healing agents. In Brazil, Curatella americana is traditionally used by local people to treat wounds, ulcers and inflammations. However, to the best of our knowledge, its traditional use in the treatment of wounds has not been validated by a scientific study. Here, some compounds, many of them flavonoids, were identified in the hydroethanolic extract from the leaves of C. americana (HECA) by LC-HRMS and LC-MS/MS. Besides that, solutions containing different concentrations of HECA and a gel produced with this extract were evaluated for its antimicrobial, coagulant and wound healing activities on an excision mouse wound model as well as its acute dermal safety. A total of thirteen compounds were identified in HECA, mainly quercetin, kaempferol and glucoside derivatives of both, besides catechin and epicatechin known as wound healing agents. The group treated with 1% of HECA exhibited highest wound healing activity and best rate of wound contraction confirmed by histopathology results. The present study provides scientific evidence of, this extract (HECA) possess remarkable wound healing activity, thereby, supporting the traditional use.


Subject(s)
Dilleniaceae/chemistry , Plant Extracts/pharmacology , Wound Healing/drug effects , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Brazil , Catechin/isolation & purification , Chromatography, Liquid , Flavonoids/chemistry , Flavonoids/pharmacology , Glucosides/chemistry , Glucosides/isolation & purification , Humans , Kaempferols/chemistry , Kaempferols/isolation & purification , Mice , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/chemistry , Quercetin/isolation & purification , Tandem Mass Spectrometry
11.
PLoS One ; 14(7): e0219063, 2019.
Article in English | MEDLINE | ID: mdl-31276476

ABSTRACT

Propolis is a complex mixture of resinous and balsamic material collected from the exudates of plants, shoots, and leaves by bees. This study evaluated red propolis extracts obtained by conventional (ethanolic) extraction and ultrasound-assisted extraction of six samples from different regions of northeastern Brazil. The total phenolic compounds and flavonoids, in vitro antioxidant activity, concentration of formononetin and kaempferol and the cytotoxicity against four human tumor cell lines were determined for all twelve obtained extracts. Significant variations in the levels of the investigated compounds were identified in the red propolis extracts, confirming that the chemical composition varied according to the sampling region. The extraction method used also influenced the resulting propolis compounds. The highest concentration of the compounds of interest and the highest in vitro antioxidant activity were exhibited by the extracts obtained from samples from state of Alagoas. Formononetin and kaempferol were identified in all samples. The highest formononetin concentrations were identified in extracts obtained by ultrasound, thus indicating a greater selectivity for the extraction of this compound by this method. Regarding cytotoxic activity, for the HCT-116 line, all of the extracts showed an inhibition of greater than 90%, whereas for the HL-60 and PC3 lines, the minimum identified was 80%. In general, there was no significant difference (p>0.05) in the antiproliferative potential when comparing the extraction methods. The results showed that the composition of Brazilian red propolis varies significantly depending on the geographical origin and that the method used influences the resulting compounds that are present in propolis. However, regardless of the geographical origin and the extraction method used, all the red propolis samples studied presented great biological potential and high antioxidant activity. Furthermore, the ultrasound-assisted method can be efficiently applied to obtain extracts of red propolis more quickly and with high concentration of biomarkers of interest.


Subject(s)
Antioxidants/pharmacology , Flavonoids/chemistry , Isoflavones/pharmacology , Kaempferols/pharmacology , Propolis/chemistry , Antioxidants/chemistry , Brazil , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , HCT116 Cells , HL-60 Cells , Humans , Isoflavones/chemistry , Kaempferols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Spectrophotometry
12.
Analyst ; 144(17): 5232-5244, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31360935

ABSTRACT

Leishmaniasis comprises a group of infectious diseases with worldwide distribution, of which both the visceral and cutaneous forms are caused by Leishmania parasites. In the absence of vaccines, efficacious chemotherapy remains the basis for leishmaniasis control. The available drugs are expensive and associated with several secondary adverse effects. Due to these limitations, the development of new antileishmanial compounds is imperative, and plants offer various perspectives in this regard. The present study evaluated the in vitro leishmanicidal activity of flavonoids isolated from Solanum paludosum Moric. and investigated the mechanisms of cell death induced by them. These compounds were evaluated in vitro for their antileishmanial activity against Leishmania amazonensis promastigotes and they showed prominent leishmanicidal activity. The EtOAc fraction, gossypetin 3,7,8,4'-tetra-O-methyl ether (1), and kaempferol 3,7-di-O-methyl ether (3) were selected to be used in an in vitro assay against L. amazonensis amastigotes and cell death assays. The flavonoids (1) and (3) presented significant activity against L. amazonensis amastigotes, exhibiting the IC50 values of 23.3 ± 4.5 µM, 34.0 ± 9.6 µM, and 10.5 ± 2.5 µM for the EtOAc fraction, (1), and (3), respectively, without toxic effects to the host cells. Moreover, (1) and (3) induced blocked cell cycle progression at the G1/S transition, ultimately leading to G1/G0 arrest. Flavonoid (3) also induced autophagy. Using Raman spectroscopy in conjunction with principal component analysis, the biochemical changes in the cellular components induced by flavonoids (1) and (3) were presented. The obtained results indicated that the mechanisms of action of (1) and (3) occurred through different routes. The results support that the flavonoids derived from S. paludosum can become lead molecules for the design of antileishmanial prototypes.


Subject(s)
Antiprotozoal Agents/pharmacology , Cell Death/drug effects , Flavonoids/pharmacology , Flow Cytometry/methods , Leishmania/drug effects , Animals , Antiprotozoal Agents/chemistry , Autophagy/drug effects , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Flavonoids/chemistry , Kaempferols/chemistry , Kaempferols/pharmacology , Leishmania/cytology , Macrophages/cytology , Macrophages/drug effects , Mice , Spectrum Analysis, Raman , Streptophyta/chemistry
13.
AAPS PharmSciTech ; 20(3): 106, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30746582

ABSTRACT

Kaempferol (KPF), an important flavonoid, has been reported to exert antioxidant, anti-inflammatory, and anticancer activity. However, this compound has low water solubility and hence poor oral bioavailability. This work aims to prepare a solid dispersion (SD) of KPF using Poloxamer 407 in order to improve the water solubility, dissolution rate, and pharmacokinetic properties KPF. After optimization, SDs were prepared at a 1:5 weight ratio of KPF:carrier using the solvent method (SDSM) and melting method (SDMM). Formulations were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) analysis, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The solubility in water of carried-KPF was about 4000-fold greater than that of free KPF. Compared with free KPF or the physical mixture, solid dispersions significantly increased the extent of drug release (approximately 100% within 120 min) and the dissolution rate. Furthermore, after oral administration of SDMM in rats, the area under the curve (AUC) and the peak plasma concentration (Cmax) of KPF from SDMM were twofold greater than those of free KPF (p < 0.05). In conclusion, SD with Poloxamer 407 is a feasible pharmacotechnical strategy to ameliorate the dissolution and bioavailability of KPF.


Subject(s)
Kaempferols/chemistry , Kaempferols/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Biological Availability , Calorimetry, Differential Scanning , Male , Microscopy, Electron, Scanning , Poloxamer/chemistry , Rats , Solubility , Spectroscopy, Fourier Transform Infrared/methods
14.
BMC Complement Altern Med ; 18(1): 138, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29720160

ABSTRACT

BACKGROUND: Brazilian green propolis is produced by mixing secretions from Africanized honey bees with exudate, mainly from Baccharis dracunculifolia. Brazilian propolis is especially rich in flavonoids and cinammic acid derivatives, and it has been widely used in folk medicine owing to its anti-inflammatory, anti-viral, tumoricidal, and analgesic effects. Moreover, it is applied to prevent metabolic disorders, such as type 2 diabetes and arteriosclerosis. Previously, we demonstrated that propolis ethanol extract ameliorated type 2 diabetes in a mouse model through the resolution of adipose tissue inflammation. The aims of this study were to identify the immunosuppressive cells directly elicited by propolis extract and to evaluate the flavonoids that induce such cells. METHODS: Ethanol extract of Brazilian propolis (PEE; 100 mg/kg i.p., twice a week) was injected into lean or high fat-fed obese C57BL/6 mice or C57BL/6 ob/ob mice for one month. Subsequently, immune cells in visceral adipose tissue and the peritoneal cavity were monitored using FACS analysis. Isolated macrophages and the macrophage-like cell line J774.1 were treated with PEE and its constituent components, and the expression of immune suppressive myeloid markers were evaluated. Finally, we injected one of the identified compounds, kaempferol, into C57BL/6 mice and performed FACS analysis on the adipose tissue. RESULTS: Intraperitoneal treatment of PEE induces CD11b+, Gr-1+ myeloid-derived suppressor cells (MDSCs) in visceral adipose tissue and the peritoneal cavity of lean and obese mice. PEE directly stimulates cultured M1 macrophages to transdifferentiate into MDSCs. Among twelve compounds isolated from PEE, kaempferol has an exclusive effect on MDSCs induction in vitro. Accordingly, intraperitoneal injection of kaempferol causes accumulation of MDSCs in the visceral adipose tissue of mice. CONCLUSION: Brazilian PEE and its compound kaempferol strongly induce MDSCs in visceral adipose tissue at a relatively early phase of inflammation. Given the strong anti-inflammatory action of MDSCs, the induction of MDSCs by PEE and kaempferol is expected to be useful for anti-diabetic and anti-inflammatory therapies.


Subject(s)
Kaempferols/pharmacology , Macrophages/drug effects , Myeloid-Derived Suppressor Cells/drug effects , Plant Preparations/pharmacology , Propolis/pharmacology , Adipose Tissue/cytology , Animals , Brazil , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Ethanol , Flow Cytometry , Inflammation/metabolism , Kaempferols/chemistry , Male , Mice , Mice, Inbred C57BL , Peritoneal Cavity/cytology , Plant Preparations/chemistry , Propolis/chemistry
15.
Photochem Photobiol ; 92(5): 742-52, 2016 09.
Article in English | MEDLINE | ID: mdl-27416883

ABSTRACT

In the quest for new natural agents of photoprotection, we evaluated the photoprotective and antioxidant activity of B. antioquensis leaf extracts as well as its phenolic composition. The methanolic extract treated with activated carbon showed the highest absorption coefficients for UVA-UVB radiation, as well as an antioxidant capacity comparable to butylated hydroxy toluene. Furthermore, the formulation containing this extract showed suitable sensorial and photostable characteristics for topical use, and significant values of UVAPF, critical wavelength (λc ), UVA/UVB ratio and sun protection factor (5.3, 378 nm, 0.78 and 9.1 ± 0.1, respectively). In addition, three glycoside derivatives of quercetin, a kaempferol glycoside and a derivative of caffeic acid were the main polyphenolic compounds identified. These results demonstrate the potential of B. antioquensis extracts to be used as active components of novel, natural sunscreens.


Subject(s)
Baccharis/chemistry , Plant Extracts/pharmacology , Sun Protection Factor , Sunscreening Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Chromatography, High Pressure Liquid , Glycosides/chemistry , Glycosides/pharmacology , Kaempferols/chemistry , Kaempferols/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Quercetin/chemistry , Quercetin/pharmacology , Sunscreening Agents/chemistry
16.
Chem Biodivers ; 13(12): 1707-1714, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27472283

ABSTRACT

Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from K. daigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3-O-ß-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (1), was isolated from the AcOEt fraction (Kd-AC). The BuOH-soluble fraction afforded quercetin 3-O-ß-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (2) and the new kaempferol 3-O-ß-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside-7-O-ß-d-glucopyranoside (3), named daigremontrioside. The crude extract, Kd-AC fraction, flavonoids 1 and 2 were evaluated using acyclovir-sensitive strains of HSV-1 and HSV-2. Kd-AC was highly active against HSV-1 (EC50  = 0.97 µg/ml, SI > 206.1) and HSV-2 (EC50  = 0.72 µg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti-HSV-1 (EC50  = 7.4 µg/ml; SI > 27 and EC50  = 5.8 µg/ml; SI > 8.6, respectively) and anti-HSV-2 (EC50  = 9.0 µg/ml; SI > 22.2 and EC50  = 36.2 µg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.


Subject(s)
Antiviral Agents/pharmacology , Glycosides/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Kaempferols/pharmacology , Kalanchoe/chemistry , Antiviral Agents/chemistry , Antiviral Agents/isolation & purification , Dose-Response Relationship, Drug , Glycosides/chemistry , Glycosides/isolation & purification , Kaempferols/chemistry , Kaempferols/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
17.
J Mol Model ; 22(4): 100, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27037824

ABSTRACT

We present a computational study on two flavonols that were recently isolated from Loranthaceae family plant extracts: kaempferol 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside and quercetin 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside. Their structures and energetics have been investigated at the density functional level of theory, up to B3LYP/6-31+G(d,p), incorporating solvent effects with polarizable continuum models. In addition, their potential antioxidant activities were probed through the computation of the (i) bond dissociation enthalpies (BDEs), which are related to the hydrogen-atom transfer mechanism (HAT), and (ii) ionization potentials (IPs), which are related to the single-electron transfer mechanism (SET). The BDEs were determined in water to be 83.23 kcal/mol for kaempferol 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside and 77.49 kcal/mol for quercetin 3-O-α-L-arabinofuranosyl-(1 → 3)-α-L-rhamnoside. The corresponding IPs were obtained for both compounds as 133.38 and 130.99 kcal/mol, respectively. The BDEs and IPs are comparable to those probed for their parental molecules kaempferol and quercetin; this is in marked contrast to previous studies where glycosylation at the 3-position increases the corresponding BDEs, and, hence, decreases subsequent antioxidant activity. The BDEs and IPs obtained suggest both compounds are promising for antioxidant activity and thus further experimental tests are encouraged.


Subject(s)
Antioxidants/chemistry , Kaempferols/chemistry , Quercetin/chemistry , Antioxidants/isolation & purification , Electron Transport , Ethanol/chemistry , Hexanes/chemistry , Kaempferols/isolation & purification , Loranthaceae/chemistry , Methanol/chemistry , Molecular Structure , Plant Extracts/chemistry , Quantum Theory , Quercetin/isolation & purification , Solvents/chemistry , Thermodynamics , Water/chemistry
18.
Int J Mol Sci ; 16(4): 8761-71, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25903149

ABSTRACT

Agave sisalana (sisal) is known worldwide as a source of hard fibers, and Brazil is the largest producer of sisal. Nonetheless, the process of removing the fibers of the sisal leaf generates 95% waste. In this study, we applied chemical sequential steps (hydrothermal extraction, precipitation, liquid-liquid extraction, crystallization, SiO2 and Sephadex LH 20 column chromatography) to obtain pectin, mannitol, succinic acid, kaempferol and a mixture of saponins as raw chemicals from sisal biomass. The structural identification of these compounds was performed though spectrometric methods, such as Infrared (IR), Ultraviolet (UV), Mass spectrometry (MS) and Nuclear magnetic resonance (NMR). All the sisal chemicals found in this work are used by both the chemical and pharmaceutical industries as excipients or active principles in products.


Subject(s)
Agave/chemistry , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Biomass , Chemical Precipitation , Chromatography, Gel , Crystallization , Kaempferols/chemistry , Kaempferols/isolation & purification , Liquid-Liquid Extraction , Mannitol/chemistry , Mannitol/isolation & purification , Pectins/chemistry , Pectins/isolation & purification , Plant Extracts/chemistry , Saponins/chemistry , Saponins/isolation & purification , Succinic Acid/chemistry , Succinic Acid/isolation & purification
19.
Biomed Res Int ; 2014: 941318, 2014.
Article in English | MEDLINE | ID: mdl-24901000

ABSTRACT

The aims of this work were to evaluate the in vitro and in vivo schistosomicidal properties of the methanolic extract of the aerial parts of Mitracarpus frigidus (MFM) and to determine its HPLC profile. For the in vitro experiment, four pairs of adult worms, obtained from infected mice, were exposed to different concentrations of MFM (100 to 400 µg/mL) for 24 and 48 h and analyzed under an inverted microscope. For the in vivo experiment, mice were inoculated with cercariae and, 20 days after infection, MFM (100 and 300 mg/kg) was administered orally for the following 25 days. Mice were euthanized after 60 days. MFM showed in vitro schistosomicidal activity, exhibiting the opening of the gynaecophoral canal of some male schistosomes, the presence of contorted muscles, vesicles, and the darkening of the paired worms skin. In vivo experiments showed that MFM treatments significantly reduced total worm count, as praziquantel, showing a decrease in liver and spleen weight. Also, a significant reduction in granuloma density was observed. MFM treatment did not cause alterations in the liver function of either infected or noninfected mice. The HPLC chromatogram profile showed the presence of kaempferol-O-rutinoside, rutin, kaempferol, psychorubrin, and ursolic acid.


Subject(s)
Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Rubiaceae/chemistry , Schistosoma mansoni/drug effects , Animals , Chromatography, High Pressure Liquid/methods , Female , Granuloma/drug therapy , Kaempferols/chemistry , Liver/drug effects , Male , Mice , Naphthoquinones/chemistry , Plant Extracts/chemistry , Rutin/chemistry , Schistosomicides/pharmacology , Spleen/drug effects , Triterpenes/chemistry , Ursolic Acid
20.
PLoS One ; 7(7): e40548, 2012.
Article in English | MEDLINE | ID: mdl-22802966

ABSTRACT

Detection of singlet oxygen emission, λ(max) = 1270 nm, following laser excitation and steady-state methods were employed to measure the total reaction rate constant, k(T), and the reactive reaction rate constant, k(r), for the reaction between singlet oxygen and several flavonoids. Values of k(T) determined in deuterated water, ranging from 2.4×10(7) M(-1) s(-1) to 13.4×10(7) M(-1) s(-1), for rutin and morin, respectively, and the values measured for k(r), ranging from 2.8×10(5) M(-1) s(-1) to 65.7×10(5) M(-1) s(-1) for kaempferol and morin, respectively, being epicatechin and catechin chemically unreactive. These results indicate that all the studied flavonoids are good quenchers of singlet oxygen and could be valuable antioxidants in systems under oxidative stress, in particular if a flavonoid-rich diet was previously consumed. Analysis of the dependence of rate constant values with molecular structure in terms of global descriptors and condensed Fukui functions, resulting from electronic structure calculations, supports the formation of a charge transfer exciplex in all studied reactions. The fraction of exciplex giving reaction products evolves through a hydroperoxide and/or an endoperoxide intermediate produced by singlet oxygen attack on the double bond of the ring C of the flavonoid.


Subject(s)
Antioxidants/chemistry , Flavonoids/chemistry , Singlet Oxygen/chemistry , Kaempferols/chemistry , Kinetics , Molecular Structure , Quercetin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL