ABSTRACT
Lichen planopilaris (LPP) and frontal fibrosing alopecia (FFA) are primary cicatricial alopecia that cause a major impact on quality of life due to irreversible hair loss and symptoms as itching, burning and pain. They are characterized by permanent loss of hair follicle stem cells (HFSCs) by pathomechanisms still poorly understood, resulting in poor efficacy of currently available treatments. Caveolae are flask-shaped lipid rafts invaginated within the plasma membrane of multiple cell types. Although their role in the HF physiology and pathophysiology is relatively unknown, we have previously demonstrated that the primary structural component of caveolae (caveolin-1 or Cav1) is upregulated in FFA. Thus, we propose to investigate the expression and localization of caveolae-associated structural proteins (Cav1, Cav2, and Cavin-1) and HFSCs (identified by K15) in both LPP and FFA. We analyzed 4 patients with LPP biopsied in affected and non-affected (NA) scalp, 4 patients with FFA biopsied in affected scalp and 4 healthy controls. Affected scalp of LPP and FFA demonstrated increased levels of Cav1 and Cavin-1 compared with HC and LPP-NA. Moreover, Cav1, Cav2 and Cavin1 all exhibit high colocalization with K15 and their expression appears to be negatively correlated, supporting the hypothesis that these proteins are important players in LPP/FFA and may serve as therapeutic targets in future treatments.
Subject(s)
Alopecia , Caveolae , Caveolin 1 , Hair Follicle , Lichen Planus , Up-Regulation , Humans , Alopecia/pathology , Alopecia/metabolism , Hair Follicle/pathology , Hair Follicle/metabolism , Lichen Planus/metabolism , Lichen Planus/pathology , Middle Aged , Female , Caveolin 1/metabolism , Male , Caveolae/metabolism , Scalp/pathology , Adult , Keratin-15/metabolism , Aged , Biopsy , Fibrosis , Stem Cells/metabolism , Stem Cells/pathology , RNA-Binding Proteins/metabolismABSTRACT
OBJECTIVE: The identification of stem cells (SC) remains challenging. In the human oral mucosal epithelium, these cells are believed to be in the basal layer (stem cell niche), but their exact location is unclear. The aim of this study was to examine the dysplastic oral epithelium for these SC-like proteins in order to assess their diagnostic value as biomarkers complementing the histological grading of dysplasia. MATERIAL AND METHODS: Thirty oral epithelial dysplasia (OED), 25 oral lichen planus (OLP), 10 oral hyperkeratosis and 5 normal oral epithelium (OE) were immunohistochemically examined for four SC markers [integrin ß1, neuron-glial-2 (NG2), notch 1 (N1) and keratin 15 (K15)]. RESULTS: Three of four SC markers were heterogeneously detected in all samples. K15 overexpression in the lower two-thirds of severe OED suggests an expanded SC niche. Integrin ß1 distribution pattern was not measurably different between OEDs and control. NG2 was almost negative to absent in all samples examined. N1 expression was weak and highly variable in normal and dysplastic epithelium, making it an unreliable epithelial stem cell marker. CONCLUSIONS: Present findings suggest that these markers were unable to identify individual epithelial stem cells. Instead, subpopulations of cells, most probably stem cells and transit amplifying cells with stem cell-like properties were identified in the dysplastic oral epithelium. The characteristic expressions of K15 might be of diagnostic value for oral dysplasia and should be investigated further.
Subject(s)
Epithelial Cells/metabolism , Proteins/metabolism , Stem Cells/metabolism , Antigens/analysis , Biomarkers/analysis , Epithelial Cells/pathology , Humans , Hyperplasia/metabolism , Immunohistochemistry , Integrin beta1/analysis , Keratin-15/analysis , Lichen Planus, Oral/metabolism , Lichen Planus, Oral/pathology , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Paraffin Embedding , Proteoglycans/analysis , Receptor, Notch1/analysis , Reference Values , Severity of Illness Index , Stem Cells/pathologyABSTRACT
Trichoepithelioma is a benign neoplasm that shares both clinical and histological features with basal cell carcinoma. It is important to distinguish these neoplasms because they require different clinical behavior and therapeutic planning. Many studies have addressed the use of immunohistochemistry to improve the differential diagnosis of these tumors. These studies present conflicting results when addressing the same markers, probably owing to the small number of basaloid tumors that comprised their studies, which generally did not exceed 50 cases. We built a tissue microarray with 162 trichoepithelioma and 328 basal cell carcinoma biopsies and tested a panel of immune markers composed of CD34, CD10, epithelial membrane antigen, Bcl-2, cytokeratins 15 and 20 and D2-40. The results were analyzed using multiple linear and logistic regression models. This analysis revealed a model that could differentiate trichoepithelioma from basal cell carcinoma in 36% of the cases. The panel of immunohistochemical markers required to differentiate between these tumors was composed of CD10, cytokeratin 15, cytokeratin 20 and D2-40. The results obtained in this work were generated from a large number of biopsies and resulted in the confirmation of overlapping epithelial and stromal immunohistochemical profiles from these basaloid tumors. The results also corroborate the point of view that trichoepithelioma and basal cell carcinoma tumors represent two different points in the differentiation of a single cell type. Despite the use of panels of immune markers, histopathological criteria associated with clinical data certainly remain the best guideline for the differential diagnosis of trichoepithelioma and basal cell carcinoma.