Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.422
Filter
2.
Emerg Infect Dis ; 30(7): 1406-1409, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38916573

ABSTRACT

We describe a case of a 46-year-old man in Missouri, USA, with newly diagnosed advanced HIV and PCR-confirmed mpox keratitis. The keratitis initially resolved after intravenous tecovirimat and penicillin for suspected ocular syphilis coinfection. Despite a confirmatory negative PCR, he developed relapsed, ipsilateral PCR-positive keratitis and severe ocular mpox requiring corneal transplant.


Subject(s)
Keratitis , Recurrence , Humans , Middle Aged , Male , Keratitis/diagnosis , Keratitis/microbiology , Keratitis/drug therapy , Missouri , HIV Infections/complications , HIV Infections/drug therapy , Syphilis/diagnosis , Syphilis/drug therapy
3.
BMJ Case Rep ; 17(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719269

ABSTRACT

A middle-aged male patient presented with a central corneal perforation in a deep stromal infiltrate in his left eye. An emergency therapeutic penetrating keratoplasty was performed. Microbiological evaluation of the corneal scraping specimen revealed septate fungal filaments on stains. However, culture reports after 24 hours from the scraping sample and the excised half corneal button showed growth of gram-negative bacilli. This pathogen was identified as an aerobic, non-fermentative, gram-negative, bacillus by conventional microbiology and confirmed as Myroides species by the VITEK 2 Compact system (bioMérieux, Marcy l'Etoile, France). Susceptibility to chloramphenicol was noted based on which the patient was treated with topical chloramphenicol 0.5%. No recurrence of the infection was noted. This is the first reported case of corneal infection with the Myroides species of bacteria which, heretofore, have been known to cause endocarditis and urinary tract infections.


Subject(s)
Eye Infections, Fungal , Keratitis , Humans , Male , Middle Aged , Keratitis/microbiology , Keratitis/diagnosis , Keratitis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/diagnosis , Eye Infections, Fungal/drug therapy , Anti-Bacterial Agents/therapeutic use , Keratoplasty, Penetrating , Chloramphenicol/therapeutic use , Chloramphenicol/administration & dosage , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/drug therapy , Corneal Perforation/microbiology , Corneal Perforation/diagnosis
4.
Cornea ; 43(8): 1058-1061, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692691

ABSTRACT

PURPOSE: The aim of this study was to describe the clinical features and endothelial involvement in a case of Mpox virus keratitis by in vivo confocal microscopy (IVCM). METHODS: This is a case report. RESULTS: A 35-year-old man presented with redness, photophobia, pain, tearing, and a low visual acuity of 0.09 (decimal) in the left eye with a 6-week history of Mpox and corneal trauma. Previous testing of blood, interdigital skin lesions, and conjunctival and eyelid margin swabs confirmed the presence of Mpox by polymerase chain reaction. Biomicroscopy displayed superficial stromal infiltrates with a continuous but irregular epithelium. IVCM revealed the presence of pseudoguttata, loss of defined cell boundaries, infiltration of inflammatory cells in the endothelial layer, endothelial ridges, and precipitated pigmented granules, consistent with endotheliitis. After this episode, the patient had 4 reactivations, also treated with topical corticoids and oral tecovirimat 600 mg twice a day for 2 weeks. On the fourth reactivation, this treatment was extended to 4 weeks. On the last visit, the patient presented a visual acuity of 0.5 with disciform keratitis and reduced endotheliitis signs. The endothelial cell density remained normal during the follow-up (2763 ± 376 cell/mm 2 at baseline and 2795 ± 238 cell/mm 2 at the last visit). Polymegathism and pleomorphism showed altered values during the follow-up. CONCLUSIONS: Patients with an altered corneal epithelial barrier could suffer Mpox endotheliitis, like other DNA viruses, before disciform keratitis appears. IVCM is a useful tool for the early detection of endotheliitis and for describing its evolution, improving patient care.


Subject(s)
Endothelium, Corneal , Eye Infections, Viral , Microscopy, Confocal , Humans , Male , Adult , Eye Infections, Viral/virology , Eye Infections, Viral/diagnosis , Eye Infections, Viral/drug therapy , Endothelium, Corneal/pathology , Keratitis/diagnosis , Keratitis/drug therapy , Keratitis/virology , Visual Acuity/physiology , DNA, Viral/analysis
5.
Int Immunopharmacol ; 136: 112195, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38820965

ABSTRACT

Proper hydration and the clarity of the cornea are maintained through the crucial function of the corneal endothelium. Inflammation of the corneal endothelium, known as endotheliitis, can disrupt endothelial function, resulting in alterations to vision. Corneal endotheliitis is characterised by corneal oedema, the presence of keratic precipitates, inflammation within the anterior chamber, and occasionally, limbal injection, neovascularisation, and the concurrent or overlapping presence of uveitis. The aetiology of this condition is diverse, predominantly viral, but it may also be drug-induced, result from bacterial or fungal infections, be associated with systemic diseases and procedures, or remain idiopathic with no identifiable cause. To date, no standardised protocol for the treatment of this ocular disease exists, and in severe cases, corneal transplantation may be required. A 31-year-old male was transferred to our hospital for the management of corneal endothelial decompensation resulting from corneal endotheliitis. Hormonal therapy and antiviral medications proved ineffective, rendering the patient a candidate for corneal transplantation. As a final measure, treatment with the ROCK inhibitor netarsudil was initiated. The patient demonstrated significant improvement in symptoms, and the inflammation was successfully managed after nine months. In this study, a novel approach employing ROCK inhibitor therapy was utilised for the treatment of corneal endotheliitis, leading to marked recovery during patient follow-up. This case report represents the inaugural application of the ROCK inhibitor netarsudil in managing corneal endothelial decompensation attributed to corneal endotheliitis. These findings suggest that this method warrants consideration as a potential novel treatment option for similar conditions.


Subject(s)
Benzoates , Endothelium, Corneal , Keratitis , beta-Alanine , rho-Associated Kinases , Humans , Adult , Male , Keratitis/drug therapy , Keratitis/diagnosis , rho-Associated Kinases/antagonists & inhibitors , Endothelium, Corneal/pathology , Benzoates/therapeutic use , beta-Alanine/analogs & derivatives , beta-Alanine/therapeutic use , Nitriles/therapeutic use , Corneal Edema/drug therapy , Corneal Edema/etiology , Corneal Edema/diagnosis , Treatment Outcome
6.
Redox Biol ; 73: 103206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796864

ABSTRACT

Fungal keratitis is a severely vision-threatening corneal infection, where the prognosis depends on both fungal virulence and host immune defense. Inappropriate host responses can induce substantial inflammatory damage to the cornea. Therefore, in the treatment of fungal keratitis, it is important to concurrently regulate the immune response while efforts are made to eliminate the pathogen. Ebselen is a widely studied organo-selenium compound and has been demonstrated to have antifungal, antibacterial, anti-inflammatory, and oxidative stress-regulatory properties. The effectiveness of ebselen for the treatment of fungal keratitis remains unknown. In this study, ebselen was demonstrated to produce a marked inhibitory effect on Aspergillus fumigatus (A. fumigatus), including spore germination inhibition, mycelial growth reduction, and fungal biofilm disruption. The antifungal activity of ebselen was related to the cell membrane damage caused by thioredoxin (Trx) system inhibition-mediated oxidative stress. On the contrary, ebselen enhanced the antioxidation of Trx system in mammalian cells. Further, ebselen was proven to suppress the expressions of inflammatory mediators (IL-1ß, IL-6, TNF-α, COX-2, iNOS, and CCL2) and reduce the production of oxidative stress-associated indicators (ROS, NO, and MDA) in fungi-stimulated RAW264.7 cells. In addition, ebselen regulated PI3K/Akt/Nrf2 and p38 MAPK signaling pathways, which contributed to the improvement of inflammation and oxidative stress. Finally, we verified the therapeutic effect of ebselen on mouse fungal keratitis. Ebselen improved the prognosis and reduced the fungal burden in mouse corneas. Expressions of inflammatory mediators, as well as the infiltration of macrophages and neutrophils in the cornea were also obviously decreased by ebselen. In summary, ebselen exerted therapeutic effects by reducing fungal load and protecting host tissues in fungal keratitis, making it a promising treatment for fungal infections.


Subject(s)
Anti-Inflammatory Agents , Antifungal Agents , Azoles , Isoindoles , Keratitis , Organoselenium Compounds , Oxidative Stress , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Animals , Keratitis/drug therapy , Keratitis/microbiology , Mice , Oxidative Stress/drug effects , Azoles/pharmacology , Azoles/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , RAW 264.7 Cells , Antioxidants/pharmacology , Aspergillus fumigatus/drug effects , Aspergillosis/drug therapy , Aspergillosis/microbiology , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Disease Models, Animal
7.
Exp Eye Res ; 244: 109944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797260

ABSTRACT

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Autophagy , Cinnamates , Depsides , Eye Infections, Fungal , Macrophages , Reactive Oxygen Species , Rosmarinic Acid , Depsides/pharmacology , Animals , Autophagy/drug effects , Mice , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillosis/metabolism , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cinnamates/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Disease Models, Animal , RAW 264.7 Cells , Cytokines/metabolism , Phagocytosis/drug effects
8.
Microbiology (Reading) ; 170(5)2024 May.
Article in English | MEDLINE | ID: mdl-38739119

ABSTRACT

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Subject(s)
Anti-Bacterial Agents , Biofilms , Ciprofloxacin , Disease Models, Animal , Keratitis , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Anti-Bacterial Agents/pharmacology , Swine , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Biofilms/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Meropenem/pharmacology
9.
Exp Eye Res ; 244: 109950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815789

ABSTRACT

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Subject(s)
Capsaicin , Cell Survival , Epithelium, Corneal , Lipopolysaccharides , Oxidative Stress , Oxidative Stress/drug effects , Humans , Lipopolysaccharides/pharmacology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cell Survival/drug effects , TRPV Cation Channels/metabolism , Antioxidants/pharmacology , Cells, Cultured , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/pathology , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/metabolism
10.
BMJ Case Rep ; 17(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38749526

ABSTRACT

We report the case of a female patient in her late 20s who visited the clinic with concerns about poor vision, redness, watering and a burning sensation in her left eye 2 weeks after undergoing a small incision lenticule extraction. She had no history of systemic illness or immunosuppressed status. On slit lamp examination, she was found to have corneal stromal infiltrates in the interface at multiple locations. Given the clinical diagnosis of microbial keratitis, corneal scraping of the interface infiltrate was performed and sent for microbiological examination revealing gram-positive, thin, beaded filaments that were acid-fast positive and later identified by growth in culture media as Nocardia species. This case was managed successfully with the use of topical amikacin and systemic trimethoprim-sulfamethoxazole with complete resolution of infection.


Subject(s)
Anti-Bacterial Agents , Eye Infections, Bacterial , Keratitis , Nocardia Infections , Humans , Female , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/diagnosis , Keratitis/surgery , Anti-Bacterial Agents/therapeutic use , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/drug therapy , Amikacin/therapeutic use , Amikacin/administration & dosage , Adult , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Nocardia/isolation & purification , Surgical Wound Infection/microbiology , Surgical Wound Infection/drug therapy , Surgical Wound Infection/diagnosis
11.
Mycoses ; 67(5): e13728, 2024 May.
Article in English | MEDLINE | ID: mdl-38695201

ABSTRACT

BACKGROUND: Fungal keratitis is a severe eye infection that can result in blindness and visual impairment, particularly in developing countries. Fusarium spp. are the primary causative agents of this condition. Diagnosis of Fusarium keratitis (FK) is challenging, and delayed treatment can lead to serious complications. However, there is limited epidemiological data on FK, especially in tropical areas. OBJECTIVES: This study aimed to describe the clinical, laboratorial and epidemiological characteristics of FK in a tropical semi-arid region of Brazil. PATIENTS/METHODS: Adult patients with laboratory-confirmed FK diagnosed between October 2019 and March 2022 were evaluated. Fusarium isolates were characterized at molecular level and evaluated regarding antifungal susceptibility. RESULTS: A total of 226 clinical samples from patients suspected of keratitis were evaluated; fungal growth was detected in 50 samples (22.12%); out of which 42 were suggestive of Fusarium spp. (84%). Molecular analysis of a randomly selected set of 27 isolates identified F. solani species complex (n = 14); F. fujikuroi sensu lato (n = 6) and F. dimerum sensu lato (n = 7); a total of 10 haplotypes were identified among the strains. All but one Fusarium strains were inhibited by amphotericin B, natamycin and fluconazole. Most patients were male (71.42%; 30 out of 42), aged from 27 to 73 years old. Trauma was the most important risk factor for FK (40.47%; 17 out of 42). Patients were treated with antifungals, corticoids and antibiotics; keratoplasty and eye enucleation were also performed. CONCLUSIONS: The study provided insights into the characteristics of FK in tropical regions and emphasized the importance of enhanced surveillance and management strategies.


Subject(s)
Antifungal Agents , Eye Infections, Fungal , Fusariosis , Fusarium , Keratitis , Microbial Sensitivity Tests , Humans , Brazil/epidemiology , Fusarium/genetics , Fusarium/drug effects , Fusarium/isolation & purification , Fusarium/classification , Male , Female , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Adult , Keratitis/microbiology , Keratitis/epidemiology , Keratitis/drug therapy , Middle Aged , Fusariosis/microbiology , Fusariosis/epidemiology , Fusariosis/drug therapy , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/epidemiology , Eye Infections, Fungal/drug therapy , Aged , Young Adult , Adolescent , Tropical Climate , Aged, 80 and over , Amphotericin B/pharmacology , Amphotericin B/therapeutic use
12.
ACS Appl Mater Interfaces ; 16(20): 25637-25651, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728098

ABSTRACT

Fluconazole (FNL) is one of the first-line treatments for fungal keratitis as it is an effective broad-spectrum antimicrobial commonly administered orally or topically. However, FNL has a very low water solubility, limiting its drug formulation, therapeutic application, and bioavailability through tissues. To overcome these limitations, this study aimed to develop FNL inclusion complexes (FNL-IC) with cyclodextrin (α-cyclodextrin, sulfobutylether-ß-cyclodextrin, and hydroxypropyl-γ cyclodextrin) and incorporate it into a dissolvable microneedle (DMN) system to improve solubility and drug penetration. FNL-IC was evaluated for saturation solubility, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release, minimum inhibitory concentration, minimum fungicidal concentration, and time-killing assay. DMN-FNL-IC was evaluated for mechanical and insertion properties, surface pH, moisture absorption ability, water vapor transmission, and drug content recovery. Moreover, ocular kinetic, ex vivo antimicrobial, in vivo antifungal, and chorioallantoic membrane (HET-CAM) assays were conducted to assess the overall performance of the formulation. Mechanical strength and insertion properties revealed that DMN-FNL-IC has great mechanical and insertion properties. The in vitro release of FNL-IC was significantly improved, exhibiting a 9-fold increase compared to pure FNL. The ex vivo antifungal activity showed significant inhibition of Candida albicans from 6.54 to 0.73 log cfu/mL or 100-0.94%. In vivo numbers of colonies of 0.87 ± 0.13 log cfu/mL (F2), 4.76 ± 0.26 log cfu/mL (FNL eye drops), 3.89 ± 0.24 log cfu/mL (FNL ointments), and 8.04 ± 0.58 log cfu/mL (control) showed the effectiveness of DMN preparations against other standard commercial preparations. The HET-CAM assay showed that DMN-FNL-IC (F2) did not show any vascular damage. Finally, a combination of FNL-IC and DMN was developed appropriately for ocular delivery of FNL, which was safe and increased the effectiveness of treatments for fungal keratitis.


Subject(s)
Antifungal Agents , Candida albicans , Fluconazole , Keratitis , Fluconazole/pharmacology , Fluconazole/chemistry , Fluconazole/pharmacokinetics , Animals , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Keratitis/drug therapy , Keratitis/microbiology , Candida albicans/drug effects , Microbial Sensitivity Tests , Rabbits , Needles , Solubility , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology
13.
BMJ Case Rep ; 17(4)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688575

ABSTRACT

A woman in her late 50s presented to the ophthalmology clinic having bilateral eye pain and discharge for the last month. Her medical history was significant for lung adenocarcinoma, for which she was being treated with nivolumab. Filamentary keratitis was evident at the slit-lamp examination. Regardless of ophthalmic reasons, nivolumab was suspended. Prednisolone ointment was started, with a complete remission. We present a case of steroid-responsive filamentary keratitis triggered by nivolumab. We aim to highlight the importance of prompt ophthalmology referral and the use of therapies targeting ocular surface inflammation in immune checkpoint inhibition therapy.


Subject(s)
Keratitis , Nivolumab , Humans , Nivolumab/adverse effects , Female , Middle Aged , Keratitis/drug therapy , Keratitis/chemically induced , Keratitis/diagnosis , Antineoplastic Agents, Immunological/adverse effects , Prednisolone/therapeutic use , Prednisolone/administration & dosage , Lung Neoplasms/drug therapy , Immune Checkpoint Inhibitors/adverse effects , Adenocarcinoma of Lung/drug therapy
14.
Sci Rep ; 14(1): 8024, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580798

ABSTRACT

Diabetes mellitus is recognized as a major predisposing factor for Moraxella keratitis. However, how diabetes mellitus contributes to Moraxella keratitis remains unclear. In this study, we examined Moraxella keratitis; based on the findings, we investigated the impact of advanced glycation end products (AGEs) deposition in the cornea of individuals with diabetic mellitus on the adhesion of Moraxella isolates to the cornea. A retrospective analysis of 27 culture-proven cases of Moraxella keratitis at Ehime University Hospital (March 2006 to February 2022) was performed. Moraxella isolates were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the patients, 30.4% had diabetes mellitus and 22.2% had the predominant ocular condition of using steroid eye drops. The species identified were Moraxella nonliquefaciens in 59.3% and Moraxella lacunata in 40.7% of patients. To investigate the underlying mechanisms, we assessed the effects of M. nonliquefaciens adherence to simian virus 40-immortalized human corneal epithelial cells (HCECs) with or without AGEs. The results demonstrated the number of M. nonliquefaciens adhering to HCECs was significantly increased by adding AGEs compared with that in controls (p < 0.01). Furthermore, in the corneas of streptozotocin-induced diabetic C57BL/6 mice treated with or without pyridoxamine, an AGE inhibitor, the number of M. nonliquefaciens adhering to the corneas of diabetic mice was significantly reduced by pyridoxamine treatment (p < 0.05). In conclusion, the development of Moraxella keratitis may be significantly influenced by the deposition of AGEs on the corneal epithelium of patients with diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Keratitis , Humans , Animals , Mice , Retrospective Studies , Pyridoxamine , Mice, Inbred C57BL , Keratitis/drug therapy , Moraxella , Cornea , Glycation End Products, Advanced
15.
Cytokine ; 179: 156626, 2024 07.
Article in English | MEDLINE | ID: mdl-38678810

ABSTRACT

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Subject(s)
Anti-Inflammatory Agents , Aspergillus fumigatus , Keratitis , Lectins, C-Type , Neuroprotective Agents , Resveratrol , p38 Mitogen-Activated Protein Kinases , Aspergillus fumigatus/drug effects , Lectins, C-Type/metabolism , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Resveratrol/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , Aspergillosis/drug therapy , Aspergillosis/metabolism , Antifungal Agents/pharmacology , Male , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Cornea/drug effects , Cornea/metabolism
16.
Int J Pharm ; 656: 124118, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615806

ABSTRACT

Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.


Subject(s)
Antifungal Agents , Cornea , Drug Liberation , Eye Infections, Fungal , Keratitis , Micelles , Nanoparticles , Natamycin , Natamycin/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Keratitis/drug therapy , Keratitis/microbiology , Animals , Cornea/microbiology , Cornea/metabolism , Cornea/drug effects , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Rabbits , Solubility , Delayed-Action Preparations , Tears/metabolism
17.
BMJ Open Ophthalmol ; 9(1)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653537

ABSTRACT

OBJECTIVE: Microbial keratitis (MK) is a significant cause of blindness in sub-Saharan Africa. We investigated the feasibility of using a novel corneal impression membrane (CIM) for obtaining and processing samples by culture, PCR and whole-genome sequencing (WGS) in patients presenting with suspected MK in Malawi. METHODS AND ANALYSIS: Samples were collected from patients presenting with suspected MK using a 12 mm diameter polytetrafluoroethylene CIM disc. Samples were processed using culture and PCR for Acanthamoeba, herpes simplex virus type 1 (HSV-1) and the bacterial 16S rRNA gene. Minimum inhibitory concentrations of isolates to eight antimicrobials were measured using susceptibility strips. WGS was used to characterise Staphylococcus aureus isolates. RESULTS: 71 eyes of 71 patients were included. The overall CIM isolation rate was 81.7% (58 positive samples from 71 participants). 69 (81.2%) of isolates were Gram-positive cocci. Coagulase-negative Staphylococcus 31.8% and Streptococcus species 14.1% were the most isolated bacteria. Seven (9.9%) participants were positive for HSV-1. Fungi and Acanthamoeba were not detected. Moxifloxacin and chloramphenicol offered the best coverage for both Gram-positive and Gram-negative isolates when susceptibility was determined using known antimicrobial first quartile concentrations and European Committee on Antimicrobial Susceptibility Testing breakpoints, respectively. WGS identified known virulence genes associated with S. aureus keratitis. CONCLUSIONS: In a resource-poor setting, a CIM can be used to safely sample the cornea in patients presenting with suspected MK, enabling identification of causative microorganisms by culture and PCR. Although the microbiological spectrum found was limited to the dry season, these preliminary results could be used to guide empirical treatment.


Subject(s)
Eye Infections, Bacterial , Humans , Pilot Projects , Malawi/epidemiology , Male , Female , Adult , Middle Aged , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/drug therapy , Young Adult , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Microbial Sensitivity Tests , Cornea/microbiology , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aged , Polymerase Chain Reaction , Adolescent , Acanthamoeba/isolation & purification , Acanthamoeba/genetics , Acanthamoeba/drug effects , RNA, Ribosomal, 16S/genetics
18.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593508

ABSTRACT

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Subject(s)
Anti-Inflammatory Agents , Aspergillosis , Aspergillus fumigatus , Isoflavones , Keratitis , Animals , Aspergillus fumigatus/drug effects , Keratitis/drug therapy , Keratitis/microbiology , Keratitis/immunology , Aspergillosis/drug therapy , Aspergillosis/immunology , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Neutrophils/immunology , Neutrophils/drug effects , Disease Models, Animal , Reactive Oxygen Species/metabolism , Female , Macrophages/drug effects , Macrophages/immunology , Biofilms/drug effects , Mice, Inbred C57BL , Cornea/pathology , Cornea/drug effects , Cornea/microbiology
19.
Biomaterials ; 308: 122565, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38603823

ABSTRACT

As bacterial keratitis progresses rapidly, prompt intervention is necessary. Current diagnostic processes are time-consuming and invasive, leading to improper antibiotics for treatment. Therefore, innovative strategies for diagnosing and treating bacterial keratitis are urgently needed. In this study, Cu2-xSe@BSA@NTRP nanoparticles were developed by loading nitroreductase-responsive probes (NTRPs) onto Cu2-xSe@BSA. These nanoparticles exhibited integrated fluorescence imaging and antibacterial capabilities. In vitro and in vivo experiments showed that the nanoparticles produced responsive fluorescence signals in bacteria within 30 min due to an interaction between the released NTRP and bacterial endogenous nitroreductase (NTR). When combined with low-temperature photothermal therapy (PTT), the nanoparticles effectively eliminated E. coli and S. aureus, achieved antibacterial efficacy above 95% and facilitated the re-epithelialization process at the corneal wound site in vivo. Overall, the Cu2-xSe@BSA@NTRP nanoparticles demonstrated potential for rapid, noninvasive in situ diagnosis, treatment, and visualization assessment of therapy effectiveness in bacterial keratitis.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Keratitis , Nanoparticles , Nitroreductases , Animals , Nitroreductases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Nanoparticles/chemistry , Keratitis/drug therapy , Keratitis/microbiology , Escherichia coli/drug effects , Optical Imaging/methods , Staphylococcus aureus/drug effects , Mice , Photothermal Therapy/methods , Humans , Copper/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...