Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.961
Filter
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 349-358, 2024 Mar 28.
Article in English, Chinese | MEDLINE | ID: mdl-38970508

ABSTRACT

OBJECTIVES: Obesity related glomerulopathy (ORG) is induced by obesity, but the pathogenesis remains unclear. This study aims to investigate the expression of early growth response protein 3 (EGR3) in the renal cortex tissues of ORG patients and high-fat diet-induced obese mice, and to further explore the molecular mechanism of EGR3 in inhibiting palmitic acid (PA) induced human podocyte inflammatory damage. METHODS: Renal cortex tissues were collected from ORG patients (n=6) who have been excluded from kidney damage caused by other diseases and confirmed by histopathology, and from obese mice induced by high-fat diet (n=10). Human and mouse podocytes were intervened with 150 µmol/L PA for 48 hours. EGR3 was overexpressed or silenced in human podocytes. Enzyme linked immunosorbent assay (ELISA) was used to detcet the levels of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß). Real-time RT-PCR was used to detect the mRNA expressions of EGR3, podocytes molecular markers nephrosis 1 (NPHS1), nephrosis 2 (NPHS2), podocalyxin (PODXL), and podoplanin (PDPN). RNA-seq was performed to detect differentially expressed genes (DEGs) after human podocytes overexpressing EGR3 and treated with 150 µmol/L PA compared with the control group. Co-immunoprecipitation (Co-IP) combined with liquid chromatography tandem mass spectrometry (LC-MS) was used to detect potential interacting proteins of EGR3 and the intersected with the RNA-seq results. Co-IP confirmed the interaction between EGR3 and protein arginine methyltransferases 1 (PRMT1), after silencing EGR3 and PRMT1 inhibitor intervention, the secretion of IL-6 and IL-1ß in PA-induced podocytes was detected. Western blotting was used to detect the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) after overexpression or silencing of EGR3. RESULTS: EGR3 was significantly upregulated in renal cortex tissues of ORG patients and high-fat diet-induced obese mice (both P<0.01). In addition, after treating with 150 µmol/L PA for 48 hours, the expression of EGR3 in human and mouse podocytes was significantly upregulated (both P<0.05). Overexpression or silencing of EGR3 in human podocytes inhibited or promoted the secretion of IL-6 and IL-1ß in the cell culture supernatant after PA intervention, respectively, and upregulated or downregulated the expression of NPHS1, PODXL, NPHS2,and PDPN (all P<0.05). RNA-seq showed a total of 988 DEGs, and Co-IP+LC-MS identified a total of 238 proteins that may interact with EGR3. Co-IP confirmed that PRMT1 was an interacting protein with EGR3. Furthermore, PRMT1 inhibitors could partially reduce PA-induced IL-6 and IL-1ß secretion after EGR3 silencing in human podocytes (both P<0.05). Overexpression or silencing of EGR3 negatively regulated the expression of PRMT1 and p-STAT3. CONCLUSIONS: EGR3 may reduce ORG podocyte inflammatory damage by inhibiting the PRMT1/p-STAT3 pathway.


Subject(s)
Early Growth Response Protein 3 , Obesity , Podocytes , Protein-Arginine N-Methyltransferases , Repressor Proteins , STAT3 Transcription Factor , Podocytes/metabolism , Podocytes/pathology , Protein-Arginine N-Methyltransferases/metabolism , Protein-Arginine N-Methyltransferases/genetics , Animals , Humans , Mice , STAT3 Transcription Factor/metabolism , Obesity/complications , Obesity/metabolism , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Palmitic Acid/pharmacology , Diet, High-Fat/adverse effects , Inflammation/metabolism , Mice, Obese , Male , Interleukin-1beta/metabolism , Mice, Inbred C57BL , Interleukin-6/metabolism , Interleukin-6/genetics , Kidney Cortex/metabolism , Kidney Cortex/pathology
2.
Biomolecules ; 14(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927017

ABSTRACT

Renal interstitial fibrosis (RIF) is a classic pathophysiological process of chronic kidney disease (CKD). However, the mechanisms underlying RIF remain unclear. The present study found that a novel circular RNA, cirInpp5b, might be involved in RIF by high-throughput sequencing. Subsequent experiments revealed that circInpp5b was reduced in UUO mouse kidney tissues and TGF-ß1-treated proximal tubular cells. The overexpression of circInpp5b inhibited RIF in UUO mice and prevented extracellular matrix (ECM) deposition in TGF-ß1-treated proximal tubular cells. Furthermore, overexpression of circInpp5b down-regulated the protein level of DDX1. Mechanistically, circInpp5b bound to the DDX1 protein and promoted its lysosomal degradation. Collectively, the findings of our study demonstrate that circInpp5b ameliorates RIF by binding to the DDX1 protein and promoting its lysosomal degradation.


Subject(s)
DEAD-box RNA Helicases , Fibrosis , Lysosomes , RNA, Circular , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Animals , Mice , Lysosomes/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Proteolysis , Male , Mice, Inbred C57BL , Humans , Kidney/metabolism , Kidney/pathology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics
3.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928144

ABSTRACT

This study aimed to investigate obesity-related glomerulopathy (ORG) at cellular, structural, and transcriptomic levels. Thirty Wistar rats were randomized into two groups: 15 rats were fed with a standard diet (SD-rats), and 15 rats were fed with a high-fat diet (HFD-rats). After 10 weeks, the weight, kidney function, histological features, and transcriptomic changes were assessed. HFD-rats gained significantly more weight (55.8% vs. 29.2%; p < 0.001) and albuminuria (10,384.04 ng/mL vs. 5845.45 ng/mL; p < 0.001) compared to SD-rats. HFD-rats exhibited early stages of ORG, with predominant mesangial matrix increase and podocyte hypertrophy (PH). These lesions correlated with differentially expressed (DE) genes and miRNAs. Functional analysis showed that miR-205, which was DE in both the kidneys and urine of HFD-rats, negatively regulated the PTEN gene, promoting lipid endocytosis in podocytes. The downregulation of PTEN was proved through a higher PTEN/nephrin ratio in the SD-rats and the presence of lipid vacuoles in HFD-podocytes. This study has found a specific targetome of miRNAs and gene expression in early stages of ORG. Also, it emphasizes the potential value of miR-205 as a urinary biomarker for detecting podocyte injury in ORG, offering a tool for early diagnosis, and opening new avenues for future therapeutic research of obesity-related glomerulopathy.


Subject(s)
Diet, High-Fat , MicroRNAs , Obesity , Podocytes , RNA, Messenger , Rats, Wistar , Animals , MicroRNAs/genetics , Obesity/complications , Obesity/genetics , Obesity/metabolism , Rats , Diet, High-Fat/adverse effects , Male , Podocytes/metabolism , Podocytes/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Gene Expression Profiling/methods , Gene Expression Regulation , Transcriptome , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism
4.
Pathologie (Heidelb) ; 45(4): 239-240, 2024 Jul.
Article in German | MEDLINE | ID: mdl-38916750
5.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916773

ABSTRACT

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Subject(s)
Formins , Mitosis , Podocytes , Transcriptome , Humans , Mitosis/genetics , Podocytes/metabolism , Podocytes/pathology , Transcriptome/genetics , Formins/genetics , Formins/metabolism , Cell Death/genetics , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Diseases/metabolism , Mutation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Cell Line
6.
Cell Rep ; 43(6): 114310, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38838223

ABSTRACT

Elevated interferon (IFN) signaling is associated with kidney diseases including COVID-19, HIV, and apolipoprotein-L1 (APOL1) nephropathy, but whether IFNs directly contribute to nephrotoxicity remains unclear. Using human kidney organoids, primary endothelial cells, and patient samples, we demonstrate that IFN-γ induces pyroptotic angiopathy in combination with APOL1 expression. Single-cell RNA sequencing, immunoblotting, and quantitative fluorescence-based assays reveal that IFN-γ-mediated expression of APOL1 is accompanied by pyroptotic endothelial network degradation in organoids. Pharmacological blockade of IFN-γ signaling inhibits APOL1 expression, prevents upregulation of pyroptosis-associated genes, and rescues vascular networks. Multiomic analyses in patients with COVID-19, proteinuric kidney disease, and collapsing glomerulopathy similarly demonstrate increased IFN signaling and pyroptosis-associated gene expression correlating with accelerated renal disease progression. Our results reveal that IFN-γ signaling simultaneously induces endothelial injury and primes renal cells for pyroptosis, suggesting a combinatorial mechanism for APOL1-mediated collapsing glomerulopathy, which can be targeted therapeutically.


Subject(s)
Apolipoprotein L1 , Interferon-gamma , Kidney Diseases , Pyroptosis , Humans , Apolipoprotein L1/metabolism , Apolipoprotein L1/genetics , Interferon-gamma/metabolism , Pyroptosis/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/genetics , Signal Transduction , Kidney/metabolism , Kidney/pathology , SARS-CoV-2/metabolism
7.
Iran J Kidney Dis ; 18(3): 159-167, 2024 05.
Article in English | MEDLINE | ID: mdl-38904340

ABSTRACT

INTRODUCTION: Shenqi pill (SQP) can be used to treat various kidney related diseases, but its exact mechanism of action remains unclear. We intended to analyze the role and mechanism of SQP on renal interstitial fibrosis (RIF). METHODS: After performing unilateral ureteral obstruction (UUO) surgery following the Institutional Animal Care and Use Committee guidelines, all rats were assigned into the sham group, UUO group, UUO + SQP 1.5 g/kg, UUO + SQP 3 g/kg, and UUO + SQP 6 g/kg groups. After treatment with SQP for 4 weeks, the appearance of kidney, serum creatinine (SCr), and blood urea nitrogen (BUN) levels were monitored in each group. The pathological injury, extracellular matrix (ECM), and Notch1 pathway-related protein levels were measured using H&E staining, Masson staining, immunohistochemistry, and Western blot, respectively. RESULTS: SQP could obviously ameliorate the appearance of the kidney as well as the levels of SCr and BUN in UUO rats (SCr: 67.6 ± 4.64 µM, 59.66 ± 4.96 µM, 48.76 ± 4.44 µM, 40.43 ± 3.02 µM for UUO, low, medium, and high SQP treatment groups; BUN: 9.09 ± 0.97 mM, 7.72 ± 0.61 mM, 5.42 ± 0.42 mM, 4.24 ± 0.34 mM for UUO, low, medium, and high SQP treatment groups; P < .05). SQP also effectively mitigated renal tissue injury in UUO rats (P < .05). Moreover, we uncovered that SQP significantly inhibited Collagen I, α-SMA, Collagen IV, TGF-B1, Notch1, and Jag1 protein expressions in UUO rats kidney (P < .05). CONCLUSION: Our data elucidated that SQP can alleviate RIF, and the mechanism may be related to the Notch1/Jag1 pathway. DOI: 10.52547/ijkd.7703.


Subject(s)
Blood Urea Nitrogen , Drugs, Chinese Herbal , Fibrosis , Jagged-1 Protein , Kidney , Rats, Sprague-Dawley , Receptor, Notch1 , Signal Transduction , Ureteral Obstruction , Animals , Drugs, Chinese Herbal/pharmacology , Male , Receptor, Notch1/metabolism , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Ureteral Obstruction/drug therapy , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Rats , Signal Transduction/drug effects , Jagged-1 Protein/metabolism , Disease Models, Animal , Kidney Diseases/pathology , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Creatinine/blood , Transforming Growth Factor beta1/metabolism , Actins/metabolism
8.
J Proteome Res ; 23(7): 2542-2551, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38869849

ABSTRACT

The application of innovative spatial proteomics techniques, such as those based upon matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) technology, has the potential to impact research in the field of nephropathology. Notwithstanding, the possibility to apply this technology in more routine diagnostic contexts remains limited by the alternative fixatives employed by this ultraspecialized diagnostic field, where most nephropathology laboratories worldwide use bouin-fixed paraffin-embedded (BFPE) samples. Here, the feasibility of performing MALDI-MSI on BFPE renal tissue is explored, evaluating variability within the trypsin-digested proteome as a result of different preanalytical conditions and comparing them with the more standardized formalin-fixed paraffin-embedded (FFPE) counterparts. A large proportion of the features (270, 68.9%) was detected in both BFPE and FFPE renal samples, demonstrating only limited variability in signal intensity (10.22-10.06%). Samples processed with either fixative were able to discriminate the principal parenchyma regions along with diverse renal substructures, such as glomeruli, tubules, and vessels. This was observed when performing an additional "stress test", showing comparable results in both BFPE and FFPE samples when the distribution of several amyloid fingerprint proteins was mapped. These results suggest the utility of BFPE tissue specimens in MSI-based nephropathology research, further widening their application in this field.


Subject(s)
Feasibility Studies , Formaldehyde , Kidney , Paraffin Embedding , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tissue Fixation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Proteomics/methods , Humans , Kidney/chemistry , Kidney/pathology , Kidney/metabolism , Formaldehyde/chemistry , Kidney Diseases/pathology , Kidney Diseases/metabolism , Kidney Diseases/diagnosis , Fixatives/chemistry , Proteome/analysis
9.
Biochem Biophys Res Commun ; 725: 150266, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38878759

ABSTRACT

Cisplatin (CDDP) is a platinum-based anticancer drug widely prescribed for its effectiveness in treating various forms of cancer. However, its major side effect is nephrotoxicity. Although several methods have been developed to mitigate CDDP-induced nephrotoxicity, an optimal approach has yet to be established. This study aimed to investigate the "chronotoxicity" of CDDP as a potential strategy to reduce its side effects. Male ICR mice were treated with CDDP (20 mg/kg, intraperitoneal injection, one shot) at zeitgeber time (ZT) 2 or ZT14 (light or dark phase). After 72 h, we collected plasma and kidney and evaluated several markers. We found that body weight change between ZT2 and ZT14 by CDDP was comparable. In contrast, many toxicological factors, such as plasma blood urine nitrogen, plasma creatinine, renal oxidative stress (malondialdehyde), DNA damage (γH2AX), acute kidney injury biomarker (KIM-1), and inflammation (Tnfα), were significantly induced at ZT14 compared to than that of ZT2. Our present data suggested that chronotoxicology might provide beneficial information on the importance of administration timings for toxic evaluations and unacceptable side effects.


Subject(s)
Antineoplastic Agents , Circadian Rhythm , Cisplatin , Kidney , Mice, Inbred ICR , Animals , Cisplatin/toxicity , Male , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Antineoplastic Agents/toxicity , Antineoplastic Agents/adverse effects , Mice , Circadian Rhythm/drug effects , Oxidative Stress/drug effects , DNA Damage/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology
10.
BMC Vet Res ; 20(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867202

ABSTRACT

Acetamiprid (ACDP) is a widely used neonicotinoid insecticide that is popular for its efficacy in controlling fleas in domestic settings and for pets. Our study aims to offer a comprehensive examination of the toxicological impacts of ACDP and the prophylactic effects of cinnamon nanoemulsions (CMNEs) on the pathological, immunohistochemical, and hematological analyses induced by taking ACDP twice a week for 28 days. Forty healthy rats were divided into four groups (n = 10) at random; the first group served as control rats; the second received CMNEs (2 mg/Kg body weight); the third group received acetamiprid (ACDP group; 21.7 mg/Kg body weight), and the fourth group was given both ACDP and CMNEs by oral gavage. Following the study period, tissue and blood samples were extracted and prepared for analysis. According to a GC-MS analysis, CMNEs had several bioactive ingredients that protected the liver from oxidative stress by upregulating antioxidant and anti-inflammatory agents. Our findings demonstrated that whereas ACDP treatment considerably boosted white blood cells (WBCs) and lymphocytes, it significantly lowered body weight gain (BWG), red blood cells (RBCs), hemoglobin (Hb), hematocrit (HCT), and platelets (PLT). ACDP notably reduced antioxidant enzyme activities: superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) and elevated hydrogen peroxide and malondialdehyde levels compared with other groups. ACDP remarkably raised alanine aminotransferase (ALT), aspartate amino transaminase (AST), and alkaline phosphatase (ALP) levels.Moreover, the histopathological and immunohistochemistry assays discovered a severe toxic effect on the liver and kidney following ACDP delivery. Furthermore, cyclooxygenase 2 (COX-2) + immunoexpression was enhanced after treatment with CMNEs. All of the parameters above were returned to nearly normal levels by the coadministration of CMNEs. The molecular docking of cinnamaldehyde with COX-2 also confirmed the protective potential of CMNEs against ACDP toxicity. Our findings highlighted that the coadministration of CMNEs along with ACDP diminished its toxicity by cutting down oxidative stress and enhancing antioxidant capacity, demonstrating the effectiveness of CMNEs in lessening ACDP toxicity.


Subject(s)
Cinnamomum zeylanicum , Emulsions , Insecticides , Liver , Molecular Docking Simulation , Neonicotinoids , Animals , Neonicotinoids/pharmacology , Cinnamomum zeylanicum/chemistry , Insecticides/toxicity , Rats , Emulsions/chemistry , Emulsions/pharmacology , Male , Liver/drug effects , Liver/pathology , Kidney/drug effects , Kidney/pathology , Oxidative Stress/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Antioxidants/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Rats, Sprague-Dawley
11.
PLoS One ; 19(6): e0299389, 2024.
Article in English | MEDLINE | ID: mdl-38870184

ABSTRACT

Renal fibrosis is the most common pathway in progressive kidney diseases. The unilateral ureteral obstruction (UUO) model is used to induce progressive renal fibrosis. We evaluated the effects of irisin on renal interstitial fibrosis in UUO mice. The GSE121190, GSE36496, GSE42303, and GSE96101 datasets were downloaded from the Gene Expression Omnibus (GEO) database. In total, 656 differentially expressed genes (DEGs) were identified in normal and UUO mouse renal samples. Periostin and matrix metalloproteinase-2 (MMP-2) were selected to evaluate the effect of irisin on renal fibrosis in UUO mice. In UUO mice, irisin ameliorated renal function, decreased the expression of periostin and MMP-2, and attenuated epithelial-mesenchymal transition and extracellular matrix deposition in renal tissues. In HK-2 cells, irisin treatment markedly attenuated TGF-ß1-induced expression of periostin and MMP-2. Irisin treatment also inhibited TGF-ß1-induced epithelial-mesenchymal transition, extracellular matrix formation, and inflammatory responses. These protective effects of irisin were abolished by the overexpression of periostin and MMP-2. In summary, irisin treatment can improve UUO-induced renal interstitial fibrosis through the TGF-ß1/periostin/MMP-2 signaling pathway, suggesting that irisin may be used for the treatment of renal interstitial fibrosis.


Subject(s)
Cell Adhesion Molecules , Epithelial-Mesenchymal Transition , Fibronectins , Fibrosis , Kidney Diseases , Matrix Metalloproteinase 2 , Signal Transduction , Transforming Growth Factor beta1 , Ureteral Obstruction , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/drug therapy , Fibronectins/metabolism , Mice , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Epithelial-Mesenchymal Transition/drug effects , Male , Humans , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Diseases/drug therapy , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Mice, Inbred C57BL , Cell Line , Disease Models, Animal , Periostin
12.
J Zoo Wildl Med ; 55(2): 381-392, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38875194

ABSTRACT

Of the 202 species of Chamaeleonidae, 38.6% are globally threatened. Currently, nearly a thousand individual chameleons from 36 different species are kept in zoological institutions worldwide. The objectives of this study were to assess the main mortality causes of chameleons in zoological institutions, the prevalence of renal lesions at necropsy, and the environmental factors associated with renal lesions. An online survey was sent to 245 zoological institutions worldwide to collect information about species and sex distribution, necropsy results, and husbandry parameters. Necropsy reports of the last 10 yr were requested from participating institutions (n = 65) when available. Mortality causes were classified into three categories (open diagnosis, infectious, and noninfectious), and noninfectious causes were further subdivided into seven categories (renal, reproductive, myoarthroskeletal, digestive, ophthalmologic, denutrition/multisystemic, and neoplastic). The prevalence of renal lesions was recorded. Multiple linear regression models were used with the prevalence of renal diseases as the dependent variable, and exhibit minimum and maximum hygrometry; exhibit highest and coolest temperature; as well as minimum, mean, and maximum hygrometry of the geographical area as independent variables, combining all chameleon species with similar environmental requirements. Results were obtained for 14 species (n = 412 individuals). The main mortality causes were infectious (46.8%), noninfectious renal (11.4%), and noninfectious reproductive (10.7%) diseases, with all cases of fatal reproductive diseases reported in females. Of the individuals that underwent renal histopathology, 41.7% displayed renal lesions. There was a tendency towards higher renal lesion prevalence in zoos located in areas with lower mean hygrometry (P = 0.05). Further research studies about infectious, renal, and reproductive diseases of Chamaeleonidae are warranted.


Subject(s)
Animals, Zoo , Kidney Diseases , Lizards , Animals , Kidney Diseases/veterinary , Kidney Diseases/mortality , Kidney Diseases/epidemiology , Kidney Diseases/pathology , Female , Prevalence , Male , Kidney/pathology
13.
Arkh Patol ; 86(3): 59-66, 2024.
Article in Russian | MEDLINE | ID: mdl-38881007

ABSTRACT

Non-tumorlesions of the kidneys in malignant neoplasms are very diverse. They can alter the results of chemotherapy and lead to death in the long term. In this regard, the related discipline of onconephrology has increasingly begun to be identified, which emphasizes the importance of diagnosing non-tumor kidney lesions in this category of patients. This review is devoted to the classification, diagnosis, course, prevention and treatment of non-tumor kidney lesions in patients with malignant neoplasms. There are four groups of lesions: mechanical damage; nephropathy due to anticancer therapy; paraneoplastic nephropathy; lesions associated with metabolic disorders. Kidney lesions in patients with malignant neoplasms are characterized by a variable course. In some cases, acute renal failure develops. Others are characterized by an asymptomatic course with an outcome in nephrosclerosis. Timely diagnosis and treatment of kidney lesions in malignant neoplasms can improve the quality of life and prognosis of patients with malignant neoplasms.


Subject(s)
Kidney Neoplasms , Humans , Kidney Neoplasms/pathology , Kidney/pathology , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney Diseases/diagnosis , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Antineoplastic Agents/therapeutic use
14.
BMC Nephrol ; 25(1): 198, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890580

ABSTRACT

BACKGROUND: Sarcoidosis is a systemic disease that can affect multiple organs. While pulmonary sarcoidosis is most commonly observed, renal sarcoidosis occurs less frequently. We herein report a case of sarcoidosis with an exceptionally rare distribution including renal lesions. CASE PRESENTATION: A 51-year-old Japanese female was referred because of bilateral parotid swelling and renal dysfunction. Computed tomography scan showed the swelling of bilateral kidneys, parotid glands, and uterus. Ga scintigraphy also showed remarkable accumulation in these organs. Renal biopsy and cytological evaluations of parotid gland and uterus were performed and she was diagnosed as sarcoidosis of these organs. Treatment was initiated with prednisolone 40 mg/day and then renal dysfunction subsequently improved. In addition, the swelling of parotid glands and uterus improved and Ga accumulation in each organ had disappeared. CONCLUSION: This is a first case of renal sarcoidosis complicated by parotid glands and uterus lesions. Pathological findings and the reactivity observed in Ga scintigraphy indicated the presence of lesions in these organs.


Subject(s)
Kidney Diseases , Sarcoidosis , Humans , Female , Middle Aged , Sarcoidosis/complications , Sarcoidosis/diagnostic imaging , Sarcoidosis/drug therapy , Kidney Diseases/diagnostic imaging , Kidney Diseases/pathology , Kidney Diseases/complications , Kidney Diseases/etiology , Parotid Gland/pathology , Parotid Gland/diagnostic imaging , Uterine Diseases/complications , Uterine Diseases/pathology , Uterine Diseases/diagnostic imaging , Prednisolone/therapeutic use , Parotid Diseases/diagnostic imaging , Parotid Diseases/etiology , Parotid Diseases/pathology , Radionuclide Imaging , Tomography, X-Ray Computed
15.
Nat Commun ; 15(1): 4923, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862484

ABSTRACT

Missions into Deep Space are planned this decade. Yet the health consequences of exposure to microgravity and galactic cosmic radiation (GCR) over years-long missions on indispensable visceral organs such as the kidney are largely unexplored. We performed biomolecular (epigenomic, transcriptomic, proteomic, epiproteomic, metabolomic, metagenomic), clinical chemistry (electrolytes, endocrinology, biochemistry) and morphometry (histology, 3D imaging, miRNA-ISH, tissue weights) analyses using samples and datasets available from 11 spaceflight-exposed mouse and 5 human, 1 simulated microgravity rat and 4 simulated GCR-exposed mouse missions. We found that spaceflight induces: 1) renal transporter dephosphorylation which may indicate astronauts' increased risk of nephrolithiasis is in part a primary renal phenomenon rather than solely a secondary consequence of bone loss; 2) remodelling of the nephron that results in expansion of distal convoluted tubule size but loss of overall tubule density; 3) renal damage and dysfunction when exposed to a Mars roundtrip dose-equivalent of simulated GCR.


Subject(s)
Cosmic Radiation , Space Flight , Animals , Humans , Mice , Cosmic Radiation/adverse effects , Rats , Male , Kidney/pathology , Kidney/radiation effects , Kidney/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Weightlessness/adverse effects , Astronauts , Mice, Inbred C57BL , Proteomics , Female , Mars , Weightlessness Simulation/adverse effects
16.
Cells ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891023

ABSTRACT

Podocyte health is vital for maintaining proper glomerular filtration in the kidney. Interdigitating foot processes from podocytes form slit diaphragms which regulate the filtration of molecules through size and charge selectivity. The abundance of lipid rafts, which are ordered membrane domains rich in cholesterol and sphingolipids, near the slit diaphragm highlights the importance of lipid metabolism in podocyte health. Emerging research shows the importance of sphingolipid metabolism to podocyte health through structural and signaling roles. Dysregulation in sphingolipid metabolism has been shown to cause podocyte injury and drive glomerular disease progression. In this review, we discuss the structure and metabolism of sphingolipids, as well as their role in proper podocyte function and how alterations in sphingolipid metabolism contributes to podocyte injury and drives glomerular disease progression.


Subject(s)
Podocytes , Sphingolipids , Podocytes/metabolism , Podocytes/pathology , Sphingolipids/metabolism , Humans , Animals , Lipid Metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Membrane Microdomains/metabolism
17.
Life Sci ; 351: 122813, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38857655

ABSTRACT

The cytoplasmic oligomer NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome has been implicated in most inflammatory and autoimmune diseases. Here, we highlight the significance of NLRP3 in diverse renal disorders, demonstrating its activation in macrophages and non-immune tubular epithelial and mesangial cells in response to various stimuli. This activation leads to the release of pro-inflammatory cytokines, contributing to the development of acute kidney injury (AKI), chronic renal injury, or fibrosis. In AKI, NLRP3 inflammasome activation and pyroptotic renal tubular cell death is driven by contrast and chemotherapeutic agents, sepsis, and rhabdomyolysis. Nevertheless, inflammasome is provoked in disorders such as crystal and diabetic nephropathy, obesity-related renal fibrosis, lupus nephritis, and hypertension-induced renal damage that induce chronic kidney injury and/or fibrosis. The mechanisms by which the inflammatory NLRP3/ Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC)/caspase-1/interleukin (IL)-1ß & IL-18 pathway can turn on renal fibrosis is also comprehended. This review further outlines the involvement of dopamine and its associated G protein-coupled receptors (GPCRs), including D1-like (D1, D5) and D2-like (D2-D4) subtypes, in regulating this inflammation-linked renal dysfunction pathway. Hence, we identify D-related receptors as promising targets for renal disease management by inhibiting the functionality of the NLRP3 inflammasome.


Subject(s)
Inflammasomes , Kidney Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Animals , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/etiology , Kidney/pathology , Kidney/metabolism , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology
18.
Eur J Pharmacol ; 977: 176745, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38880220

ABSTRACT

High fat diet (HFD) consumption can cause dysregulation of glucose and lipid metabolism, coupled with increased ectopic lipid deposition in renal tissue leading to steatosis and dysfunction. Sitagliptin is a dipeptidyl peptidase-4 (DPP-4) inhibitor clinically used for type II diabetes therapy; however its effect on renal steatosis in obese state is still uncertain. Herein, obesity was induced by feeding male Wistar rats HFD for 18 weeks, thereafter received either drug vehicle, or sitagliptin (10 mg/kg, PO) along with HFD for further 6 weeks and compared with age-matched rats receiving normal chow diet (NCD). After 24 weeks, serum and kidneys were collected for histological and biochemical assessments. Compared to NCD-fed group, HFD-fed rats displayed marked weight gain, increased fat mass, insulin resistance, dyslipidemia, impaired kidney functions and renal histological alterations. Sitagliptin effectively ameliorated obesity and related metabolic perturbations and improved kidney architecture and function. There were increased levels of triglycerides and cluster of differentiation 36 (CD36) in kidneys of obese rats, that were lowered by sitagliptin therapy. Sitagliptin significantly repressed the expression of lipogenesis genes, while up-regulated genes involved in mitochondrial biogenesis and fatty acid oxidation in kidneys of HFD-fed rats. Sitagliptin was found to induce down-regulation of endoplasmic reticulum (ER) stress and apoptotic markers in kidneys of obese rats. These findings together may emphasize a novel concept that sitagliptin can be an effective therapeutic approach for halting obesity-related renal steatosis and CKD.


Subject(s)
CD36 Antigens , Diet, High-Fat , Endoplasmic Reticulum Stress , Kidney , Obesity , Rats, Wistar , Signal Transduction , Sitagliptin Phosphate , Animals , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Diet, High-Fat/adverse effects , Endoplasmic Reticulum Stress/drug effects , Male , Obesity/drug therapy , Obesity/metabolism , Obesity/complications , Signal Transduction/drug effects , Rats , CD36 Antigens/metabolism , CD36 Antigens/genetics , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Kidney Diseases/etiology , Kidney Diseases/pathology , Kidney Diseases/prevention & control
19.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791162

ABSTRACT

Early detection of drug-induced kidney injury is essential for drug development. In this study, multiple low-dose aristolochic acid (AA) and cisplatin (Cis) injections increased renal mRNA levels of inflammation, fibrosis, and renal tubule injury markers. We applied a serum amyloid A3 (Saa3) promoter-driven luciferase reporter (Saa3 promoter-luc mice) to these two tubulointerstitial nephritis models and performed in vivo bioluminescence imaging to monitor early renal pathologies. The bioluminescent signals from renal tissues with AA or CIS injections were stronger than those from normal kidney tissues obtained from normal mice. To verify whether the visualized bioluminescence signal was specifically generated by the injured kidney, we performed in vivo bioluminescence analysis after opening the stomachs of Saa3 promoter-luc mice, and the Saa3-mediated bioluminescent signal was specifically detected in the injured kidney. This study showed that Saa3 promoter activity is a potent non-invasive indicator for the early detection of drug-induced nephrotoxicity.


Subject(s)
Aristolochic Acids , Luciferases , Promoter Regions, Genetic , Serum Amyloid A Protein , Animals , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/metabolism , Mice , Luciferases/metabolism , Luciferases/genetics , Aristolochic Acids/toxicity , Genes, Reporter , Cisplatin/toxicity , Cisplatin/adverse effects , Luminescent Measurements/methods , Male , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Disease Models, Animal , Mice, Inbred C57BL
20.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791272

ABSTRACT

Renal fibrosis (RF) stands as a pivotal pathological process in the advanced stages of chronic kidney disease (CKD), and impeding its progression is paramount for delaying the advancement of CKD. The miR-10 family, inclusive of miR-10a and miR-10b, has been implicated in the development of various fibrotic diseases. Nevertheless, the precise role of miR-10 in the development of RF remains enigmatic. In this study, we utilized both an in vivo model involving unilateral ureteral obstruction (UUO) in mice and an in vitro model employing TGF-ß1 stimulation in HK-2 cells to unravel the mechanism underlying the involvement of miR-10a/b in RF. The findings revealed heightened expression of miR-10a and miR-10b in the kidneys of UUO mice, accompanied by a substantial increase in p-Smad3 and renal fibrosis-related proteins. Conversely, the deletion of these two genes led to a notable reduction in p-Smad3 levels and the alleviation of RF in mouse kidneys. In the in vitro model of TGF-ß1-stimulated HK-2 cells, the co-overexpression of miR-10a and miR-10b fostered the phosphorylation of Smad3 and RF, while the inhibition of miR-10a and miR-10b resulted in a decrease in p-Smad3 levels and RF. Further research revealed that miR-10a and miR-10b, through binding to the 3'UTR region of Vasohibin-1 (VASH-1), suppressed the expression of VASH-1, thereby promoting the elevation of p-Smad3 and exacerbating the progression of RF. The miR-10 family may play a pivotal role in RF.


Subject(s)
Fibrosis , MicroRNAs , Signal Transduction , Smad3 Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Smad3 Protein/metabolism , Smad3 Protein/genetics , Mice , Humans , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Ureteral Obstruction/genetics , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Male , Cell Line , Kidney/metabolism , Kidney/pathology , Disease Models, Animal , Kidney Diseases/metabolism , Kidney Diseases/genetics , Kidney Diseases/pathology , Mice, Inbred C57BL , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...