Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.563
Filter
1.
Front Immunol ; 15: 1363156, 2024.
Article in English | MEDLINE | ID: mdl-38953028

ABSTRACT

Introduction: Human Herpesvirus 6B (HHV-6B) impedes host immune responses by downregulating class I MHC molecules (MHC-I), hindering antigen presentation to CD8+ T cells. Downregulation of MHC-I disengages inhibitory receptors on natural killer (NK) cells, resulting in activation and killing of the target cell if NK cell activating receptors such as NKG2D have engaged stress ligands upregulated on the target cells. Previous work has shown that HHV-6B downregulates three MHC-like stress ligands MICB, ULBP1, and ULBP3, which are recognized by NKG2D. The U20 glycoprotein of the related virus HHV-6A has been implicated in the downregulation of ULBP1, but the precise mechanism remains undetermined. Methods: We set out to investigate the role of HHV-6B U20 in modulating NK cell activity. We used HHV-6B U20 expressed as a recombinant protein or transduced into target cells, as well as HHV-6B infection, to investigate binding interactions with NK cell ligands and receptors and to assess effects on NK cell activation. Small-angle X-ray scattering was used to align molecular models derived from machine-learning approaches. Results: We demonstrate that U20 binds directly to ULBP1 with sub-micromolar affinity. Transduction of U20 decreases NKG2D binding to ULBP1 at the cell surface but does not decrease ULBP1 protein levels, either at the cell surface or in toto. HHV-6B infection and soluble U20 have the same effect. Transduction of U20 blocks NK cell activation in response to cell-surface ULBP1. Structural modeling of the U20 - ULBP1 complex indicates some similarities to the m152-RAE1γ complex.


Subject(s)
GPI-Linked Proteins , Herpesvirus 6, Human , Killer Cells, Natural , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily K , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Herpesvirus 6, Human/immunology , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , NK Cell Lectin-Like Receptor Subfamily K/immunology , Lymphocyte Activation/immunology , Protein Binding , Viral Proteins/immunology , Viral Proteins/metabolism , Glycoproteins/immunology , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins
2.
Mol Cancer ; 23(1): 134, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951879

ABSTRACT

Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.


Subject(s)
Exosomes , Killer Cells, Natural , Neoplasms , Humans , Exosomes/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Clinical Relevance
3.
Front Immunol ; 15: 1389920, 2024.
Article in English | MEDLINE | ID: mdl-38957464

ABSTRACT

Probiotic consumption strongly influences local intestinal immunity and systemic immune status. Heyndrickxia coagulans strain SANK70258 (HC) is a spore-forming lactic acid bacterium that has immunostimulatory properties on peripheral tissues. However, few reports have examined the detailed effectiveness of HC on human immune function and its mechanism of action. Therefore, we conducted a randomized, double-blind, placebo-controlled, parallel-group study to comprehensively evaluate the effects of HC on immunostimulatory capacity, upper respiratory tract infection (URTI) symptoms, and changes in intestinal organic-acid composition. Results of a questionnaire survey of URTI symptoms showed that runny nose, nasal congestion, sneezing, and sore throat scores as well as the cumulative number of days of these symptoms were significantly lower in the HC group than in the placebo group during the study period. Furthermore, the salivary secretory immunoglobulin A (sIgA) concentration was significantly higher, and the natural killer (NK) cell activity tended to be higher in the HC group than in the placebo group. In addition, we performed an exposure culture assay of inactivated influenza virus on peripheral blood mononuclear cells (PBMCs) isolated from the blood of participants in the HC and placebo groups. Gene-expression analysis in PBMCs after culture completion showed that IFNα and TLR7 expression levels were significantly higher in the HC group than in the placebo group. In addition, the expression levels of CD304 tended to be higher in the HC group than in the placebo group. On the other hand, the HC group showed a significantly higher increase in the intestinal butyrate concentration than the placebo group. HC intake also significantly suppressed levels of IL-6 and TNFα produced by PBMCs after exposure to inactivated influenza virus. Collectively, these results suggest that HC activated plasmacytoid dendritic cells expressing TLR7 and CD304 and strongly induced IFNα production, subsequently activating NK cells and increasing sIgA levels, and induced anti-inflammatory effects via increased intestinal butyrate levels. These changes may contribute to the acquisition of host resistance to viral infection and URTI prevention.


Subject(s)
Probiotics , Respiratory Tract Infections , Humans , Respiratory Tract Infections/immunology , Double-Blind Method , Male , Adult , Probiotics/administration & dosage , Female , Young Adult , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Gastrointestinal Microbiome/immunology , Immunoglobulin A, Secretory/immunology , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/immunology , Immunomodulation
4.
J Immunother Cancer ; 12(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38955423

ABSTRACT

BACKGROUND: Immune checkpoint blockade targeting the adaptive immune system has revolutionized the treatment of cancer. Despite impressive clinical benefits observed, patient subgroups remain non-responsive underscoring the necessity for combinational therapies harnessing additional immune cells. Natural killer (NK) cells are emerging tools for cancer therapy. However, only subpopulations of NK cells that are differentially controlled by inhibitory receptors exert reactivity against particular cancer types. How to leverage the complete anti-tumor potential of all NK cell subsets without favoring the emergence of NK cell-resistant tumor cells remains unresolved. METHODS: We performed a genome-wide CRISPR/Cas9 knockout resistance screen in melanoma cells in co-cultures with human primary NK cells. We comprehensively evaluated factors regulating tumor resistance and susceptibility by focusing on NK cell subsets in an allogenic setting. Moreover, we tested therapeutic blocking antibodies currently used in clinical trials. RESULTS: Melanoma cells deficient in antigen-presenting or the IFNγ-signaling pathways were depleted in remaining NK cell-co-cultured melanoma cells and displayed enhanced sensitivity to NK cells. Treatment with IFNγ induced potent resistance of melanoma cells to resting, IL-2-cultured and ADCC-activated NK cells that depended on B2M required for the expression of both classical and non-classical MHC-I. IFNγ-induced expression of HLA-E mediated the resistance of melanoma cells to the NKG2A+ KIR- and partially to the NKG2A+ KIR+ NK cell subset. The expression of classical MHC-I by itself was sufficient for the inhibition of the NKG2A- KIR+, but not the NKG2A+ KIR+ NK cell subset. Treatment of NK cells with monalizumab, an NKG2A blocking mAb, enhanced the reactivity of a corresponding subset of NK cells. The combination of monalizumab with lirilumab, blocking KIR2 receptors, together with DX9, blocking KIR3DL1, was required to restore cytotoxicity of all NK cell subsets against IFNγ-induced resistant tumor cells in melanoma and tumors of different origins. CONCLUSION: Our data reveal that in the context of NK cells, IFNγ induces the resistance of tumor cells by the upregulation of classical and non-classical MHC-I. Moreover, we reveal insights into NK cell subset reactivity and propose a therapeutic strategy involving combinational monalizumab/lirilumab/DX9 treatment to fully restore the antitumor response across NK cell subsets.


Subject(s)
Interferon-gamma , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Interferon-gamma/metabolism , Melanoma/immunology , Melanoma/drug therapy , Cell Line, Tumor , Coculture Techniques
5.
BMC Cancer ; 24(1): 809, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973003

ABSTRACT

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive cancer characterized by an immunosuppressive microenvironment. Patients from specific ethnicities and population groups have poorer prognoses than others. Therefore, a better understanding of the immune landscape in such groups is necessary for disease elucidation, predicting patient outcomes and therapeutic targeting. This study investigated the expression of circulating key immune cell markers in South African PDAC patients of African ancestry. METHODS: Blood samples were obtained from a total of 6 healthy volunteers (HC), 6 Chronic Pancreatitis (CP) and 34 PDAC patients consisting of 22 resectable (RPC), 8 locally advanced (LAPC) and 4 metastatic (MPC). Real-time Quantitative Polymerase Chain reactions (RT-qPCR), Metabolomics, Enzyme-Linked Immunosorbent Assay (ELISA), Reactive Oxygen Species (ROS), and Immunophenotyping assays were conducted. Statistical analysis was conducted in R (v 4.3.2). Additional analysis of single-cell RNA data from 20 patients (16 PDAC and 4 controls) was conducted to interrogate the distribution of T-cell and Natural Killer cell populations. RESULTS: Granulocyte and neutrophil levels were significantly elevated while lymphocytes decreased with PDAC severity. The total percentages of CD3 T-cell subpopulations (helper and double negative T-cells) decreased when compared to HC. Although both NK (p = 0.014) and NKT (p < 0.001) cell levels increased as the disease progressed, their subsets: NK CD56dimCD16- (p = 0.024) and NKTs CD56+ (p = 0.008) cell levels reduced significantly. Of note is the negative association of NK CD56dimCD16- (p < 0.001) cell levels with survival time. The gene expression analyses showed no statistically significant correlation when comparing the PDAC groups with the controls. The inflammatory status of PDAC was assessed by ROS levels of serum which were elevated in CP (p = 0.025), (RPC (p = 0.003) and LAPC (p = 0.008)) while no significant change was observed in MPC, compared to the HC group. ROS was shown to be positively correlated with GlycA (R = 0.45, p = 0.0096). Single-cell analyses showed a significant difference in the ratio of NKT cells per total cell counts in LAPC (p < 0.001) and MPC (p < 0.001) groups compared with HC, confirming observations in our sample group. CONCLUSION: The expression of these immune cell markers observed in this pilot study provides insight into their potential roles in tumour progression in the patient group and suggests their potential utility in the development of immunotherapeutic strategies.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Progression , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Male , Female , Middle Aged , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , South Africa , Aged , Adult , Biomarkers, Tumor/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Pancreatitis, Chronic/immunology , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , Reactive Oxygen Species/metabolism , Immunophenotyping
6.
Front Immunol ; 15: 1411315, 2024.
Article in English | MEDLINE | ID: mdl-38979410

ABSTRACT

Pregnancy is a fascinating immunological phenomenon because it allows allogeneic fetal and placental tissues to survive inside the mother. As a component of innate immunity with high inflammatory potential, the complement system must be tightly regulated during pregnancy. Dysregulation of the complement system plays a role in pregnancy complications including pre-eclampsia and intrauterine growth restriction. Complement components are also used as biomarkers for pregnancy complications. However, the mechanisms of detrimental role of complement in pregnancy is poorly understood. C5a is the most potent anaphylatoxin and generates multiple immune reactions via two transmembrane receptors, C5aR1 and C5aR2. C5aR1 is pro-inflammatory, but the role of C5aR2 remains largely elusive. Interestingly, murine NK cells have been shown to express C5aR2 without the usual co-expression of C5aR1. Furthermore, C5aR2 appears to regulate IFN-γ production by NK cells in vitro. As IFN-γ produced by uterine NK cells is one of the major factors for the successful development of a vital pregnancy, we investigated the role anaphylatoxin C5a and its receptors in the establishment of pregnancy and the regulation of uterine NK cells by examinations of murine C5ar2-/- pregnancies and human placental samples. C5ar2-/- mice have significantly reduced numbers of implantation sites and a maternal C5aR2 deficiency results in increased IL-12, IL-18 and IFN-γ mRNA expression as well as reduced uNK cell infiltration at the maternal-fetal interface. Human decidual leukocytes have similar C5a receptor expression patterns showing clinical relevance. In conclusion, this study identifies C5aR2 as a key contributor to dNK infiltration and pregnancy success.


Subject(s)
Killer Cells, Natural , Mice, Knockout , Receptor, Anaphylatoxin C5a , Uterus , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Female , Animals , Pregnancy , Mice , Uterus/immunology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Placenta/immunology , Placenta/metabolism , Complement C5a/immunology , Complement C5a/metabolism , Mice, Inbred C57BL , Interferon-gamma/metabolism , Interferon-gamma/immunology
7.
Front Immunol ; 15: 1394420, 2024.
Article in English | MEDLINE | ID: mdl-38979417

ABSTRACT

Background: Mobilization of certain immune cells may improve the ability of the immune system to combat tumor cells, but the effect of acute exercise on mobilizing immune cells has been sparsely investigated in cancer patients. Therefore, we examined how acute exercise influences circulating immune cells in breast cancer patients. Methods: Nineteen newly diagnosed breast cancer patients aged 36-68 performed 30 minutes of moderate-intensity exercise with a cycle ergometer. Blood samples were collected at various time points: at rest, at 15 (E15) and 30 minutes (E30) after onset of the exercise, and at 30 and 60 minutes post-exercise. We analyzed several immune cell subsets using flow cytometry. Results: Acute exercise increased the number of total leukocytes, neutrophils, lymphocytes, monocytes, basophils, total T-cells, CD4+ T-cells, T helper (Th) 2-cells, Th 17-cells, CD8+ T-cells, CD4-CD8- T-cells, CD56+ natural killer (NK) cells, and CD14-CD16+ monocytes. Many of the changes were transient. Proportions of NK-cells and CD8+ T-cells increased, while the proportion of myeloid derived suppressor cells (MDSCs) reduced, and proportion of regulatory T-cells remained unchanged by exercise. Several associations were detected between cell mobilizations and disease state. For instance, tumor size correlated negatively with NK cell mobilization at E15, and progesterone receptor positivity correlated negatively with CD8+ T-cell mobilization. Conclusion: The findings show that the proportions of CD8+ T-cells and NK cells increased and the proportion of MDSCs proportion decreased in breast cancer patients after 30-minute exercise, suggesting a change in the profile of circulating immune cells towards more cytotoxic/anti-tumorigenic. The mobilization of some immune cells also appears to be related to the disease state.


Subject(s)
Breast Neoplasms , Exercise , Killer Cells, Natural , Humans , Female , Breast Neoplasms/immunology , Middle Aged , Adult , Aged , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism
8.
Front Immunol ; 15: 1383136, 2024.
Article in English | MEDLINE | ID: mdl-38979422

ABSTRACT

Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.


Subject(s)
B-Cell Maturation Antigen , Chemokine CXCL12 , Immunotherapy, Adoptive , Killer Cells, Natural , Multiple Myeloma , Receptors, CXCR4 , Receptors, Chimeric Antigen , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Humans , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , B-Cell Maturation Antigen/immunology , B-Cell Maturation Antigen/metabolism , B-Cell Maturation Antigen/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , Chemokine CXCL12/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic
9.
Front Immunol ; 15: 1391967, 2024.
Article in English | MEDLINE | ID: mdl-38989281

ABSTRACT

Introduction: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening immune disorder characterized by uncontrolled lymphocyte and macrophage activation and a subsequent cytokine storm. The timely initiation of immunosuppressive treatment is crucial for survival. Methods: Here, we harnessed Vγ9Vδ2 T cell degranulation to develop a novel functional assay for the diagnosis of HLH. We compared the novel assay with the conventional natural killer (NK) cell stimulation method in terms of efficiency, specificity, and reliability. Our analysis involved 213 samples from 182 individuals, including 23 samples from 12 patients with degranulation deficiency (10 individuals with UNC13D deficiency, 1 with STXBP2 deficiency, and 1 with RAB27A deficiency). Results: While both tests exhibited 100% sensitivity, the Vγ9Vδ2 T cell degranulation assay showed a superior specificity of 86.2% (n=70) compared to the NK cell degranulation assay, which achieved 78.9% specificity (n=213). The Vγ9Vδ2 T cell degranulation assay offered simpler technical requirements and reduced labor intensity, leading to decreased susceptibility to errors with faster processing times. Discussion: This efficiency stemmed from the sole requirement of dissolving (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) powder, contrasting with the intricate maintenance of K562 cells necessary for the NK cell degranulation assay. With its diminished susceptibility to errors, we anticipate that the assay will require fewer repetitions of analysis, rendering it particularly well-suited for testing infants. Conclusion: The Vγ9Vδ2 T cell degranulation assay is a user-friendly, efficient diagnostic tool for HLH. It offers greater specificity, reliability, and practicality than established methods. We believe that our present findings will facilitate the prompt, accurate diagnosis of HLH and thus enable rapid treatment and better patient outcomes.


Subject(s)
Cell Degranulation , Killer Cells, Natural , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/immunology , Lymphohistiocytosis, Hemophagocytic/genetics , Female , Male , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/genetics , Child, Preschool , Child , Infant , Adolescent , rab27 GTP-Binding Proteins/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Adult , T-Lymphocytes/immunology , Reproducibility of Results , Lymphocyte Activation , Sensitivity and Specificity , Munc18 Proteins
10.
Front Immunol ; 15: 1403752, 2024.
Article in English | MEDLINE | ID: mdl-38975343

ABSTRACT

Type 1 diabetes (T1D) arises from autoimmune-mediated destruction of insulin-producing pancreatic beta cells. Recent advancements in the technology of generating pancreatic beta cells from human pluripotent stem cells (SC-beta cells) have facilitated the exploration of cell replacement therapies for treating T1D. However, the persistent threat of autoimmunity poses a significant challenge to the survival of transplanted SC-beta cells. Genetic engineering is a promising approach to enhance immune resistance of beta cells as we previously showed by inactivating the Renalase (Rnls) gene. Here, we demonstrate that Rnls loss of function in beta cells shapes autoimmunity by mediating a regulatory natural killer (NK) cell phenotype important for the induction of tolerogenic antigen-presenting cells. Rnls-deficient beta cells mediate cell-cell contact-independent induction of hallmark anti-inflammatory cytokine Tgfß1 in NK cells. In addition, surface expression of regulatory NK immune checkpoints CD47 and Ceacam1 is markedly elevated on beta cells deficient for Rnls. Altered glucose metabolism in Rnls mutant beta cells is involved in the upregulation of CD47 surface expression. These findings are crucial to better understand how genetically engineered beta cells shape autoimmunity, giving valuable insights for future therapeutic advancements to treat and cure T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Animals , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Mice , Diabetes Mellitus, Type 1/immunology , Humans , CD47 Antigen/metabolism , CD47 Antigen/genetics , CD47 Antigen/immunology , Transforming Growth Factor beta1/metabolism , Mice, Inbred NOD , Monoamine Oxidase
11.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000234

ABSTRACT

Juvenile Dermatomyositis (JDM) is the most common inflammatory myopathy in pediatrics. This study evaluates the role of Natural Killer (NK) cells in Juvenile Dermatomyositis (JDM) pathophysiology. The study included 133 untreated JDM children with an NK cell count evaluation before treatment. NK cell subsets (CD56low/dim vs. CD 56bright) were examined in 9 untreated children. CD56 and perforin were evaluated in situ in six untreated JDM and three orthopedic, pediatric controls. 56% of treatment-naive JDM had reduced circulating NK cell counts, designated "low NK cell". This low NK group had more active muscle disease compared to the normal NK cell group. The percentage of circulating CD56low/dim NK cells was significantly lower in the NK low group than in controls (0.55% vs. 4.6% p < 0.001). Examination of the untreated JDM diagnostic muscle biopsy documented an increased infiltration of CD56 and perforin-positive cells (p = 0.023, p = 0.038, respectively). Treatment-naive JDM with reduced circulating NK cell counts exhibited more muscle weakness and higher levels of serum muscle enzymes. Muscle biopsies from treatment-naive JDM displayed increased NK cell infiltration, with increased CD56 and perforin-positive cells.


Subject(s)
CD56 Antigen , Dermatomyositis , Killer Cells, Natural , Muscle Weakness , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Dermatomyositis/immunology , Dermatomyositis/blood , Dermatomyositis/pathology , Male , Child , Muscle Weakness/blood , Female , CD56 Antigen/metabolism , Child, Preschool , Perforin/metabolism , Adolescent , Lymphocyte Count
12.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000607

ABSTRACT

Natural killer (NK) cells play a crucial role in innate immunity, particularly in combating infections and tumors. However, in hematological cancers, NK cells often exhibit impaired functions. Therefore, it is very important to activate its endosomal Toll-like receptors (TLRs) as a potential strategy to restore its antitumor activity. We stimulated NK cells from the peripheral blood mononuclear cells from children with acute lymphoblastic leukemia and NK cells isolated, and the NK cells were stimulated with specific TLR ligands (Poly I:C, Imiquimod, R848, and ODN2006) and we evaluated changes in IFN-γ, CD107a, NKG2D, NKp44 expression, Granzyme B secretion, cytokine/chemokine release, and cytotoxic activity. Results revealed that Poly I:C and Imiquimod enhanced the activation of both immunoregulatory and cytotoxic NK cells, increasing IFN-γ, CD107a, NKG2D, and NKp44 expression. R848 activated immunoregulatory NK cells, while ODN2006 boosted CD107a, NKp44, NKG2D, and IFN-γ secretion in cytotoxic NK cells. R848 also increased the secretion of seven cytokines/chemokines. Importantly, R848 and ODN 2006 significantly improved cytotoxicity against leukemic cells. Overall, TLR stimulation enhances NK cell activation, suggesting TLR8 (R848) and TLR9 (ODN 2006) ligands as promising candidates for antitumor immunotherapy.


Subject(s)
Imiquimod , Killer Cells, Natural , Lymphocyte Activation , Poly I-C , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Toll-Like Receptors , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Poly I-C/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Imiquimod/pharmacology , Toll-Like Receptors/metabolism , Toll-Like Receptors/agonists , Child , Oligodeoxyribonucleotides/pharmacology , Cytokines/metabolism , Female , Interferon-gamma/metabolism , Male , Imidazoles/pharmacology , Cytotoxicity, Immunologic/drug effects , Child, Preschool , Toll-Like Receptor Agonists
13.
Sci Adv ; 10(28): eadn0881, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996027

ABSTRACT

Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.


Subject(s)
Killer Cells, Natural , Mesothelin , Ovarian Neoplasms , Receptors, Chimeric Antigen , Xenograft Model Antitumor Assays , Humans , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Female , Mice , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Cell Line, Tumor , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Immunotherapy, Adoptive/methods , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/therapy , Immunologic Memory , Protein Domains
14.
Cells ; 13(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38994999

ABSTRACT

Natural killer (NK) cells hold promise in cancer treatment due to their ability to spontaneously lyse cancer cells. For clinical use, high quantities of pure, functional NK cells are necessary. Combining adherence-based isolation with specialized media showed the unreliability of the isolation method, but demonstrated the superiority of the NK MACS® medium, particularly in suboptimal conditions. Neither human pooled serum, fetal calf serum (FCS), human platelet lysate, nor chemically defined serum replacement could substitute human AB serum. Interleukin (IL-)2, IL-15, IL-21, and combined CD2/NKp46 stimulation were assessed. IL-21 and CD2/NKp46 stimulation increased cytotoxicity, but reduced NK cell proliferation. IL-15 stimulation alone achieved the highest proliferation, but the more affordable IL-2 performed similarly. The RosetteSep™ human NK cell enrichment kit was effective for isolation, but the presence of peripheral blood mononuclear cells (PBMCs) in the culture enhanced NK cell proliferation, despite similar expression levels of CD16, NKp46, NKG2D, and ICAM-1. In line with this, purified NK cells cultured in NK MACS® medium with human AB serum and IL-2 demonstrated high cytotoxicity against primary glioblastoma stem cells.


Subject(s)
Cell Proliferation , Culture Media , Killer Cells, Natural , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Cell Culture Techniques/methods , Interleukin-2/metabolism , Cytotoxicity, Immunologic , Interleukin-15/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Neoplastic Stem Cells/metabolism , Glioblastoma/immunology , Glioblastoma/pathology , Cell Separation/methods
15.
Cells ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38995006

ABSTRACT

Immunotherapies have shown significant promise as an impactful strategy in cancer treatment. However, in glioblastoma multiforme (GBM), the most prevalent primary brain tumor in adults, these therapies have demonstrated lower efficacy than initially anticipated. Consequently, there is an urgent need for strategies to enhance the effectiveness of immune treatments. AURKA has been identified as a potential drug target for GBM treatment. An analysis of the GBM cell transcriptome following AURKA inhibition revealed a potential influence on the immune system. Our research revealed that AURKA influenced PD-L1 levels in various GBM model systems in vitro and in vivo. Disrupting AURKA function genetically led to reduced PD-L1 levels and increased MHC-I expression in both established and patient-derived xenograft GBM cultures. This process involved both transcriptional and non-transcriptional pathways, partly implicating GSK3ß. Interfering with AURKA also enhanced NK-cell-mediated elimination of GBM by reducing PD-L1 expression, as evidenced in rescue experiments. Furthermore, using a mouse model that mimics GBM with patient-derived cells demonstrated that Alisertib decreased PD-L1 expression in living organisms. Combination therapy involving anti-PD-1 treatment and Alisertib significantly prolonged overall survival compared to vehicle treatment. These findings suggest that targeting AURKA could have therapeutic implications for modulating the immune environment within GBM cells.


Subject(s)
Aurora Kinase A , B7-H1 Antigen , Glioblastoma , Killer Cells, Natural , Aurora Kinase A/metabolism , Aurora Kinase A/antagonists & inhibitors , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/genetics , B7-H1 Antigen/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Animals , Mice , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Azepines/pharmacology , Pyrimidines/pharmacology , Cytotoxicity, Immunologic/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/immunology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic/drug effects , Xenograft Model Antitumor Assays
16.
Int J Chron Obstruct Pulmon Dis ; 19: 1603-1611, 2024.
Article in English | MEDLINE | ID: mdl-39011122

ABSTRACT

Background: The immune cells play a substantial role in the development and progression of chronic obstructive pulmonary disease (COPD). We aim to investigate the causal involvement of immune cells in COPD via a Mendelian randomization (MR) analysis. Methods: Published genome-wide association studies (GWAS) statistics on immune cells were analyzed, with genetic variants identified as instrumental variables (IVs). Inverse-variance weighting (IVW), weighted median, and MR-Egger regression methods were employed, along with simple mode and weighted mode adopted in the two-sample MR analysis. Sensitivity analysis was conducted to examine the heterogeneity, horizontal pleiotropy, and stability of the causal relationship. Results: IVW results suggested that CCR2 on CD62L+ plasmacytoid dendritic cells (DC), CCR2 on plasmacytoid DC, CD11b on CD66b++ myeloid cells, CD19 on CD20- CD38- CD24+ memory B cell subset, CD25 on transitional B cells, and CD25++CD8br %CD8br T cells were risk factors for the development of COPD. Besides, CD127 on effector memory-like cytotoxic T lymphocytes lacking expression of co-stimulatory molecule 28 (CD28-EM CTLs) and HLA DR+ NK ACs expressing human leukocyte antigen DR molecules while being natural killer cells (%NK ACs) were protective factors for COPD. Conclusion: This study unveiled a causal relationship between immune cell phenotype and COPD. These findings offer new insights for the prevention and treatment of COPD using COPD-associated immune cells.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/diagnosis , Risk Factors , Dendritic Cells/immunology , Phenotype , Risk Assessment , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lung/immunology
17.
Cancer Immunol Immunother ; 73(9): 180, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967649

ABSTRACT

TIGIT is an alternative checkpoint receptor (CR) whose inhibition promotes Graft-versus-Leukemia effects of NK cells. Given the significant immune-permissiveness of NK cells circulating in acute myeloid leukemia (AML) patients, we asked whether adoptive transfer of activated NK cells would benefit from additional TIGIT-blockade. Hence, we characterized cytokine-induced memory-like (CIML)-NK cells and NK cell lines for the expression of inhibitory CRs. In addition, we analyzed the transcription of CR ligands in AML patients (CCLE and Beat AML 2.0 cohort) in silico and evaluated the efficacy of CR blockade using in vitro cytotoxicity assays, CD69, CD107a and IFN-γ expression. Alternative but not classical CRs were abundantly expressed on healthy donor NK cells and even further upregulated on CIML-NK cells. In line with our finding that CD155, one important TIGIT-ligand, is reliably expressed on AMLs, we show improved killing of CD155+-AML blasts by NK-92 but interestingly not CIML-NK cells in the presence of TIGIT-blockade. Additionally, our in silico data (n = 671) show that poor prognosis AML patients rather displayed a CD86low CD112/CD155high phenotype, whereas patients with a better outcome rather exhibited a CD86high CD112/CD155low phenotype. Collectively, our data evidence that the complex CR ligand expression profile on AML blasts may be one explanation for the intrinsic NK cell exhaustion observed in AML patients which might be overcome with adoptive NK-92 transfer in combination with TIGIT-blockade.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Leukemia, Myeloid, Acute , Receptors, Immunologic , Receptors, Virus , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Receptors, Immunologic/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Virus/metabolism , Cytokines/metabolism , Male , Female
18.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960949

ABSTRACT

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Subject(s)
Immunologic Memory , Killer Cells, Natural , Recombinant Fusion Proteins , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Animals , Recombinant Fusion Proteins/genetics , Mice , Cell- and Tissue-Based Therapy/methods , Immunotherapy, Adoptive/methods , Interleukin-15/metabolism
19.
Sci Rep ; 14(1): 14586, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918457

ABSTRACT

Natural killer (NK) cells play a key role in defense against Salmonella infections during the early phase of infection. Our previous work showed that the excretory/secretory products of Ascaris suum repressed NK activity in vitro. Here, we asked if NK cell functionality was influenced in domestic pigs during coinfection with Ascaris and Salmonella enterica serotype Typhimurium. Ascaris coinfection completely abolished the IL-12 and IL-18 driven elevation of IFN-γ production seen in CD16 + CD8α + perforin + NK cells of Salmonella single-infected pigs. Furthermore, Ascaris coinfection prohibited the Salmonella-driven rise in NK perforin levels and CD107a surface expression. In line with impaired effector functions, NK cells from Ascaris-single and coinfected pigs displayed elevated expression of the inhibitory KLRA1 and NKG2A receptors genes, contrasting with the higher expression of the activating NKp46 and NKp30 receptors in NK cells during Salmonella single infection. These differences were accompanied by the highly significant upregulation of T-bet protein expression in NK cells from Ascaris-single and Ascaris/Salmonella coinfected pigs. Together, our data strongly indicate a profound repression of NK functionality by an Ascaris infection which may hinder infected individuals from adequately responding to a concurrent bacterial infection.


Subject(s)
Ascariasis , Coinfection , Killer Cells, Natural , Swine Diseases , Animals , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ascariasis/immunology , Ascariasis/veterinary , Ascariasis/parasitology , Coinfection/immunology , Coinfection/microbiology , Coinfection/parasitology , Swine , Swine Diseases/parasitology , Swine Diseases/immunology , Swine Diseases/microbiology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Ascaris suum/immunology , Interferon-gamma/metabolism , Perforin/metabolism , Interleukin-12/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Interleukin-18/metabolism
20.
Cell Mol Life Sci ; 81(1): 262, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878186

ABSTRACT

Through Smad3-dependent signalings, transforming growth factor-ß (TGF-ß) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-ß-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-ß-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Killer Cells, Natural , Lung Neoplasms , Smad3 Protein , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/metabolism , Transforming Growth Factor beta/metabolism , Cell Differentiation , Macrophages/metabolism , Macrophages/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...