ABSTRACT
BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including ß-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.
Subject(s)
Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Hospitals, Pediatric , Klebsiella pneumoniae , Phylogeny , Whole Genome Sequencing , Humans , Ecuador , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Child , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Virulence Factors/genetics , Multilocus Sequence Typing , Child, Preschool , Infant , Genetic VariationABSTRACT
We investigated the in vitro antibacterial activity of the combination rifampicin (RIF) + polymyxin B (PB) against extensively drug-resistant (XDR) Klebsiella pneumoniae isolates. We evaluated clinical isolates co-resistant to PB (non-mcr carriers; eptB, mgrB, pmr operon, and ramA mutations) and to carbapenems (KPC, CTX-M, and SHV producers; including KPC + NDM co-producer), belonging to sequence types (ST) ST16, ST11, ST258, ST340, and ST437. We used the standard broth microdilution method to determine RIF and PB minimum inhibitory concentration (MIC) and the checkerboard assay to evaluate the fractional inhibitory concentration index (FICI) of RIF + PB as well as to investigate the lowest concentrations of RIF and PB that combined (RIF + PB) had antibacterial activity. Time-kill assays were performed to evaluate the synergistic effect of the combination against selected isolates. PB MIC (32-256 µg/mL) and RIF MIC (32-1024 µg/mL) were determined. FICI (<0.5) indicated a synergistic effect for all isolates evaluated for the combination RIF + PB. Our results showed that low concentrations of PB (PB minimal effective antibiotic concentration [MEAC], ≤0.25-1 µg/mL) favor RIF (≤0.03-0.125 µg/mL) to reach the bacterial target and exert antibacterial activity against PB-resistant isolates, and the synergistic effect was also observed in time-kill results. The combination of RIF + PB showed in vitro antibacterial activity against XDR, carbapenem-, and PB-resistant K. pneumoniae and could be further studied as a potential combination therapy, with cost-effectiveness and promising efficacy.
Subject(s)
Anti-Bacterial Agents , Carbapenems , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxin B , Rifampin , Polymyxin B/pharmacology , Rifampin/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Humans , Carbapenems/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapyABSTRACT
Antibiotic combination therapy is a promising approach to address the urgent need for novel treatment options for infections caused by carbapenem-polymyxin-resistant Klebsiella pneumoniae (CPR-Kp). The present study aimed to investigate the synergistic potential of four cephalosporins in combination with polymyxin B (PMB). A checkerboard assay was performed to evaluate the synergistic effects of cephalexin (CLX), cefixime, cefotaxime (CTX), and cefmenoxime (CMX) in combination with PMB. Subsequently, experiments evaluating the use of CTX or CMX in combination with PMB (CTX-PMB or CMX-PMB, respectively), including growth curve and SynergyFinder analysis, antibiofilm activity assays, cell membrane integrity assays, and scanning electron microscopy, were performed. Safety assessments were also conducted, including hemolysis and toxicity evaluations, using Caenorhabditis elegans. Furthermore, an in vivo model in C. elegans was adopted to assess the treatment efficacy against CPR-Kp infections. CTX-PMB and CMX-PMB exhibited low fractional inhibitory concentration indexes ranging from 0.19 to 0.50 and from 0.25 to 1.5, respectively, and zero interaction potency scores of 37.484 and 15.076, respectively. The two combinations significantly reduced growth and biofilm formation in CPR-Kp. Neither CTX-PMB nor CMX-PMB compromised bacterial cell integrity. Safety assessments revealed a low hemolysis percentage and high survival rates in the C. elegans toxicity evaluations. The in vivo model revealed that the CTX-PMB and CMX-PMB treatments improved the survival rates of C. elegans. The synergistic effects of the CTX-PMB and CMX-PMB combinations, both in vitro and in vivo, indicate that these antibiotic pairings could represent effective therapeutic options for infections caused by CPR-Kp.
Subject(s)
Anti-Bacterial Agents , Biofilms , Caenorhabditis elegans , Cephalosporins , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxin B , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Animals , Caenorhabditis elegans/drug effects , Biofilms/drug effects , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Therapy, CombinationABSTRACT
Introduction. Multidrug-resistant infections present a critical public health due to scarce treatment options and high mortality. Ocimum gratissimum L. essential oil (O.geo) is a natural resource rich in eugenol known for its antimicrobial activity.Hypothesis/Gap Statement. O.geo may exert effective antimicrobial activity against polymyxin-resistant Klebsiella pneumoniae and, when combined with Polymyxin B (PMB), may exhibit a synergistic effect, enhancing treatment efficacy and reducing antimicrobial resistance.Aim. This study aims to investigate the antimicrobial activity of O.geo against polymyxin-resistant K. pneumoniae using in vitro tests and an in vivo Caenorhabditis elegans model.Methodology. The O.geo was obtained by hydrodistillation followed by gas chromatography. The MIC and antibiofilm activity were determined using broth microdilution. Checkerboard and time-kill assays evaluated the combination of O.geo and polymyxin B (PMB), whereas a protein leakage assay verified its action.Results. Eugenol (39.67%) was a major constituent identified. The MIC of the O.geo alone ranged from 128 to 512 µg ml-1. The fractional inhibitory concentration index (0.28) and time-kill assay showed a synergism. In addition, O.geo and PMB inhibited biofilm formation and increased protein leakage in the plasma membrane. The treatment was tested in vivo using a Caenorhabditis elegans model, and significantly increased survival without toxicity was observed.Conclusion. O.geo could be used as a potential therapeutic alternative to combat infections caused by multidrug-resistant bacteria, especially in combination with PMB.
Subject(s)
Anti-Bacterial Agents , Biofilms , Caenorhabditis elegans , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Ocimum , Oils, Volatile , Polymyxin B , Klebsiella pneumoniae/drug effects , Caenorhabditis elegans/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Ocimum/chemistry , Biofilms/drug effects , Polymyxin B/pharmacology , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Bacterial , Polymyxins/pharmacology , Drug Resistance, Multiple, BacterialABSTRACT
AIMS: This study aimed to investigate the presence of beta-lactams resistance genes and the clonal relationship of clinical isolates of Enterobacterales obtained from patients with and without COVID-19, in a hospital in northeastern Brazil. METHODS AND RESULTS: The study analyzed 45 carbapenem-resistant clinical isolates using enterobacterial repetitive intergenic consensus (ERIC-PCR), PCR, and amplicon sequencing to detect resistance genes (blaKPC, blaGES, blaNDM, blaVIM, and blaIMP). The main species were Klebsiella pneumoniae, Serratia marcescens, and Proteus mirabilis. Detected genes included blaNDM (46.66%), blaKPC (35.55%), and both (17.79%). ERIC-PCR showed multiclonal dissemination and high genetic variability. The main resistance gene was blaNDM, including blaNDM-5 and blaNDM-7. CONCLUSIONS: The presence of Enterobacterales carrying blaKPC and blaNDM in this study, particularly K. pneumoniae, in infections and colonizations of patients with COVID-19 and non-COVID-19, highlights genetic variability and resistance to carbapenems observed in multiple species of this order.
Subject(s)
COVID-19 , Enterobacteriaceae Infections , SARS-CoV-2 , beta-Lactamases , Humans , COVID-19/microbiology , Brazil , beta-Lactamases/genetics , SARS-CoV-2/genetics , Enterobacteriaceae Infections/microbiology , Genetic Variation , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Carbapenems/pharmacology , Hospitals , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effectsABSTRACT
Klebsiella pneumoniae strains that produce Klebsiella pneumoniae Carbapenemase (KPC) variants displaying resistance to ceftazidime-avibactam (CZA) often remain susceptible to meropenem (MEM), suggesting a potential therapeutic use of this carbapenem antibiotic. However, in vitro studies indicate that these sorts of strains can mutate becoming MEM-resistant, raising concerns about the effectiveness of carbapenems as treatment option. We have studied mutation rates occurring from the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae belonging to ST11. Two-step fluctuation assays (FAs) were conducted. In brief, initial cultures of KPC-114-producing K. pneumoniae showing 1 µg/mL MEM MIC were spread on Mueller-Hinton agar plates containing 2-8 µg/mL MEM. A second step of FA, at 4-16 µg/mL MEM was performed from a mutant colony obtained at 2 µg/mL MEM. Mutation rates were calculated using maximum likelihood estimation. Parental and mutant strains were sequenced by Illumina NextSeq, and mutations were predicted by variant-calling analysis. At 8 µg/mL MEM, mutants derived from parental CZA-resistant (MIC ≥ 64 µg/mL)/MEM-susceptible (MIC = 1 µg/mL) KPC-114-positive K. pneumoniae exhibited an accumulative mutation rate of 3.05 × 10-19 mutations/cell/generation, whereas at 16 µg/mL MEM an accumulative mutation rate of 1.33 × 10-19 mutations/cell/generation resulted in the reversion of KPC-114 (S181_P182 deletion) to KPC-2. These findings highlight that the reversion of MEM-susceptible KPC-114 to MEM-resistant KPC-2, in CZA-resistant K. pneumoniae ST11 is related to low mutation rates suggesting a low risk of therapeutic failure. In vivo investigations are necessary to confirm the clinical potential of MEM against CZA-resistant KPC variants.IMPORTANCEThe emergence of ceftazidime-avibactam (CZA) resistance among carbapenem-resistant Klebsiella pneumoniae is a major concern due to the limited therapeutic options. Strikingly, KPC mutations mediating CZA resistance are generally associated with meropenem susceptibility, suggesting a potential therapeutic use of this carbapenem antibiotic. However, the reversion of meropenem-susceptible to meropenem-resistant could be expected. Therefore, knowing the mutation rate related to this genetic event is essential to estimate the potential use of meropenem against CZA-resistant KPC-producing K. pneumoniae. In this study, we demonstrate, in vitro, that under high concentrations of meropenem, reversion of KPC-114 to KPC-2 in CZA-resistant/meropenem-susceptible K. pneumoniae belonging to the global high-risk ST11 is related to low mutation rates.
Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacterial Proteins , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Meropenem , Microbial Sensitivity Tests , Mutation Rate , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/pharmacology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Drug Resistance, Multiple, Bacterial/genetics , MutationABSTRACT
OBJECTIVE: Ceftazidime-avibactam (CZA) is a good option for Gram-negative bacilli infections that produce carbapenemase Classes A (especially blaKPC) and D (blaOXA). However, it is unknown whether it would have an impact on metallo-ß-lactamases (blaMBL) selection. The aim of the study was to compare carbapenem and CZA Klebsiella pneumoniae (KPN) susceptibility profiles for a period of two years following the introduction of CZA. METHODS: The study was conducted in a 36-bed adult ICU of a tertiary hospital in Buenos Aires, Argentina. Antimicrobial consumption was expressed as days of treatment per 100 patients-day (DOT). RESULTS: A total of 123 KPN strains in the first year and 172 in the second year were analyzed. An alarming decrease in carbapenem susceptibility was detected in the second year (OR 0.5 [0.3-0.8] p<.001). In parallel, there was a decrease in CZA susceptibility (OR 0.5 [0.3-0.9] p<.05). These findings were linked to a rise in blaMBL-KPN (32.1% vs. 45.1%, OR 1.7 [1.1-2.9], p <.04) during the second year. This new KPN susceptibility profile promoted an increment in CZA (1.0 DOT vs. 6.6 DOT, OR 6.6 [4.9-9.1] p<.001) and aztreonam (0.3 DOT vs. 4.1 DOT, OR 16.3 [9.1-29.3] p<.001) consumption. Thus, there was a decrease in carbapenem prescription (17.8 DOT vs. 15.4 DOT, OR 0.8 [0.8-0.9] p<.001). CONCLUSIONS: There was an escalation of blaMBL-KPN rate two years after CZA introduction, leading to a decrease in CZA and carbapenem susceptibility and an increase in CZA and aztreonam prescriptions.
Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Intensive Care Units , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Azabicyclo Compounds/therapeutic use , Azabicyclo Compounds/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Argentina , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Carbapenems/pharmacology , Carbapenems/therapeutic use , Tertiary Care CentersABSTRACT
The species included in the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and the genus Enterobacter) have a high capacity to develop antimicrobial resistance (AMR), a health problem that is already among the leading causes of death and could kill 10 million people a year by 2050. The generation of new potentially therapeutic molecules has been insufficient to combat the AMR "crisis", and the World Health Organization (WHO) has stated that it will seek to promote the development of rapid diagnostic strategies. The physicochemical properties of metallic nanoparticles (MNPs) have made it possible to design biosensors capable of identifying low concentrations of ESKAPE bacteria in the short term; other systems identify antimicrobial susceptibility, and some have been designed with dual activity in situ (bacterial detection and antimicrobial activity), which suggests that, in the near future, multifunctional biosensors could exist based on MNPs capable of quickly identifying bacterial pathogens in clinical niches might become commercially available. This review focuses on the use of MNP-based systems for the rapid and accurate identification of clinically important bacterial pathogens, exhibiting the necessity for exhaustive research to achieve these objectives. This review focuses on the use of metal nanoparticle-based systems for the rapid and accurate identification of clinically important bacterial pathogens.
Subject(s)
Biosensing Techniques , Klebsiella pneumoniae , Metal Nanoparticles , Staphylococcus aureus , Metal Nanoparticles/chemistry , Humans , Klebsiella pneumoniae/drug effects , Staphylococcus aureus/drug effects , Acinetobacter baumannii/drug effects , Pseudomonas aeruginosa/drug effects , Enterococcus faecium , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Early Diagnosis , Enterobacter/drug effectsABSTRACT
BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.
Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Iron , Klebsiella pneumoniae , Lipopolysaccharides , Promoter Regions, Genetic , Repressor Proteins , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Klebsiella pneumoniae/drug effects , Lipopolysaccharides/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Iron/metabolism , Binding Sites , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/metabolismABSTRACT
Neonatal sepsis leads to severe morbidity and occasionally death among neonates within the first week following birth, particularly in low- and middle-income countries. Empirical therapy includes antibiotics recommended by WHO. However, these have been ineffective against antimicrobial multidrug-resistant bacterial strains such as Klebsiella spp, Escherichia coli, and Staphylococcus aureus species. To counter this problem, new molecules and alternative sources of compounds with antibacterial activity are sought as options. Actinobacteria, particularly pathogenic strains, have revealed a biotechnological potential still underexplored. This study aimed to determine the presence of biosynthetic gene clusters and the antimicrobial activity of actinobacterial strains isolated from clinical cases against multidrug-resistant bacteria implicated in neonatal sepsis. In total, 15 strains isolated from clinical cases of actinomycetoma were used. PCR screening for the PKS-I, PKS-II, NRPS-I, and NRPS-II biosynthetic systems determined their secondary metabolite-producing potential. The strains were subsequently assayed for antimicrobial activity by the perpendicular cross streak method against Escherichia fergusonii Sec 23, Klebsiella pneumoniae subsp. pneumoniae H1064, Klebsiella variicola H776, Klebsiella oxytoca H793, and Klebsiella pneumoniae subsp. ozaenae H7595, previously classified as multidrug-resistant. Finally, the strains were identified by 16S rRNA gene sequence analysis. It was found that 100% of the actinobacteria had biosynthetic systems. The most frequent biosynthetic system was NRPS-I (100%), and the most frequent combination was NRPS-I and PKS-II (27%). All 15 strains showed antimicrobial activity. The strain with the highest antimicrobial activity was Streptomyces albus 94.1572, as it inhibited the growth of the five multidrug-resistant bacteria evaluated.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Neonatal Sepsis , Nocardia , Streptomyces , Anti-Bacterial Agents/pharmacology , Humans , Infant, Newborn , Neonatal Sepsis/microbiology , Nocardia/drug effects , Nocardia/genetics , Nocardia/isolation & purification , Streptomyces/genetics , Klebsiella/drug effects , Klebsiella pneumoniae/drug effects , Escherichia/drug effects , Polymerase Chain ReactionABSTRACT
The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), ß-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- ß-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.
Subject(s)
Amikacin , Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Drug Synergism , Klebsiella pneumoniae , Microbial Sensitivity Tests , Oils, Volatile , Amikacin/pharmacology , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Animals , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Gas Chromatography-Mass Spectrometry , Caenorhabditis elegans/drug effects , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Monocyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Sesquiterpenes/pharmacologyABSTRACT
I. paraguariensis St. Hil. is a south American species of agronomic interest with studies supporting its medicinal properties. As the investigation of active ingredients with antimicrobial effect from medicinal plants is a suitable approach to the current antibacterial resistance problem, the aim of the present study was to determine the antibacterial activity of yerba mate ethanolic extracts against carbapenemase-producing gram-negative bacteria (reference strains and clinical isolates). Extracts showed antibacterial activity against Klebsiella pneumoniae ATCC® BAA-2342™ (KPC producing), Providencia rettgeri (NDM producing), Pseudomonas aeruginosa (MBL producing) and P. aeruginosa (VIM producing) at the concentrations tested. The Minimal-Inhibitory-Concentration and Minimal-Bactericidal-Concentration values ranged between 1 and 32 mg.ml-1 for the reference strains, and between 0.125 and 1 mg.ml-1 for the clinical isolates. The MBC/MIC index characterized the extracts as bactericidal. The combinations of commercial antibiotics and extracts showed a synergistic action on the reference strains studied. The lethal concentration 50 obtained using the Artemia salina toxicity assay were higher than 1 mg.ml-1 for all the extracts, indicating a low toxicity. The in vitro activity and low toxicity suggest that ethanolic I. paraguariensis leaf extracts constitute an outstanding source for new antibacterial compounds, and further studies should be carried out to understand their mechanism of action.
Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Gram-Negative Bacteria , Ilex paraguariensis , Microbial Sensitivity Tests , Plant Extracts , Plant Leaves , beta-Lactamases , Plant Extracts/pharmacology , Ilex paraguariensis/chemistry , beta-Lactamases/metabolism , beta-Lactamases/biosynthesis , Plant Leaves/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Pseudomonas aeruginosa/drug effects , Animals , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymologyABSTRACT
Klebsiella pneumoniae (K. pneumoniae) is a major cause of healthcare-associated infections and plays a prominent role in the widespread antibiotic resistance crisis. Accurate identification of carbapenemases is essential to facilitate effective antibiotic treatment and reduce transmission of K. pneumoniae. This study aimed to detect carbapenemase production in carbapenem-resistant K. pneumoniae strains using phenotypic and genotypic methods. A total of 67 carbapenem-resistant K. pneumoniae strains obtained from various clinical samples were utilized for identification and antimicrobial susceptibility by the Vitek 2 Compact system (Biomerieux, France). Carbapenemase production was determined by using the Polymerase chain reaction, Blue-carba test (BCT) and Carbapenem inactivation method (CIM). Out of the isolates, 59 (88.1%) were positive bla OXA-48, 16 (23.9%) bla IMP, and five (7.5%) were positive bla NDM. No bla KPC genes were detected. The CIM identified 62 (92.5%), BCT identified 63 (94%) of PCR-positive isolates. The sensitivity and specificity of the BCT and the CIM were determined to be 96.7%, 40%, and 96.7%, 25% respectively. The bla OXA-48 gene was found to be the most prevalent in K. pneumoniae isolates. Early identification of carbapenem resistance plays a vital role in designing effective infection control strategies and mitigating the emergence and transmission of carbapenem resistance, thus reducing healthcare-associated infections.
Subject(s)
Anti-Bacterial Agents , Carbapenems , Genotype , Klebsiella pneumoniae , Microbial Sensitivity Tests , Phenotype , Polymerase Chain Reaction , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purificationABSTRACT
Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.
Subject(s)
Vegetables , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Vegetables/microbiology , Food Safety , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/enzymology , Food Microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Whole Genome Sequencing , HumansABSTRACT
The objective of the study was to evaluate the frequency and genetic characteristics of ESBL-producing Escherichia coli and Klebsiella spp. and the risk factors associated with a high total bacterial count in bulk tank milk samples of dairy farms in three municipalities of the Antioquia Department, Colombia. Fifteen samples were positive for E. coli and Klebsiella spp. Subsequent analysis of the 16 S rRNA gene sequences confirmed these isolates included E. coli (n = 3), K. oxytoca (n = 11), and K. pneumoniae (n = 1). None of the isolates was positive for ESBL identification by phenotypic methods, but the only the isolate of K. pneumoniae was positive for the blaSHV61 gene by sequence analysis. The antibiotic susceptibility evaluation for all Klebsiella spp. isolates identified resistance to fosfomycin (50%; 6/12) and ampicillin (100%; 12/12). While most of the herds maintain adequate hygienic quality, specific risk factors such as having more than 60 milking cows, frequent changes in milkers, milking in paddocks, and using a chlorinated product for pre-dipping have been identified as associated with a high total bacterial count > 100,000 CFU/mL in bulk tank milk. However, certain variables including the milker being the owner of the animals and the proper washing and disinfection of the milking machine contribute to maintain a high level of hygiene and quality in the raw milk stored in the tanks. In conclusion, the frequency of ESBL producers was relatively low, with only K. pneumoniae testing positive for the blaSHV ESBL type. The presence of these bacteria in milk tanks represents a potential risk to public health for consumers of raw milk and its derivatives.
Subject(s)
Anti-Bacterial Agents , Klebsiella pneumoniae , Milk , beta-Lactamases , Animals , Milk/microbiology , Colombia , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , Risk Factors , Cattle , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Microbial Sensitivity Tests , Bacterial Load , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Klebsiella Infections/veterinary , Dairying , Farms , FemaleABSTRACT
INTRODUCTION: Novel beta-lactam/beta-lactamase inhibitor (BIBLI) combinations are commercially available and have been used for treating carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. Continuous surveillance of susceptibility profiles and resistance mechanism identification are necessary to monitor the evolution of resistance within these agents. OBJECTIVE: The purpose of this study was to evaluate the susceptibility rates of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam in CRKP isolated from patients with bloodstream infections who underwent screening for a randomized clinical trial in Brazil. METHODS: Minimum inhibitory concentrations (MICs) were determined for meropenem, ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam using the gradient diffusion strip method. Carbapenemase genes were detected by multiplex real-time polymerase chain reaction. Klebsiella pneumoniae carbapenemase (KPC)-producing isolates showing resistance to any BLBLI and New Delhi Metallo-beta-lactamase (NDM)-producing isolates with susceptibility to any BLBLI isolates were further submitted for whole-genome sequencing. RESULTS: From a total of 69 CRKP isolates, 39 were positive for blaKPC, 19 for blaNDM and 11 for blaKPC and blaNDM. KPC-producing isolates demonstrated susceptibility rates above 94â¯% for all BLBLIs. Two isolates with resistance to meropenem/vaborbactam demonstrated a Gly and Asp duplication at the porin OmpK36 as well as a truncated OmpK35. All NDM-producing isolates, including KPC and NDM coproducers, demonstrated susceptibility rates to ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam of 0â¯%, 9.1-21.1â¯% and 9.1-26.3â¯%, respectively. Five NDM-producing isolates that presented susceptibility to BLBLIs also had porin alterations CONCLUSIONS: This study showed that, although high susceptibility rates to BLBLIs were found, KPC-2 isolates were able to demonstrate resistance probably as a result of porin mutations. Additionally, NDM-1 isolates showed susceptibility to BLBLIs in vitro.
Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenem-Resistant Enterobacteriaceae , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamase Inhibitors , beta-Lactamases , Humans , Brazil , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , beta-Lactamase Inhibitors/pharmacology , Klebsiella Infections/microbiology , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Meropenem/pharmacology , Imipenem/pharmacology , Bacteremia/microbiology , Boronic Acids/pharmacology , Heterocyclic Compounds, 1-RingABSTRACT
Klebsiella pneumoniae strains are globally associated with a plethora of opportunistic and severe human infections and are known to spread genes conferring antimicrobial resistance. Some strains harbor virulence determinants that enable them to cause serious disease in any patient, both in the hospital and in the community. The aim of this study was to determine the frequency of antimicrobial resistance and virulence traits (by gene detection and string test) among 83 K. pneumoniae isolates obtained from patient cultures of a scholar tertiary hospital in the Midwestern Brazil (Brasília, DF). Antimicrobial susceptibility analysis showed that 94% (78/83) of the isolates presented one of the following resistance profiles: resistant (R, 39), multidrug-resistant (MDR, 29), or extensively drug-resistant (XDR, 10). Several MDR and XDR strains harbored multiple virulence genes and displayed hypermucoviscous phenotype. These characteristics were observed among isolates obtained throughout all the sample collection period (2013 - 2017). The K2 serotype gene, a molecular marker of hypervirulence, was detected in three isolates, one of which classified as XDR. Sequence typing revealed the occurrence of isolates belonged to high-risk (ST13) and multiple resistance-spreading clones (ST105). Thus, our findings showed the occurrence of virulent potential isolates that also presented MDR/XDR phenotypes from 2013 to 2015. This study also indicates the probable convergence of virulence and resistance since at least 2013 in Brazil.
Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Tertiary Care Centers , Virulence Factors , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Brazil , Tertiary Care Centers/statistics & numerical data , Humans , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Virulence Factors/geneticsABSTRACT
Urinary tract infections (UTIs) are pervasive in human and veterinary medicine, notably affecting companion animals. These infections frequently lead to the prescription of antibiotics, contributing to the rise of antimicrobial-resistant bacteria. This escalating concern is underscored by the emergence of a previously undocumented case: a high-risk clone, broad-spectrum cephalosporin-resistant K. pneumoniae ST147 strain, denoted USP-275675, isolated from a cat with UTI. Characterized by a multidrug-resistant (MDR) profile, whole genome sequencing exposed several antimicrobial-resistance genes, notably blaCTX-M-15, blaTEM-1B, blaSHV-11, and blaOXA-1. ST147, recognized as a high-risk clone, has historically disseminated globally and is frequently associated with carbapenemases and extended-spectrum ß-lactamases. Notably, the core-genome phylogeny of K. pneumoniae ST147 strains isolated from urine samples revealed a unique aspect of the USP-276575 strain. Unlike its counterparts, it did not cluster with other isolates. However, a broader examination incorporating strains from both human and animal sources unveiled a connection between USP-276575 and a Portuguese strain from chicken meat. Both were part of a larger cluster of ST147 strains spanning various geographic locations and sample types, sharing commonalities such as IncFIB or IncR plasmids. This elucidates the MDR signature inherent in widespread K. pneumoniae ST147 strains carrying these plasmids, highlighting their pivotal role in disseminating antimicrobial resistance (AMR). Finally, discovering the high-risk clone K. pneumoniae ST147 in a domestic feline with a UTI in Brazil highlights the urgent need for thorough AMR surveillance through a One Health approach.
Subject(s)
Cat Diseases , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Urinary Tract Infections , Animals , Cats , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Urinary Tract Infections/veterinary , Urinary Tract Infections/microbiology , Cat Diseases/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/veterinary , Klebsiella Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Phylogeny , Genome, Bacterial , Whole Genome Sequencing/veterinaryABSTRACT
The new flavonoid (-)-4'-O-methylepicatechin 5-O-ß-D-glucopyranoside (1), along with four known triterpenes (2-5), a steroid (6), and a flavonoid (7) were isolated from the ethyl acetate extract of Maytenus quadrangulata leaves. The chemical structures of the isolated compounds were determined through analysis of 1D NMR (1H and 13C) spectroscopic data, in addition to 2D NMR and spectrometric (MS) data for compound 1. This is the first report of the isolation of daucosterol (6) and (-)-4'-O-methylepigallocatechin (7) from this species. Compounds 1 and 7 were evaluated against the bacteria Staphylococcus aureus and Klebsiella pneumoniae, but neither exhibited activity even at the highest concentration tested.