Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.033
Filter
1.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
2.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Article in English | MEDLINE | ID: mdl-38994004

ABSTRACT

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , Limit of Detection , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Recombinases/metabolism , Recombinases/genetics , Molecular Diagnostic Techniques/methods , Bacterial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics , Endodeoxyribonucleases
3.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
4.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955378

ABSTRACT

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Aminoglycosides/pharmacology , Tunisia , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Klebsiella Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
5.
Antimicrob Resist Infect Control ; 13(1): 70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961463

ABSTRACT

OBJECTIVES: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment. METHODS: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters. RESULTS: Overall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20. CONCLUSIONS: Integration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Hospitals, University , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Italy/epidemiology , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Cross Infection/microbiology , Cross Infection/epidemiology
6.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
7.
Microbiome ; 12(1): 132, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030586

ABSTRACT

BACKGROUND: The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess clinically significant antibiotic resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, the essential transmission factors influencing the spread of Klebsiella species among both healthy and diseased individuals remain unclear. RESULTS: Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella species to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments or the microenvironment of mechanical ventilators. When K. pneumoniae and K. aerogenes were present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became enriched in Klebsiella species. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated enrichment under starvation. Precise monitoring of K. pneumoniae within these communities undergoing starvation indicated rapid initial growth and prolonged viability compared to other members of the microbiome. K. pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella species, other understudied opportunistic pathogens, such as Peptostreptococcus, increased in relative abundance under starvation conditions. CONCLUSIONS: Our findings establish an environmental and microbiome community circumstance that allows for the enrichment of Klebsiella species and other opportunistic pathogens. Klebsiella's enrichment may hinge on its ability to quickly outgrow other members of the microbiome. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions could be an important factor that contributes to enhanced transmission in both commensal and pathogenic contexts. Video Abstract.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella , Microbiota , Mouth , Humans , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella/genetics , Klebsiella/isolation & purification , Klebsiella/drug effects , Mouth/microbiology , Microbiota/drug effects , Microbiota/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Starvation , Nasal Cavity/microbiology , Nose/microbiology
8.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 992-997, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034782

ABSTRACT

Objective: To investigate the effects of wza gene deletion in Klebsiella pneumoniae on capsule formation ability and bacteriophage sensitivity. Methods: The wza deletion mutant strain was constructed through a temperature-sensitive plasmid-mediated homologous recombination. The growth curves of W14 and Δwza were detected by measuring the optical density OD600. In order to analyze the effect of gene wza on bacterial capsule formation, wild-type strain W14 and Δwza mutant strain were detected by transmission electron microscope, and their capsule contents were measured by quantifying the uronic acid contents. The plaque assay was used to detect bacterial sensitivity to bacteriophage in wild-type strain W14 and Δwza mutant strain. The t test was used to compare whether there were differences in the contents of uronic acid in the capsules of wild-type strain W14 and Δwza mutant strain. Results: The PCR results revealed that the Δwza mutant strain was successfully constructed. Compared with wild-type strain W14, the growth curves of Δwza on the solid plates demonstrated a slightly slower growth. However, no difference in growth was observed among wild-type strain W14 and Δwza mutant strains in LB broth. The transmission electron microscope results showed that wza gene deletion resulted in the loss of capsule in bacteria. The uronic acid content assay suggested that the capsule content was significantly decreased in Δwza mutant strain (45.963±2.795) µg/ml compared with wild-type strain W14 (138.800±5.201) µg/ml. There was a statistical difference between the two groups (t=27.233, P<0.001). The plaque assay indicated that bacteria lost its sensitivity to bacteriophage when gene wza was deleted. Conclusion: Deletion of the wza gene impairs bacterial capsule formation ability and can affect bacterial sensitivity to bacteriophage phiW14.


Subject(s)
Bacterial Capsules , Bacteriophages , Gene Deletion , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/virology , Bacteriophages/genetics , Bacterial Capsules/genetics , Bacterial Proteins/genetics
9.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 998-1003, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034783

ABSTRACT

Objective: To establish an absolute quantitative method for high ethanol-producing klebsiella pneumoniae in a viable non-culturable (VBNC) state. Methods: High ethanol-producing Klebsiella pneumonia was induced to enter the VBNC state and then the ethanol production was evaluated. A PMA-ddPCR method was established to count the copies of live cell genes in the VBNC state of high ethanol-producing Klebsiella pneumoniae using single-copy genes. Further, the sensitivity and adaptability of ddPCR for detecting low-concentration samples were evaluated in VBNC fecal simulation. Results: The lower detection limit of ddPCR for quantitative analysis of high ethanol-producing Klebsiella pneumoniae gradient diluent was 10 times that of qPCR. At low temperature and low nutritional state, high ethanol-producing Klebsiella pneumoniae entered the VBNC state on the 45th day. The quantitative results of PMA-ddPCR on VBNC state cells were (5.46±0.05) log10 DNA copies/ml. The ethanol production in the VBNC state was<2.2 mmol/L and the ability to produce ethanol was restored after recovery. The minimum detection limit for ddPCR in fecal simulated samples with VBNC state was 3.2 log10 DNA copies/ml. Conclusion: The ddPCR detection method for high ethanol-producing Klebsiella pneumoniae with VBNC state has good sensitivity and adaptability, and can be used for the detection of VBNC state cells in clinical samples.


Subject(s)
Ethanol , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Ethanol/metabolism , Polymerase Chain Reaction/methods
10.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1041-1047, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034789

ABSTRACT

To examine the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) and investigate the horizontal transmission of blaKPC and blaNDM genes for the prevention and treatment of CRKP. A total of 49 clinically isolated CRKP strains were retrospectively analyzed from January to December 2022 at The First Hospital of Hunan University of Chinese Medicine. Phenotypic screening was performed using modified carbapenem inactivation assay (mCIM) and EDTA-carbapenem inactivation assay (eCIM). Polymerase chain reaction (PCR) was utilized to identify carbapenem resistance genes, ß-lactamase resistance genes, and virulence genes, while multi-locus sequence analysis (MLST) was employed to assess the homology of CRKP strains. Conjugation experiments were conducted to infer the horizontal transmission mechanism of blaKPC and blaNDM genes. The results showed that the study included 49 CRKP strains, with 44 carrying blaKPC and 8 carrying blaNDM, Three strains were identified as blaKPC+blaNDM-CRKP. In this study, 28 out of 49 CRKP strains (57.2%) were found to carry virulence genes. Additionally, one CRKP strain tested positive in the string test and was found to carry both Aerobactin and rmpA virulence genes. MLST results revealed a total of 5 ST types, with ST11 being predominant (41/49, 83.7%). Successful conjugation was observed in all 3 blaKPC-CRKP strains, while only 1 out of 3 blaNDM-CRKP strains showed successful conjugation. The transconjugant exhibited significantly reduced susceptibility to imipenem and cephalosporin antibiotics. In conclusion, the resistance mechanism of CRKP in this study is primarily attributed to the production of KPC enzymes, along with the presence of multiple ß-lactamase resistance genes. Additionally, there is a local prevalence of hv-CRKP and blaKPC+blaNDM-CRKP. blaKPC and blaNDM can be horizontally transmitted through plasmids, with varying efficiency among different strains.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Molecular Epidemiology , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Carbapenems/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , China/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals
11.
Sci Rep ; 14(1): 16836, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039157

ABSTRACT

The surge in mobile colistin-resistant genes (mcr) has become an increasing public health concern, especially in carbapenem-resistant Enterobacterales (CRE). Prospective surveillance was conducted to explore the genomic characteristics of clinical CRE isolates harbouring mcr in 2015-2020. In this study, we aimed to examine the genomic characteristics and phonotypes of mcr-8 and mcr-9 harbouring carbapenem-resistant K. pneumoniae complex (CRKpnC). Polymerase chain reaction test and genome analysis identified CRKpnC strain AMR20201034 as K. pneumoniae (CRKP) ST147 and strain AMR20200784 as K. quasipneumoniae (CRKQ) ST476, harbouring mcr-8 and mcr-9, respectively. CRKQ exhibited substitutions in chromosomal-mediated colistin resistance genes (pmrB, pmrC, ramA, and lpxM), while CRKP showed two substitutions in crrB, pmrB, pmrC, lpxM and lapB. Both species showed resistance to colistin, with minimal inhibitory concentrations of 8 µg/ml for mcr-8-carrying CRKP isolate and 32 µg/ml for mcr-9-carrying CRKQ isolate. In addition, CRKP harbouring mcr-8 carried blaNDM, while CRKQ harbouring mcr-9 carried blaIMP, conferring carbapenem resistance. Analysis of plasmid replicon types carrying mcr-8 and mcr-9 showed FIA-FII (96,575 bp) and FIB-HI1B (287,118 bp), respectively. In contrast with the plasmid carrying the carbapenemase genes, the CRKQ carried blaIMP-14 on an IncC plasmid, while the CRKP harboured blaNDM-1 on an FIB plasmid. This finding provides a comprehensive insight into another mcr-carrying CRE from patients in Thailand. The other antimicrobial-resistant genes in the CRKP were blaCTX-M-15, blaSHV-11, blaOXA-1, aac(6')-Ib-cr, aph(3')-VI, ARR-3, qnrS1, oqxA, oqxB, sul1, catB3, fosA, and qacE, while those detected in CRKQ were blaOKP-B-15, qnrA1, oqxA, oqxB, sul1, fosA, and qacE. This observation highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harbouring CRE and the need for rational drug use in all sectors.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Colistin , Klebsiella pneumoniae , Microbial Sensitivity Tests , Colistin/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Thailand , Bacterial Proteins/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Male , Plasmids/genetics , Female , Genomics/methods , Drug Resistance, Bacterial/genetics , Middle Aged , Adult , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Aged , Genome, Bacterial , Klebsiella
12.
Front Cell Infect Microbiol ; 14: 1407246, 2024.
Article in English | MEDLINE | ID: mdl-38962322

ABSTRACT

Introduction: In the battle against multidrug-resistant bacterial infections, ceftazidime- avibactam (CZA) stands as a pivotal defense, particularly against carbapenemresistant (CR) Gram-negative pathogens. However, the rise in resistance against this drug poses a significant threat to its effectiveness, highlighting the critical need for in-depth studies about its resistance mechanisms. Methods: This research focuses on the genomic characterization of CR- and CZA-resistant Escherichia coli (n=26) and Klebsiella pneumoniae (n=34) strains, harboring the blaNDM and/or blaOXA-48-like genes, at a major Lebanese tertiary care medical center, using whole genome sequencing (WGS). Results: Our findings revealed a notable prevalence of blaNDM in all K. pneumoniae strains isolates, with 27 of these also harboring blaOXA-48. On the other hand, E. coli strains predominantly carried the blaNDM-5 gene. Whole genome sequencing (WGS) identified a predominance of ST383 among K. pneumoniae strains, which possessed a multi-replicon IncFIB-IncHI1B plasmid harboring the blaNDM-5. Additionally, various Inc group plasmids in K. pneumoniae across multiple sequence types were found to carry the blaNDM. Similarly, diverse STs of E. coli were observed to carry blaNDM-5 on different plasmids. Discussion: The study underscores NDM carbapenemases as a paramount resistance mechanism in Lebanon,jeopardizing critical last-resort treatments. It also illuminates the role of varied sequence types and mobile genetic elements in the spread of NDM resistance,stressing the urgent need for strategies to mitigate this threat, especially in nosocomial infections.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Carbapenems , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Whole Genome Sequencing , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Humans , Lebanon , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Escherichia coli/drug effects , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Gene Transfer, Horizontal , Genome, Bacterial , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Tertiary Care Centers
13.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Article in English | MEDLINE | ID: mdl-38947124

ABSTRACT

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Subject(s)
Biofilms , Klebsiella Infections , Klebsiella pneumoniae , Temperature , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/classification , Biofilms/growth & development , Virulence/genetics , Animals , Klebsiella Infections/microbiology , Larva/microbiology , Plasmids/genetics , Moths/microbiology , Humans , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lepidoptera/microbiology , Viscosity , Phenotype , Gene Expression Profiling
14.
Commun Biol ; 7(1): 794, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951173

ABSTRACT

Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.


Subject(s)
Anti-Bacterial Agents , Bioreactors , Colistin , Drug Resistance, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Bioreactors/microbiology , Drug Resistance, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests , Humans
15.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
16.
Microb Genom ; 10(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39037209

ABSTRACT

Klebsiella pneumoniae poses a significant healthcare challenge due to its multidrug resistance and diverse serotype landscape. This study aimed to explore the serotype diversity of 1072 K. pneumoniae and its association with geographical distribution, disease severity and antimicrobial/virulence patterns in India. Whole-genome sequencing was performed on the Illumina platform, and genomic analysis was carried out using the Kleborate tool. The analysis revealed a total of 78 different KL types, among which KL64 (n=274/1072, 26 %), KL51 (n=249/1072, 24 %), and KL2 (n=88/1072, 8 %) were the most prevalent. In contrast, only 13 distinct O types were identified, with O1/O2v1 (n=471/1072, 44 %), O1/O2v2 (n=353/1072, 33 %), and OL101 (n=66/1072, 6 %) being the predominant serotypes. The study identified 114 different sequence types (STs) with varying serotypes, with ST231 being the most predominant. O serotypes were strongly linked with STs, with O1/O2v1 predominantly associated with ST231. Simpson's diversity index and Fisher's exact test revealed higher serotype diversity in the north and east regions, along with intriguing associations between specific serotypes and resistance profiles. No significant association between KL or O types and disease severity was observed. Furthermore, we found the specific association of virulence factors yersiniabactin and aerobactin (P<0.05) with KL types but no association with O antigen types (P>0.05). Conventionally described hypervirulent clones (i.e. KL1 and KL2) in India lacked typical virulent markers (i.e. aerobactin), contrasting with other regional serotypes (KL51). The cumulative distribution of KL and O serotypes suggests that future vaccines may have to include either ~20 KL or four O types to cover >85 % of the carbapenemase-producing Indian K. pneumoniae population. The results highlight the necessity for comprehensive strategies to manage the diverse landscape of K. pneumoniae strains across different regions in India. Understanding regional serotype dynamics is pivotal for targeted surveillance, interventions, and tailored vaccine strategies to tackle the diverse landscape of K. pneumoniae infections across India. This article contains data hosted by Microreact.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , O Antigens , Serogroup , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/isolation & purification , India/epidemiology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , O Antigens/genetics , Whole Genome Sequencing , Vaccine Development , Virulence Factors/genetics , Virulence/genetics , Genome, Bacterial , Bacterial Vaccines/immunology , Drug Resistance, Multiple, Bacterial/genetics , Antigens, Bacterial/genetics , Phylogeny , Antigens, Surface
17.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Article in English | MEDLINE | ID: mdl-39015336

ABSTRACT

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Subject(s)
Anti-Bacterial Agents , Chromosomes, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Plasmids/genetics , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Interspersed Repetitive Sequences/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
18.
Curr Microbiol ; 81(9): 276, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023551

ABSTRACT

Klebsiella pneumoniae is an opportunistic pathogen mostly found in health care-associated infections but can also be associated with community-acquired infections and is in critical need of new antimicrobial agents for strains resistant to carbapenems. The prevalence of carbapenemase-encoding genes varies among studies. Multidrug-resistant K. pneumoniae strains can harbor several antimicrobial-resistant determinants and mobile genetic elements (MGEs), along with virulence genetic determinants in community settings. We aim to determine the genetic profile of a multidrug-resistant K. pneumoniae strain isolated from a patient with community-acquired UTI. We isolated a K. pneumoniae strain UABC-Str0120, from a urine sample of community-acquired urinary tract infection. Antimicrobial susceptibility tests and Whole-genome sequencing (WGS) were performed. The phylogenetic relationship was inferred by SNPs calling and filtering. UABC-Str0120 showed resistance toward ß-lactams, combinations with ß-lactamase inhibitors, and carbapenems. WGS revealed the presence of genes conferring resistance to aminoglycosides, ß-lactams, carbapenems, quinolones, sulfonamides, phosphonates, phenicols, and quaternary ammonium compounds, 77 subsystems of virulence genes were identified, and an uncommon sequence type ST5889 was also determined. The sequenced strain harbors several MGEs. The UABC-Str0120 recovered from a urine sample harbors several virulence and antimicrobial resistance determinants, which assembles an endangering combination for an immunocompromised or a seemly healthy host, given its presence in a community setting.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Phylogeny , Urinary Tract Infections , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/urine , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/microbiology , Community-Acquired Infections/microbiology , Urine/microbiology
19.
Sci Rep ; 14(1): 16333, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009596

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) have diminished treatment options causing serious morbidities and mortalities. This systematic review and meta-analysis assessed the prevalence and associated factors of Enterobacteriaceae infections in clinical, livestock and environmental settings globally. The population intervention comparison and outcome strategy was used to enroll studies using the preferred reporting system for systematic review and meta-analysis to include only cross-sectional studies. Search engines used to retrieve articles included journal author name estimator, PubMed, Google Scholar and African Journals Online (AJOL). The Newcastle-Ottawa scale was used to assess the quality of studies. Sixteen articles from 2013 to 2023 in Africa, Asia, Europe and South America were studied. The pooled prevalence of CRE was 43.06% (95% CI 21.57-66.03). Klebsiella pneumoniae (49.40%), Escherichia coli (26.42%), and Enterobacter cloacae (14.24%) were predominant. Klebsiella pneumoniae had the highest resistance with the blaKPC-2 in addition to blaNDM, blaOXA-48, blaIMP and blaVIM. The blaKPC-2 genes occurrence was associated with environmental (P-value < 0.0001) and South American studies (P-value < 0.0001), but there was no difference in the trends over time (P-value = 0.745). This study highlights the high rates of CRE infections, particularly within blaKPC production. Monitoring and surveillance programs, research and infection control measures should be strengthened. Additionally, further studies are needed to explore the mechanisms driving the predominance of specific bacterial species and the distribution of resistance genes within this bacterial family.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Livestock , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Animals , Livestock/microbiology , Humans , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Prevalence , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use
20.
BMC Microbiol ; 24(1): 265, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026143

ABSTRACT

BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL