Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 574
Filter
1.
Biomolecules ; 14(7)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39062513

ABSTRACT

Lowe Syndrome (LS) is a rare X-linked disorder characterized by renal dysfunction, cataracts, and several central nervous system (CNS) anomalies. The mechanisms underlying the neurological dysfunction in LS remain unclear, albeit they share some phenotypic characteristics similar to the deficiency or dysfunction of the Reelin signaling, a relevant pathway with roles in CNS development and neuronal functions. In this study, we investigated the role of OCRL1, an inositol polyphosphate 5-phosphatase encoded by the OCRL gene, mutated in LS, focusing on its impact on endosomal trafficking and receptor recycling in human neuronal cells. Specifically, we tested the effects of OCRL1 deficiency in the trafficking and signaling of ApoER2/LRP8, a receptor for the ligand Reelin. We found that loss of OCRL1 impairs ApoER2 intracellular trafficking, leading to reduced receptor expression and decreased levels at the plasma membrane. Additionally, human neurons deficient in OCRL1 showed impairments in ApoER2/Reelin-induced responses. Our findings highlight the critical role of OCRL1 in regulating ApoER2 endosomal recycling and its impact on the ApoER2/Reelin signaling pathway, providing insights into potential mechanisms underlying the neurological manifestations of LS.


Subject(s)
Cell Adhesion Molecules, Neuronal , Endosomes , Extracellular Matrix Proteins , LDL-Receptor Related Proteins , Nerve Tissue Proteins , Neurons , Phosphoric Monoester Hydrolases , Protein Transport , Reelin Protein , Serine Endopeptidases , Humans , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/deficiency , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/deficiency , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/deficiency , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/deficiency , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/deficiency , Endosomes/metabolism , Neurons/metabolism , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Signal Transduction , Oculocerebrorenal Syndrome/genetics , Oculocerebrorenal Syndrome/metabolism
2.
JCI Insight ; 9(9)2024 May 08.
Article in English | MEDLINE | ID: mdl-38716730

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Monocytes , Signal Transduction , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Cell Line, Tumor , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Monocytes/metabolism , Monocytes/pathology , Neoplasm Metastasis , Transforming Growth Factor beta1/metabolism
3.
Article in English | MEDLINE | ID: mdl-38697654

ABSTRACT

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Subject(s)
Neuromuscular Junction , Signal Transduction , Humans , Animals , Agrin/metabolism , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Muscle Proteins/metabolism , Neuromuscular Diseases , Receptors, Cholinergic/metabolism , Synapses/physiology , Synapses/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism
4.
Mol Ther ; 32(7): 2176-2189, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734896

ABSTRACT

The disassembly of the neuromuscular junction (NMJ) is an early event in amyotrophic lateral sclerosis (ALS), ultimately leading to motor dysfunction and lethal respiratory paralysis. The hexanucleotide GGGGCC repeat expansion in the C9orf72 gene is the most common genetic mutation, and the dipeptide repeat (DPR) proteins have been shown to cause neurodegeneration. While no drugs can treat ALS patients efficiently, new treatment strategies are urgently needed. Here, we report that a MuSK agonist antibody alleviates poly-PR-induced NMJ deficits in C9orf72-ALS mice. The HB9-PRF/F mice, which express poly-PR proteins in motor neurons, exhibited impaired motor behavior and NMJ deficits. Mechanistically, poly-PR proteins interacted with Agrin to disrupt the interaction between Agrin and Lrp4, leading to attenuated activation of MuSK. Treatment with a MuSK agonist antibody rescued NMJ deficits, and extended the lifespan of C9orf72-ALS mice. Moreover, impaired NMJ transmission was observed in C9orf72-ALS patients. These findings identify the mechanism by which poly-PR proteins attenuate MuSK activation and NMJ transmission, highlighting the potential of promoting MuSK activation with an agonist antibody as a therapeutic strategy to protect NMJ function and prolong the lifespan of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , Disease Models, Animal , Neuromuscular Junction , Receptor Protein-Tyrosine Kinases , Animals , Neuromuscular Junction/metabolism , Neuromuscular Junction/drug effects , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Humans , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Longevity/drug effects , Motor Neurons/metabolism , Motor Neurons/drug effects , Agrin/metabolism , Agrin/genetics , Mice, Transgenic , Antibodies/pharmacology , Receptors, Cholinergic/metabolism , Receptors, Cholinergic/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics
5.
J Biol Chem ; 300(6): 107313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657864

ABSTRACT

Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.


Subject(s)
Cricetulus , LDL-Receptor Related Proteins , Membrane Transport Proteins , tau Proteins , Humans , tau Proteins/metabolism , tau Proteins/genetics , Animals , CHO Cells , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cell Line, Tumor , Protein Binding , Protein Transport
6.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661671

ABSTRACT

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
LDL-Receptor Related Proteins , Mice, Knockout , Selenium , Spatial Learning , Animals , Mice , Diet , Hippocampus/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Maze Learning/physiology , Maze Learning/drug effects , Memory/physiology , Memory/drug effects , Selenium/administration & dosage , Selenium/deficiency , Selenium/pharmacology , Selenoprotein P/genetics , Selenoprotein P/metabolism , Spatial Learning/physiology , Spatial Learning/drug effects , Spatial Memory/physiology , Spatial Memory/drug effects
7.
Stem Cell Res ; 77: 103359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460235

ABSTRACT

Parkinson's disease (PD) is a highly prevalent and severe neurodegenerative disease that affects more than 10 million individuals worldwide. Pathogenic mutations in LRP10 have been associated with autosomal dominant PD. Here, we report an induced pluripotent stem cell (iPSC) line generated from a PD patient harboring the LRP10 c.688C > T (p.Arg230Trp) variant. Skin fibroblasts from the PD patient were successfully reprogrammed into iPSCs that expressed pluripotency markers, a normal karyotype, and the capacity to differentiate into the three germ layers in vivo. This iPSC line is a potential resource for studying the pathogenic mechanisms of PD.


Subject(s)
Induced Pluripotent Stem Cells , Mutation , Parkinson Disease , Induced Pluripotent Stem Cells/metabolism , Humans , Parkinson Disease/genetics , Parkinson Disease/pathology , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Cell Line , Cell Differentiation , Male
8.
EMBO Rep ; 25(5): 2278-2305, 2024 May.
Article in English | MEDLINE | ID: mdl-38499808

ABSTRACT

SorLA, encoded by the gene SORL1, is an intracellular sorting receptor of the VPS10P domain receptor gene family. Although SorLA is best recognized for its ability to shuttle target proteins between intracellular compartments in neurons, recent data suggest that also its microglial expression can be of high relevance for the pathogenesis of brain diseases, including glioblastoma (GBM). Here, we interrogated the impact of SorLA on the functional properties of glioma-associated microglia and macrophages (GAMs). In the GBM microenvironment, GAMs are re-programmed and lose the ability to elicit anti-tumor responses. Instead, they acquire a glioma-supporting phenotype, which is a key mechanism promoting glioma progression. Our re-analysis of published scRNA-seq data from GBM patients revealed that functional phenotypes of GAMs are linked to the level of SORL1 expression, which was further confirmed using in vitro models. Moreover, we demonstrate that SorLA restrains secretion of TNFα from microglia to restrict the inflammatory potential of these cells. Finally, we show that loss of SorLA exacerbates the pro-inflammatory response of microglia in the murine model of glioma and suppresses tumor growth.


Subject(s)
Brain Neoplasms , Glioma , LDL-Receptor Related Proteins , Membrane Transport Proteins , Microglia , Tumor Microenvironment , Tumor Necrosis Factor-alpha , Animals , Humans , Mice , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Disease Models, Animal , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Glioma/metabolism , Glioma/pathology , Glioma/genetics , Macrophages/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Microglia/metabolism , Microglia/pathology , Tumor Necrosis Factor-alpha/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism
9.
Cell Mol Life Sci ; 81(1): 75, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315424

ABSTRACT

Autosomal dominant variants in LRP10 have been identified in patients with Lewy body diseases (LBDs), including Parkinson's disease (PD), Parkinson's disease-dementia (PDD), and dementia with Lewy bodies (DLB). Nevertheless, there is little mechanistic insight into the role of LRP10 in disease pathogenesis. In the brains of control individuals, LRP10 is typically expressed in non-neuronal cells like astrocytes and neurovasculature, but in idiopathic and genetic cases of PD, PDD, and DLB, it is also present in α-synuclein-positive neuronal Lewy bodies. These observations raise the questions of what leads to the accumulation of LRP10 in Lewy bodies and whether a possible interaction between LRP10 and α-synuclein plays a role in disease pathogenesis. Here, we demonstrate that wild-type LRP10 is secreted via extracellular vesicles (EVs) and can be internalised via clathrin-dependent endocytosis. Additionally, we show that LRP10 secretion is highly sensitive to autophagy inhibition, which induces the formation of atypical LRP10 vesicular structures in neurons in human-induced pluripotent stem cells (iPSC)-derived brain organoids. Furthermore, we show that LRP10 overexpression leads to a strong induction of monomeric α-synuclein secretion, together with time-dependent, stress-sensitive changes in intracellular α-synuclein levels. Interestingly, patient-derived astrocytes carrying the c.1424 + 5G > A LRP10 variant secrete aberrant high-molecular-weight species of LRP10 in EV-free media fractions. Finally, we show that this truncated patient-derived LRP10 protein species (LRP10splice) binds to wild-type LRP10, reduces LRP10 wild-type levels, and antagonises the effect of LRP10 on α-synuclein levels and distribution. Together, this work provides initial evidence for a possible functional role of LRP10 in LBDs by modulating intra- and extracellular α-synuclein levels, and pathogenic mechanisms linked to the disease-associated c.1424 + 5G > A LRP10 variant, pointing towards potentially important disease mechanisms in LBDs.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/metabolism , Parkinson Disease/pathology , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Lewy Body Disease/pathology , Lewy Bodies/metabolism , Brain/metabolism , LDL-Receptor Related Proteins/metabolism
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220377, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38368933

ABSTRACT

SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Subject(s)
Alzheimer Disease , Humans , Virulence , Mutation , Alzheimer Disease/genetics , Genetic Predisposition to Disease , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220389, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38368935

ABSTRACT

The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Microglia/metabolism , Lysosomes/metabolism , Neurons , Brain/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
12.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281682

ABSTRACT

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Subject(s)
Adaptor Protein Complex 4 , LDL-Receptor Related Proteins , Spastic Paraplegia, Hereditary , Animals , Humans , Mice , Adaptor Protein Complex 4/genetics , Adaptor Protein Complex 4/metabolism , HeLa Cells , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Receptors, Cell Surface , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism
13.
Cell Biol Int ; 48(5): 626-637, 2024 May.
Article in English | MEDLINE | ID: mdl-38263609

ABSTRACT

Ovarian cancer (OC) is the most lethal gynecological malignancy with a high mortality rate. Low-density lipoprotein (LDL) receptor-related protein 8 (LRP8) is a cell membrane receptor belonging LDL receptor family and is involved in several tumor progressions. However, there is limited understanding of how LRP8 mediates OC development. LRP8 expression level was identified in human OC tissues and cells using immunohistochemical staining and quantitative polymerase chain reaction assays, respectively. Functions of LRP8 in OC progression were evaluated by Celigo cell counting, wound healing, transwell and flow cytometry assays, and the xenograft models. The human phospho-kinase array analysis was used for screening potential signaling involved in OC development. We observed that LRP8 was overexpressed in OC tissues, and high expression of LRP8 was associated with poor prognosis of OC patients. Functionally, LRP8 knockdown remarkably reduced proliferation and migration of OC cells, and induced apoptosis and S phase cycle arrest. LRP8 deficiency attenuated in vivo tumor growth of OC cells. Moreover, the addition of p53 inhibitor partially reversed the effects of LRP8 knockdown on OC cell proliferation and apoptosis, indicating the involvement of p53 signaling in LRP8-mediated OC progression. This study confirmed that LRP8/p53 axis contributed to OC progression, which might serve as a novel potential therapeutic target for OC patients.


Subject(s)
LDL-Receptor Related Proteins , MicroRNAs , Ovarian Neoplasms , Female , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism , LDL-Receptor Related Proteins/metabolism
14.
Brain Res ; 1825: 148705, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38065285

ABSTRACT

The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.


Subject(s)
Agrin , LDL-Receptor Related Proteins , LDL-Receptor Related Proteins/metabolism , Agrin/metabolism , Amyloid beta-Peptides/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Neuromuscular Junction/metabolism
15.
Mol Genet Genomic Med ; 12(1): e2319, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38013226

ABSTRACT

BACKGROUND: Cenani-Lenzsyndactyly syndrome (CLSS; OMIM 212780) is a rare autosomal recessive acral deformity, which is mainly manifested in the fusion of fingers or toes, disordered phalangeal structure, shortening or fusion of the radius and ulna, and renal hypoplasia. CASE PRESENTATION: Our report described an individual with mild phenotypes from China. His parents were not consanguineous. The affected individual was non-dysmorphic. Standard X-ray showed that the both hands have only four metacarpal bones. The distal end of the first metacarpal bone on the right was relatively slender, and the distal phalanx was absent. Multiple phalanges and some soft tissues of both hands were fused. Exome sequencing revealed a novel biallelic c.282C⟩Avariant in low-density lipoprotein receptor-related protein 4 (LRP4; OMIM604270; NM_002334.4) causing p. (Asn94Lys) change in the encoded protein. This variant is predicted to be potentially pathogenic, affecting protein structure and function. CONCLUSION: We report a novel missense variant present in homozygosity in LRP4 to broaden the pathogenic spectrum of LRP4 in syndactyly, and exome sequencing technology is a powerful tool for genetic analysis in prenatal diagnosis and medical research, as a preferred method for the diagnosis of syndactyly and related phenotypes.


Subject(s)
LDL-Receptor Related Proteins , Syndactyly , Humans , Mutation , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Syndactyly/genetics , Syndactyly/diagnosis , Mutation, Missense
16.
Calcif Tissue Int ; 114(2): 171-181, 2024 02.
Article in English | MEDLINE | ID: mdl-38051321

ABSTRACT

Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.


Subject(s)
Adaptor Proteins, Signal Transducing , Bone Remodeling , Hyperostosis , Syndactyly , Male , Female , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mice, Knockout , Phenotype , Mutation , Bone Remodeling/genetics , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism
17.
Cells ; 12(24)2023 12 08.
Article in English | MEDLINE | ID: mdl-38132122

ABSTRACT

The SORL1 gene encodes LR11/SorLA, a protein that binds ß-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aß and sAPPα levels, intracellular Aß 40 and Aß42 peptides, APP-CTFs (C99 and C83) expressions, α-, ß- and γ-secretases expressions and activities as well as Aß and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Animals , Cricetinae , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Cricetulus , HEK293 Cells , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Mutation/genetics
18.
Stem Cell Reports ; 18(12): 2434-2450, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37949073

ABSTRACT

The SORL1 gene (SORLA) is strongly associated with risk of developing Alzheimer's disease (AD). SORLA is a regulator of endosomal trafficking in neurons and interacts with retromer, a complex that is a "master conductor" of endosomal trafficking. Small molecules can increase retromer expression in vitro, enhancing its function. We treated hiPSC-derived cortical neurons that are either fully deficient, haploinsufficient, or that harbor one copy of SORL1 variants linked to AD with TPT-260, a retromer-enhancing molecule. We show significant increases in retromer subunit VPS26B expression. We tested whether endosomal, amyloid, and TAU pathologies were corrected. We observed that the degree of rescue by TPT-260 treatment depended on the number of copies of functional SORL1 and which SORL1 variant was expressed. Using a disease-relevant preclinical model, our work illuminates how the SORL1-retromer pathway can be therapeutically harnessed.


Subject(s)
Alzheimer Disease , LDL-Receptor Related Proteins , Membrane Transport Proteins , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Endosomes/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Neurons/metabolism
19.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895139

ABSTRACT

In this manuscript, we introduced a French EOAD patient in Korea who carried the presenilin-1 (PSEN1) Glu318Gly mutations with four possible risk variants, including sortilin-related receptor 1 (SORL1) Glu270Lys, ATP-binding cassette subfamily A member 7 (ABCA7) Val1946Met, translocase of outer mitochondrial membrane 40 (TOMM40) Arg239Trp, and granulin (GRN) Ala505Gly. The patient started to present memory decline and behavioral dysfunction in his early 60s. His brain imaging presented amyloid deposits by positron emission tomography (PET-CT). The multimer detection system (MDS) screening test for plasma for amyloid oligomers was also positive, which supported the AD diagnosis. It was verified that PSEN1 Glu318Gly itself may not impact amyloid production. However, additional variants were found in other AD and non-AD risk genes, as follows: SORL1 Glu270Lys was suggested as a risk mutation for AD and could increase amyloid peptide production and impair endosome functions. ABCA7 Val1946Met was a novel variant that was predicted to be damaging. The GRN Ala505Gly was a variant with uncertain significance; however, it may reduce the granulin levels in the plasma of dementia patients. Pathway analysis revealed that PSEN1 Glu318Gly may work as a risk factor along with the SORL1 and ABCA7 variants since pathway analysis revealed that PSEN1 could directly interact with them through amyloid-related and lipid metabolism pathways. TOMM40 and PSEN1 could have common mechanisms through mitochondrial dysfunction. It may be possible that PSEN1 Glu318Gly and GRN Ala505Gly would impact disease by impairing immune-related pathways, including microglia and astrocyte development, or NFkB-related pathways. Taken together, the five risk factors may contribute to disease-related pathways, including amyloid and lipid metabolism, or impair immune mechanisms.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloidogenic Proteins/metabolism , ATP-Binding Cassette Transporters/genetics , Granulins/metabolism , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Mutation , Positron Emission Tomography Computed Tomography , Presenilin-1/genetics , Presenilin-1/metabolism , Male , Middle Aged
20.
J Alzheimers Dis ; 94(4): 1343-1349, 2023.
Article in English | MEDLINE | ID: mdl-37424467

ABSTRACT

SORL1 loss of function is associated with Alzheimer's disease (AD) risk through increased Aß peptide secretion. We expressed 10 maturation-defective rare missense SORL1 variants in HEK cells and showed that decreasing growing temperature led to a significant increase in the maturation of the encoded protein SorLA for 6/10. In edited hiPSC carrying two of these variants, maturation of the protein was restored partially by decreasing the culture temperature and was associated with concomitant decrease in Aß secretion. Correcting SorLA maturation in the context of maturation-defective missense variants could thus be a relevant strategy to improve SorLA protective function against AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Mutation, Missense , Genetic Predisposition to Disease , Membrane Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL