Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.100
1.
Eur J Med Res ; 29(1): 309, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38831471

The long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 4 (SNHG4) has been demonstrated to be significantly downregulated in various inflammatory conditions, yet its role in chronic obstructive pulmonary disease (COPD) remains elusive. This study aims to elucidate the biological function of SNHG4 in COPD and to unveil its potential molecular targets. Our findings reveal that both SNHG4 and Four and a Half LIM Domains 1 (FHL1) were markedly downregulated in COPD, whereas microRNA-409-3p (miR-409-3p) was upregulated. Importantly, SNHG4 exhibited a negative correlation with inflammatory markers in patients with COPD, but a positive correlation with forced expiratory volume in 1s percentage (FEV1%). SNHG4 distinguished COPD patients from non-smokers with high sensitivity, specificity, and accuracy. Overexpression of SNHG4 ameliorated cigarette smoke extract (CSE)-mediated inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE bronchial epithelial cells. These beneficial effects of SNHG4 overexpression were reversed by the overexpression of miR-409-3p or the silencing of FHL1. Mechanistically, SNHG4 competitively bound to miR-409-3p, mediating the expression of FHL1, and consequently improving inflammation, apoptosis, oxidative stress, and airway remodeling in 16HBE cells. Additionally, SNHG4 regulated the miR-409-3p/FHL1 axis to inhibit the activation of the mitogen-activated protein kinase (MAPK) pathway induced by CSE. In a murine model of COPD, knockdown of SNHG4 exacerbated CSE-induced pulmonary inflammation, apoptosis, and oxidative stress. In summary, our data affirm that SNHG4 mitigates pulmonary inflammation, apoptosis, and oxidative damage mediated by COPD through the regulation of the miR-409-3p/FHL1 axis.


Airway Remodeling , Apoptosis , Cell Proliferation , MicroRNAs , Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis/genetics , Airway Remodeling/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Cell Proliferation/genetics , Animals , Mice , Male , MAP Kinase Signaling System/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Inflammation/metabolism , Inflammation/genetics , Female , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Middle Aged , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Mice, Inbred C57BL
2.
Arch Dermatol Res ; 316(7): 401, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38878083

BACKGROUND: The adhesive properties of vitiligo melanocytes have decreased under oxidative stress., cytoskeleton proteins can control cell adhesion. Paeoniflorin (PF) was proved to resist hydrogen peroxide (H2O2)-induced oxidative stress in melanocytes via nuclear factorE2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. OBJECTIVES: This study was to investigate whether PF exerts anti-oxidative effect through influencing cytoskeleton markers or potential signaling pathway. METHODS: Human Oxidative Stress Plus array was used to identify the differentially expressed genes between H2O2 + PF group and H2O2 only group, in PIG1 and PIG3V melanocyte cell lines respectively. Western blotting was used to verify the PCR array results and to test the protein expression levels of cytoskeleton markers including Ras homolog family member A (RhoA), Rho-associated kinase 1 (ROCK1) and antioxidative marker Nrf2. Small interfering RNA was used to knock down PDZ and LIM domain 1 (PDLIM1). RESULTS: PF increased the expressions of PDLIM1, RhoA and ROCK1 in H2O2-induced PIG1, in contrast, decreased the expressions of PDLIM1 and ROCK1 in H2O2-induced PIG3V. Knockdown of PDLIM1 increased the expressions of RhoA and Nrf2 in PF-pretreated H2O2-induced PIG1, and ROCK1 and Nrf2 in PF-pretreated H2O2-induced PIG3V. CONCLUSIONS: PF regulates RhoA/ROCK1 and Nrf2 pathways in PDLIM1-dependent or independent manners in H2O2-induced melanocytes. In PIG1, PF promotes PDLIM1 to inhibit RhoA/ROCK1 pathway or activates Nrf2/HO-1 pathway, separately. In PIG3V, PF directly downregulates ROCK1 in PDLIM1-independent manner or upregulates Nrf2 dependent of PDLIM1.


Glucosides , Hydrogen Peroxide , LIM Domain Proteins , Melanocytes , Monoterpenes , NF-E2-Related Factor 2 , Oxidative Stress , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , NF-E2-Related Factor 2/metabolism , rho-Associated Kinases/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Humans , Glucosides/pharmacology , Oxidative Stress/drug effects , rhoA GTP-Binding Protein/metabolism , Hydrogen Peroxide/metabolism , Signal Transduction/drug effects , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Monoterpenes/pharmacology , Cell Line
3.
J Exp Clin Cancer Res ; 43(1): 169, 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38880883

BACKGROUND: Cancer is characterized by dysregulated cellular metabolism. Thus, understanding the mechanisms underlying these metabolic alterations is important for developing targeted therapies. In this study, we investigated the pro-tumoral effect of PDZ and LIM domain 2 (PDLIM2) downregulation in lung cancer growth and its association with the accumulation of mitochondrial ROS, oncometabolites and the activation of hypoxia-inducible factor-1 (HIF-1) α in the process. METHODS: Databases and human cancer tissue samples were analyzed to investigate the roles of PDLIM2 and HIF-1α in cancer growth. DNA microarray and gene ontology enrichment analyses were performed to determine the cellular functions of PDLIM2. Seahorse assay, flow cytometric analysis, and confocal microscopic analysis were employed to study mitochondrial functions. Oncometabolites were analyzed using liquid chromatography-mass spectrometry (LC-MS). A Lewis lung carcinoma (LLC) mouse model was established to assess the in vivo function of PDLIM2 and HIF-1α. RESULTS: The expression of PDLIM2 was downregulated in lung cancer, and this downregulation correlated with poor prognosis in patients. PDLIM2 highly regulated genes associated with mitochondrial functions. Mechanistically, PDLIM2 downregulation resulted in NF-κB activation, impaired expression of tricarboxylic acid (TCA) cycle genes particularly the succinate dehydrogenase (SDH) genes, and mitochondrial dysfunction. This disturbance contributed to the accumulation of succinate and other oncometabolites, as well as the buildup of mitochondrial reactive oxygen species (mtROS), leading to the activation of hypoxia-inducible factor 1α (HIF-1α). Furthermore, the expression of HIF-1α was increased in all stages of lung cancer. The expression of PDLIM2 and HIF-1α was reversely correlated in lung cancer patients. In the animal study, the orally administered HIF-1α inhibitor, PX-478, significantly reduces PDLIM2 knockdown-promoted tumor growth. CONCLUSION: These findings shed light on the complex action of PDLIM2 on mitochondria and HIF-1α activities in lung cancer, emphasizing the role of HIF-1α in the tumor-promoting effect of PDLIM2 downregulation. Additionally, they provide new insights into a strategy for precise targeted treatment by suggesting that HIF-1α inhibitors may serve as therapy for lung cancer patients with PDLIM2 downregulation.


Down-Regulation , Hypoxia-Inducible Factor 1, alpha Subunit , LIM Domain Proteins , Mitochondria , Reactive Oxygen Species , Humans , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Cell Line, Tumor , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Carcinoma, Lewis Lung/genetics , Gene Expression Regulation, Neoplastic , Female , Male
4.
Nat Commun ; 15(1): 4945, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38858386

Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.


Disease Models, Animal , Ketamine , Neurons , Prefrontal Cortex , Synapses , Animals , Ketamine/pharmacology , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Synapses/drug effects , Synapses/metabolism , Neurons/metabolism , Neurons/drug effects , Mice , Male , Humans , Cell Polarity/drug effects , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/drug therapy , Mice, Knockout , Stress, Psychological , Corticosterone , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Mice, Inbred C57BL , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Glutamic Acid/metabolism , Antidepressive Agents/pharmacology
5.
Proc Natl Acad Sci U S A ; 121(24): e2320867121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838015

O-GlcNAcase (OGA) is the only human enzyme that catalyzes the hydrolysis (deglycosylation) of O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) from numerous protein substrates. OGA has broad implications in many challenging diseases including cancer. However, its role in cell malignancy remains mostly unclear. Here, we report that a cancer-derived point mutation on the OGA's noncatalytic stalk domain aberrantly modulates OGA interactome and substrate deglycosylation toward a specific set of proteins. Interestingly, our quantitative proteomic studies uncovered that the OGA stalk domain mutant preferentially deglycosylated protein substrates with +2 proline in the sequence relative to the O-GlcNAcylation site. One of the most dysregulated substrates is PDZ and LIM domain protein 7 (PDLIM7), which is associated with the tumor suppressor p53. We found that the aberrantly deglycosylated PDLIM7 suppressed p53 gene expression and accelerated p53 protein degradation by promoting the complex formation with E3 ubiquitin ligase MDM2. Moreover, deglycosylated PDLIM7 significantly up-regulated the actin-rich membrane protrusions on the cell surface, augmenting the cancer cell motility and aggressiveness. These findings revealed an important but previously unappreciated role of OGA's stalk domain in protein substrate recognition and functional modulation during malignant cell progression.


Cytoskeleton , LIM Domain Proteins , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Cytoskeleton/metabolism , Acetylglucosamine/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Cell Line, Tumor , Glycosylation , Hydrolysis , Mutation , Cell Movement , Antigens, Neoplasm , Hyaluronoglucosaminidase , Histone Acetyltransferases
6.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38713618

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Adaptor Proteins, Signal Transducing , Cholesterol , Cytoskeletal Proteins , LIM Domain Proteins , Membrane Transport Proteins , Mice, Knockout , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Caco-2 Cells , Humans , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice , Cholesterol/metabolism , Cholesterol/blood , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , Receptors, LDL/metabolism , Receptors, LDL/genetics , Intestinal Mucosa/metabolism , Enterocytes/metabolism , Intestinal Absorption , Diet, High-Fat , Homeodomain Proteins
7.
Life Sci Alliance ; 7(7)2024 Jul.
Article En | MEDLINE | ID: mdl-38719752

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Cell Adhesion , Cell Movement , Fibroblasts , Focal Adhesions , LIM Domain Proteins , Septins , Humans , Septins/metabolism , Septins/genetics , Cell Movement/genetics , Fibroblasts/metabolism , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Focal Adhesions/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Pseudopodia/metabolism , Actin Cytoskeleton/metabolism , Cell Line , Actins/metabolism , Stress Fibers/metabolism
8.
Mol Med Rep ; 29(6)2024 06.
Article En | MEDLINE | ID: mdl-38695236

During hematopoiesis, megakaryocytic erythroid progenitors (MEPs) differentiate into megakaryocytic or erythroid lineages in response to specific transcriptional factors, yet the regulatory mechanism remains to be elucidated. Using the MEP­like cell line HEL western blotting, RT­qPCR, lentivirus­mediated downregulation, flow cytometry as well as chromatin immunoprecipitation (ChIp) assay demonstrated that the E26 transformation­specific (ETS) transcription factor friend leukemia integration factor 1 (Fli­1) inhibits erythroid differentiation. The present study using these methods showed that while FLI1­mediated downregulation of GATA binding protein 1 (GATA1) suppresses erythropoiesis, its direct transcriptional induction of GATA2 promotes megakaryocytic differentiation. GATA1 is also involved in megakaryocytic differentiation through regulation of GATA2. By contrast to FLI1, the ETS member erythroblast transformation­specific­related gene (ERG) negatively controls GATA2 and its overexpression through exogenous transfection blocks megakaryocytic differentiation. In addition, FLI1 regulates expression of LIM Domain Binding 1 (LDB1) during erythroid and megakaryocytic commitment, whereas shRNA­mediated depletion of LDB1 downregulates FLI1 and GATA2 but increases GATA1 expression. In agreement, LDB1 ablation using shRNA lentivirus expression blocks megakaryocytic differentiation and modestly suppresses erythroid maturation. These results suggested that a certain threshold level of LDB1 expression enables FLI1 to block erythroid differentiation. Overall, FLI1 controlled the commitment of MEP to either erythroid or megakaryocytic lineage through an intricate regulation of GATA1/GATA2, LDB1 and ERG, exposing multiple targets for cell fate commitment and therapeutic intervention.


Cell Differentiation , Erythroid Cells , Megakaryocytes , Humans , Cell Differentiation/genetics , Cell Line , Erythroid Cells/metabolism , Erythroid Cells/cytology , GATA1 Transcription Factor/metabolism , GATA1 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Gene Expression Regulation , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Megakaryocytes/metabolism , Megakaryocytes/cytology , Proto-Oncogene Protein c-fli-1/metabolism , Proto-Oncogene Protein c-fli-1/genetics , Transcriptional Regulator ERG/metabolism , Transcriptional Regulator ERG/genetics
9.
J Agric Food Chem ; 72(21): 12240-12250, 2024 May 29.
Article En | MEDLINE | ID: mdl-38764183

LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.


Alternative Splicing , Chickens , LIM Domain Proteins , Muscle Development , Muscle, Skeletal , Animals , Chickens/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/growth & development , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Myoblasts/metabolism , Avian Proteins/genetics , Avian Proteins/metabolism , Avian Proteins/chemistry , Cell Differentiation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/chemistry
10.
J Biol Chem ; 300(5): 107254, 2024 May.
Article En | MEDLINE | ID: mdl-38569934

Nesprins comprise a family of multi-isomeric scaffolding proteins, forming the linker of nucleoskeleton-and-cytoskeleton complex with lamin A/C, emerin and SUN1/2 at the nuclear envelope. Mutations in nesprin-1/-2 are associated with Emery-Dreifuss muscular dystrophy (EDMD) with conduction defects and dilated cardiomyopathy (DCM). We have previously observed sarcomeric staining of nesprin-1/-2 in cardiac and skeletal muscle, but nesprin function in this compartment remains unknown. In this study, we show that specific nesprin-2 isoforms are highly expressed in cardiac muscle and localize to the Z-disc and I band of the sarcomere. Expression of GFP-tagged nesprin-2 giant spectrin repeats 52 to 53, localized to the sarcomere of neonatal rat cardiomyocytes. Yeast two-hybrid screening of a cardiac muscle cDNA library identified telethonin and four-and-half LIM domain (FHL)-2 as potential nesprin-2 binding partners. GST pull-down and immunoprecipitation confirmed the individual interactions between nesprin-2/telethonin and nesprin-2/FHL-2, and showed that nesprin-2 and telethonin binding was dependent on telethonin phosphorylation status. Importantly, the interactions between these binding partners were impaired by mutations in nesprin-2, telethonin, and FHL-2 identified in EDMD with DCM and hypertrophic cardiomyopathy patients. These data suggest that nesprin-2 is a novel sarcomeric scaffold protein that may potentially participate in the maintenance and/or regulation of sarcomeric organization and function.


Connectin , LIM Domain Proteins , Muscle Proteins , Myocytes, Cardiac , Nerve Tissue Proteins , Nuclear Proteins , Sarcomeres , Animals , Humans , Mice , Rats , Connectin/metabolism , Connectin/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , LIM-Homeodomain Proteins , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Muscle Proteins/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Protein Binding , Sarcomeres/metabolism , Transcription Factors
11.
Cells ; 13(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38667334

Meat yield, determined by muscle growth and development, is an important economic trait for the swine industry and a focus of research in animal genetics and breeding. PDZ and LIM domain 5 (PDLIM5) are cytoskeleton-related proteins that play key roles in various tissues and cells. These proteins have multiple isoforms, primarily categorized as short (PDLIM5-short) and long (PDLIM5-long) types, distinguished by the absence and presence of an LIM domain, respectively. However, the expression patterns of swine PDLIM5 isoforms and their regulation during porcine skeletal muscle development remain largely unexplored. We observed that PDLIM5-long was expressed at very low levels in pig muscles and that PDLIM5-short and total PDLIM5 were highly expressed in the muscles of slow-growing pigs, suggesting that PDLIM5-short, the dominant transcript in pigs, is associated with a slow rate of muscle growth. PDLIM5-short suppressed myoblast proliferation and myogenic differentiation in vitro. We also identified two single nucleotide polymorphisms (-258 A > T and -191 T > G) in the 5' flanking region of PDLIM5, which influenced the activity of the promoter and were associated with muscle growth rate in pigs. In summary, we demonstrated that PDLIM5-short negatively regulates myoblast proliferation and differentiation, providing a theoretical basis for improving pig breeding programs.


LIM Domain Proteins , Muscle Development , Animals , Muscle Development/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Swine , Cell Proliferation/genetics , Cell Differentiation/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Polymorphism, Single Nucleotide/genetics , Myoblasts/metabolism , Myoblasts/cytology , Promoter Regions, Genetic/genetics
12.
J Mol Cell Cardiol ; 191: 40-49, 2024 Jun.
Article En | MEDLINE | ID: mdl-38604403

The heart has the ability to detect and respond to changes in mechanical load through a process called mechanotransduction. In this study, we focused on investigating the role of the cardiac-specific N2B element within the spring region of titin, which has been proposed to function as a mechanosensor. To assess its significance, we conducted experiments using N2B knockout (KO) mice and wildtype (WT) mice, subjecting them to three different conditions: 1) cardiac pressure overload induced by transverse aortic constriction (TAC), 2) volume overload caused by aortocaval fistula (ACF), and 3) exercise-induced hypertrophy through swimming. Under conditions of pressure overload (TAC), both genotypes exhibited similar hypertrophic responses. In contrast, WT mice displayed robust left ventricular hypertrophy after one week of volume overload (ACF), while the KO mice failed to undergo hypertrophy and experienced a high mortality rate. Similarly, swim exercise-induced hypertrophy was significantly reduced in the KO mice. RNA-Seq analysis revealed an abnormal ß-adrenergic response to volume overload in the KO mice, as well as a diminished response to isoproterenol-induced hypertrophy. Because it is known that the N2B element interacts with the four-and-a-half LIM domains 1 and 2 (FHL1 and FHL2) proteins, both of which have been associated with mechanotransduction, we evaluated these proteins. Interestingly, while volume-overload resulted in FHL1 protein expression levels that were comparable between KO and WT mice, FHL2 protein levels were reduced by over 90% in the KO mice compared to WT. This suggests that in response to volume overload, FHL2 might act as a signaling mediator between the N2B element and downstream signaling pathways. Overall, our study highlights the importance of the N2B element in mechanosensing during volume overload, both in physiological and pathological settings.


Connectin , Mechanotransduction, Cellular , Mice, Knockout , Animals , Mice , Connectin/metabolism , Connectin/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/genetics , Myocardium/metabolism , Myocardium/pathology , Male , Physical Conditioning, Animal , LIM-Homeodomain Proteins/metabolism , LIM-Homeodomain Proteins/genetics , Disease Models, Animal , Muscle Proteins/metabolism , Muscle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Protein Kinases , Intracellular Signaling Peptides and Proteins
13.
Cell Signal ; 119: 111155, 2024 Jul.
Article En | MEDLINE | ID: mdl-38565413

BACKGROUND: Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS: Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/ß-catenin pathway. RESULTS: The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/ß-catenin signal transduction by directly targeting FHL1. CONCLUSION: MiR-3682-3p along the FHL1 axis activated the Wnt/ß-catenin signaling pathway and thus promoted EC malignancy.


Cell Proliferation , Esophageal Neoplasms , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins , Mice, Nude , MicroRNAs , Muscle Proteins , Wnt Signaling Pathway , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , Mice , Male , Female , Disease Progression , Middle Aged , beta Catenin/metabolism , Mice, Inbred BALB C , Cell Movement/genetics
16.
Leukemia ; 38(5): 951-962, 2024 May.
Article En | MEDLINE | ID: mdl-38553571

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Adaptor Proteins, Signal Transducing , LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Thymus Gland/metabolism , Thymus Gland/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
17.
Int J Rheum Dis ; 27(2): e15036, 2024 Feb.
Article En | MEDLINE | ID: mdl-38333999

Myofibrillar myopathies (MFMs) are a group of genetically heterogeneous diseases affecting the skeletal and cardiac muscles. Myofibrillar myopathies are characterized by focal lysis of myogenic fibers and integration of degraded myogenic fiber products into inclusion bodies, which are typically rich in desmin and many other proteins. Herein, we report a case of a 54-year-old woman who experienced bilateral thigh weakness for over three years. She was diagnosed with MFMs based on muscle biopsy findings and the presence of a novel mutation in exon 8 of the LDB3 gene. Myofibrillar myopathies caused by a mutation in the LDB3 gene are extremely uncommon and often lack distinct clinical characteristics and typically exhibit a slow disease progression. When considering a diagnosis of MFMs, particularly in complex instances of autosomal dominant myopathies where muscle biopsies do not clearly indicate MFMs, it becomes crucial for clinicians to utilize genetic test as a diagnostic tool.


Myofibrils , Myopathies, Structural, Congenital , Female , Humans , Middle Aged , Myofibrils/genetics , Myofibrils/metabolism , Myofibrils/pathology , Myopathies, Structural, Congenital/diagnosis , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Mutation , Exons , Myocardium , Muscle, Skeletal/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism
19.
Sci Rep ; 14(1): 4042, 2024 02 19.
Article En | MEDLINE | ID: mdl-38369589

Thyroid hormone receptor interactor 6 (TRIP6) it is an adaptor protein belonging to the zyxin family of LIM proteins, participating in signaling events through interactions with various molecules. Despite this, TRIP6's role in colorectal cancer (CRC), particularly its correlation with glucose metabolism and immune cell infiltration, remains unclear. Through the TCGA and GEO databases, we obtained RNA sequencing data to facilitate our in-depth study and analysis of TRIP6 expression. To investigate the prognostic value of TRIP6 in CRC, we also used univariate Cox regression analysis. In addition, this study also covered a series of analyses, including clinicopathological analysis, functional enrichment analysis, glycolysis correlation analysis, immunoinfiltration analysis, immune checkpoint analysis, and angiogenesis correlation analysis, to gain a comprehensive and in-depth understanding of this biological phenomenon. It has been found that TRIP6 expression is significantly upregulated in CRC and correlates with the stage of the disease. Its overexpression portends a worse survival time. Functional enrichment analysis reveals that TRIP6 is associated with focal adhesion and glycolysis. Mechanistically, TRIP6 appears to exert its tumorigenic effect by regulating the glycolysis-related gene GPI. A higher level of expression of TRIP6 is associated with an increase in the number of iDC immune cells and a decrease in the number of Th1 immune cells. Also, TRIP6 may promote angiogenesis in tumor cells by promoting the expression of JAG2. Our study uncovers the upregulation of TRIP6 in CRC, illuminating its prognostic and diagnostic value within this context. Furthermore, we examine the relationship between TRIP6 expression levels, glycolysis, angiogenesis and immune cell infiltration. This underscores its potential as a biomarker for CRC treatment and as a therapeutic target.


Adaptor Proteins, Signal Transducing , Colorectal Neoplasms , LIM Domain Proteins , Transcription Factors , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Glycolysis , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Thyroid ; 34(5): 598-610, 2024 May.
Article En | MEDLINE | ID: mdl-38243825

Background: As an actin cytoskeleton interactor, PDZ (postsynaptic density 65-discs large-zonula occludens 1) and LIM (abnormal cell lineage 11-isket 1-mechanosensory abnormal 3) domain protein 7 (PDLIM7) was supposed to play an essential role modulating cytoskeleton. Focal adhesions (FAs), which are located at the cytomembrane terminus of actin cytoskeleton, function as a force sensor and can transform the mechanical signal to a biochemical signal. Focal adhesion kinase (FAK) localizes to and regulates signal transduction in FAs, which play an essential role in cell polarity, migration, and invasion. However, whether PDLIM7 is involved in FAs-associated signal transduction and its role in tumor invasion and metastasis remains largely unknown. Methods: A cohort of 80 patients with papillary thyroid carcinoma (PTC) at The Second Affiliated Hospital of Guilin Medical University, as well as 512 PTC samples from The Cancer Genome Atlas thyroid cancer database was utilized to analyze the expression of PDLIM7 and its association with prognosis. Survival data were assessed using Kaplan-Meier curves, whereas clinicopathological characteristics such as age, sex, tumor size, multilocality, extrathyroidal extension, lymph metastases, Hashimoto's thyroiditis, distant metastasis, and TNM stage were considered. Functional assays were performed in vitro and in a xenograft mouse model to assess the role of PDLIM7 in PTC cell lines. The colocalization of PDLIM7 with FAK and integrin alpha V (ITGAV) was determined using immunofluorescence assay and immunoprecipitation assay. Protein expression levels in cell and tissue biopsies were measured through Western blotting and immunohistochemistry. Results: (1) The PDLIM7 protein frequently upregulated in both PTC tissues and cells, and overexpression of PDLIM7 is associated with advanced clinicopathological characteristics. (2) Knockdown of PDLIM7 effectively inhibits cell proliferation, migration, and invasion in PTC cell lines in vitro. (3) Knockdown of PDLIM7 hinders the growth and metastasis of TPC-1 xenografts in vivo. (4) PDLIM7 demonstrates colocalization with both FAK and the FA molecule ITGAV and the knockdown of PDLIM7 resulted in disassembly of FAs and proteosome-dependent degradation of FAK in PTC cell lines. Conclusions: PDLIM7 function as an oncoprotein in PTC to promote metastasis, and a novel underlying mechanism is proposed that PDLIM7 keeps FAK protein from proteosome-dependent degradation.


LIM Domain Proteins , Thyroid Cancer, Papillary , Thyroid Neoplasms , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Cell Movement , Cell Proliferation , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Prognosis , Signal Transduction , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/genetics , Transcription Factors
...