ABSTRACT
Interleukin 27 (IL-27) is a cytokine that regulates susceptibility to Leishmania infantum infection in humans and experimental models. This cytokine has not yet been described in canine leishmaniasis (CanL). Therefore, we investigated whether IL-27 has a regulatory role in CanL. The EBI3 and p28 subunits of IL-27 were measured in splenic leukocytes culture supernatant from dogs with CanL and compared to control dogs. We also correlated EBI3 and p28 levels with IL-21, anti-L. infantum antibodies and parasite loads. We performed functional assays followed by IL-27 blockade and measured parasite loads, production of cytokines in splenic leukocytes culture supernatant, and the expression of PD-1, CTLA-4, phospho-Stat-1/3, T-bet, GATA3 and nitric oxide production (NO). Both IL-27 subunits increased in the supernatant of dogs with CanL compared to control dogs. EBI3 and p28 levels showed a moderate positive correlation with IL-21 (r = 0.67, p < 0.0001 and r = 0.45, p < 0.012, respectively), and the EBI3 subunit was positively associated with anti-L. infantum IgG antibodies (r = 0.38, p < 0.040) and parasite load (r = 0.47, p < 0.009). IL-27 and IL-21 participate of immune responses in CanL. IL-27 may be associated with the failure of immunity to control parasite replication via upregulation of the expression of PD-1, CTLA-4, T-bet and NO in splenic leukocytes from dogs with CanL. These findings suggest that the pathways regulated by IL-27 are involved in CanL pathogenesis in the host, and may be targets for new therapies.
Subject(s)
Dog Diseases , Interleukin-27 , Leishmania infantum , Leishmaniasis, Visceral , Parasite Load , Animals , Dogs , Dog Diseases/immunology , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Interleukin-27/metabolism , Adaptive Immunity , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Male , Spleen/immunology , Spleen/parasitology , Interleukins/metabolism , Interleukins/immunology , Female , Cytokines/metabolism , Leukocytes/immunology , Leukocytes/parasitologyABSTRACT
Visceral leishmaniasis (VL), caused by protozoa of the genus Leishmania, remains a significant public health concern due to its potentially lethal nature if untreated. Current chemotherapy options are limited by severe toxicity and drug resistance. Derivatives of 1,2,4-oxadiazole have emerged as promising drug candidates due to their broad biological activity. This study investigated the effects of novel 1,2,4-oxadiazole derivatives (Ox1-Ox7) on Leishmania infantum, the etiological agent of VL. In silico predictions using SwissADME suggest that these compounds have high oral absorption and good bioavailability. Among them, Ox1 showed the most promise, with higher selectivity against promastigotes and lower cytotoxicity towards L929 fibroblasts and J774.G8 macrophages. Ox1 exhibited selectivity indices of 18.7 and 61.7 against L. infantum promastigotes and amastigotes, respectively, compared to peritoneal macrophages. Ultrastructural analyses revealed severe morphological damage in both parasite forms, leading to cell death. Additionally, Ox1 decreased the mitochondrial membrane potential in promastigotes, as shown by flow cytometry. Molecular docking and dynamic simulations indicated a strong affinity of Ox1 for the L. infantum CYP51 enzyme. Overall, Ox1 is a promising and effective compound against L. infantum.
Subject(s)
Antiprotozoal Agents , Leishmania infantum , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxadiazoles , Protozoan Proteins , Leishmania infantum/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Mice , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Cell Line , Membrane Potential, Mitochondrial/drug effectsABSTRACT
Here we described a case of fatal canine visceral leishmaniasis (VL) in French Guiana, a non-endemic VL Amazonian area. The dog was a 2-year-old pug imported from Brazil to French Guiana. Initially seen for a pruriginous lesion on the muzzle which healed after treatment, the dog was in a deteriorated condition and had sublingual, foreleg and eye ulcers, one month later. A visceral leishmaniasis was suspected by the veterinarian. The dog was hospitalized awaiting results, which revealed the presence of L. infantum. However, the dog succumbed suddenly before the results were returned. Few imported and scarce autochthonous canine VL cases have been previously reported in French Guiana, raising the need for local epidemiological surveillance, considering the possibility of unusual transmission routes of the parasite.
Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/drug therapy , Dogs , French Guiana , Dog Diseases/parasitology , Dog Diseases/diagnosis , Leishmania infantum/isolation & purification , Fatal Outcome , Brazil , Male , Communicable Diseases, Imported/parasitology , Communicable Diseases, Imported/veterinary , Communicable Diseases, Imported/diagnosisABSTRACT
In the Americas, L. infantum (syn. chagasi) is the main cause of human visceral leishmaniasis. The role of neutrophils as part of the innate response to Leishmania spp. infection is dubious and varies according to the species causing the infection. Global expression of coding RNAs, microRNAs and long non-coding RNAs changes as part of the immune response against pathogens. Changes in mRNA and non-coding RNA expression resulting from infection by Leishmania spp. are widely studied in macrophages, but scarce in neutrophils, the first cell to encounter the trypanosomatid, especially following infection by L. infantum. Herein, we aimed to understand the expression patterns of coding and non-coding transcripts during acute in vitro infection of human neutrophils by L. infantum. We isolated neutrophils from whole blood of healthy male donors (n = 5) and split into groups: 1) infected with L. infantum (MOI = 5:1), and 2) uninfected controls. After 3 hours of exposure of infected group to promastigotes of L. infantum, followed by 17 hours of incubation, total RNA was extracted and total RNA-Seq and miRNA microarray were performed. A total of 212 genes were differentially expressed in neutrophils following RNA-Seq analysis (log2(FC)±0.58, FDR≤0.05). In vitro infection with L. infantum upregulated the expression of 197 and reduced the expression of 92 miRNAs in human neutrophils (FC±2, FDR≤0.01). Lastly, 5 downregulated genes were classified as lncRNA, and of the 10 upregulated genes, there was only 1 lncRNA. Further bioinformatic analysis indicated that changes in the transcriptome and microtranscriptome of neutrophils, following in vitro infection with L. infantum, may impair phagocytosis, apoptosis and decrease nitric oxide production. Our work sheds light on several mechanisms used by L. infantum to control neutrophil-mediated immune response and identifies several targets for future functional studies, aiming at the development of preventive or curative treatments for this prevalent zoonosis.
Subject(s)
Leishmania infantum , MicroRNAs , Neutrophils , RNA, Long Noncoding , RNA, Messenger , Humans , Neutrophils/immunology , Neutrophils/metabolism , Leishmania infantum/genetics , Leishmania infantum/immunology , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/genetics , Adult , Gene Expression ProfilingABSTRACT
Leishmaniases are a group of neglected diseases of significant public health concern, with Brazil being the primary focus of this disease in the Americas. The municipality of Sobral, in the state of Ceará, is a historical focus of visceral leishmaniasis in both humans and dogs, but data on Leishmania spp. infections in cats are limited. Between April 2021 and February 2022, 205 cats from a referral hospital population were sampled and tested for Leishmania spp. by real-time PCR. Eight cats (3.9%; 95% CI: 1.7-7.5%) tested positive. Among these, three (37.5%) displayed clinical signs compatible with feline leishmaniosis. Non-domiciled cats showed significantly higher positivity compared to domiciled ones (Fisher's exact test, P = 0.0124). Considering their potential role as reservoirs of L. infantum, it is crucial to conduct further studies to understand the Leishmania spp. circulating among cats in Sobral and to implement measures for reducing their exposure to phlebotomine sand fly vectors in this important focus of leishmaniases.
Subject(s)
Cat Diseases , Leishmaniasis , Animals , Cats , Brazil/epidemiology , Cat Diseases/epidemiology , Cat Diseases/parasitology , Prevalence , Female , Male , Leishmaniasis/veterinary , Leishmaniasis/epidemiology , Leishmaniasis/parasitology , Leishmania/isolation & purification , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Real-Time Polymerase Chain Reaction/veterinary , Hospitals, Animal , Leishmania infantum/isolation & purificationABSTRACT
Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.
Subject(s)
Cullin Proteins , Leishmania infantum , Leishmania infantum/metabolism , Leishmania infantum/enzymology , Cullin Proteins/metabolism , Cullin Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Ubiquitination , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteasome Endopeptidase Complex/metabolismABSTRACT
BACKGROUND: The sand fly Nyssomyia neivai is one of the most abundant species in Southern Brazil. It is frequently found in areas that are foci of visceral leishmaniasis in the state of Santa Catarina, caused by Leishmania infantum. In this region, the main vector of L. infantum, Lutzomyia longipalpis, has not been detected. In the absence of L. longipalpis, this study aimed to identify the sand fly fauna and diagnose any potential Leishmania spp. infection in sand flies and in dogs in a region of Southern Brazil that experienced a recent canine visceral leishmaniasis outbreak. METHODS: This report includes a survey of the sand fly fauna at the Zoonosis Control Center of the Municipality of Tubarão (Santa Catarina, Brazil). Molecular tests were conducted to investigate Leishmania spp. natural infection in sand flies using polymerase chain reaction (PCR). In positive females, in addition to morphological identification, molecular analysis through DNA barcoding was performed to determine the sand fly species. Additionally, the dogs were tested for the presence of Leishmania spp. using a non-invasive technique for the collection of biological material, to be assessed by PCR. RESULTS: A total of 3419 sand flies, belonging to five genera, were collected. Nyssomyia neivai was the most abundant species (85.8%), followed by Migonemyia migonei (13.3%), Pintomyia fischeri (0.8%), Evandromyia edwardsi (< 0.1%), and species of the genus Brumptomyia. (0.1%). Out of the 509 non-engorged females analyzed by PCR, two (0.4%) carried L. infantum DNA. The naturally infected females were identified as Ny. neivai, in both morphological and molecular analysis. In addition, two out of 47 conjunctival swabs from dogs tested positive for L. infantum, yielding an infection rate of 4.2%. CONCLUSIONS: These results confirm the presence of Ny. neivai naturally infected with L. infantum in an area where dogs were also infected by the parasite, suggesting its potential role as a vector in Southern Brazil.
Subject(s)
Dog Diseases , Insect Vectors , Leishmania infantum , Leishmaniasis, Visceral , Psychodidae , Animals , Dogs , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Brazil/epidemiology , Psychodidae/parasitology , Psychodidae/classification , Dog Diseases/parasitology , Dog Diseases/epidemiology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/transmission , Female , Insect Vectors/parasitology , Polymerase Chain Reaction , MaleABSTRACT
The spleen plays a pivotal role in the pathogenesis of visceral leishmaniasis. In severe forms of the disease, the spleen undergoes changes that can compromise its function in surveilling blood-circulating pathogens. In this study, we present an integrated analysis of the structural and gene expression alterations in the spleens of three patients with relapsing visceral leishmaniasis, two of whom were coinfected with HIV. Our findings reveal that the IL6 signaling pathway plays a significant role in the disorganization of the white pulp, while BCL10 and ICOSLG are associated with spleen organization. Patients coinfected with HIV and visceral leishmaniasis exhibited lower splenic CD4+ cell density and reduced expression of genes such as IL15. These effects may contribute to a compromised immune response against L. infantum in coinfected individuals, further impacting the structural organization of the spleen.
Subject(s)
Coinfection , HIV Infections , Leishmaniasis, Visceral , Spleen , Humans , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/genetics , Spleen/pathology , HIV Infections/complications , Coinfection/virology , Male , Adult , Female , CD4-Positive T-Lymphocytes/immunology , Leishmania infantum/genetics , Gene ExpressionABSTRACT
This study investigated the sand fly fauna of the municipality Iguatama, in the Midwest Region of Minas Gerais state, Brazil, including Leishmania infection rates and blood meal sources. Sand flies were collected during four periods over the course of a single year, encompassing both dry and rainy seasons, using CDC light traps placed in peridomiciles where dogs were seropositive for visceral leishmaniasis (VL). A total of 762 sand fly specimens, representing 12 species across seven genera, were collected. Lutzomyia longipalpis was the most abundant species, comprising 57.6% of the collected specimens, followed by Nyssomyia neivai (19.6%) and Nyssomyia whitmani (10.5%). Species richness and diversity varied among collection periods, with the highest diversity observed in January 2019. Molecular analysis detected Leishmania DNA in 12.5% of the sand fly specimens, with Le. infantum being the predominant species. Blood meal analysis revealed feeding on multiple vertebrate species, including humans, rats, dogs, and chickens. The presence of Leishmania DNA in sand flies, and the identification of human blood meals, highlight the potential role of these species in VL transmission. These findings underscore the importance of continued surveillance and control measures to prevent the spread of VL and reduce transmission risk in the region.
Subject(s)
Insect Vectors , Leishmania , Psychodidae , Animals , Brazil/epidemiology , Psychodidae/parasitology , Leishmania/isolation & purification , Leishmania/genetics , Dogs , Humans , Insect Vectors/parasitology , Leishmaniasis, Visceral/transmission , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Rats , Chickens/parasitology , Feeding Behavior , BiodiversityABSTRACT
Berardinelli-Seip congenital lipodystrophy (CGL), a rare autosomal recessive disorder, is characterized by a lack of adipose tissue. Infections are one of the major causes of CGL individuals' premature death. The mechanisms that predispose to infections are poorly understood. We used Leishmania infantum as an in vitro model of intracellular infection to explore mechanisms underlying the CGL infection processes, and to understand the impact of host mutations on Leishmania survival, since this pathogen enters macrophages through specialized membrane lipid domains. The transcriptomic profiles of both uninfected and infected monocyte-derived macrophages (MDMs) from CGL (types 1 and 2) and controls were studied. MDMs infected with L. infantum showed significantly downregulated expression of genes associated with infection-response pathways (MHC-I, TCR-CD3, and granzymes). There was a transcriptomic signature in CGL cells associated with impaired membrane trafficking and signaling in response to infection, with concomitant changes in the expression of membrane-associated genes in parasites (e.g. δ-amastins). We identified pathways suggesting the lipid storage dysfunction led to changes in phospholipids expression and impaired responses to infection, including immune synapse (antigen presentation, IFN-γ signaling, JAK/STAT); endocytosis; NF-kappaB signaling; and phosphatidylinositol biosynthesis. In summary, lipid metabolism of the host plays an important role in determining antigen presentation pathways.
Subject(s)
Leishmania infantum , Lipodystrophy, Congenital Generalized , Macrophages , Signal Transduction , Humans , Macrophages/metabolism , Macrophages/parasitology , Macrophages/immunology , Lipodystrophy, Congenital Generalized/genetics , Lipodystrophy, Congenital Generalized/metabolism , Leishmania infantum/genetics , Transcriptome , Male , Female , Gene Expression Profiling , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/metabolismABSTRACT
Canine leishmaniasis (CanL) caused by Leishmania infantum commonly progresses with renal and ophthalmic lesions associated with active systemic disease. As chronic inflammation related to immune complex deposits is a pathophysiological factor in the development of both glomerulonephritis and uveitis, we aimed to evaluate renal and ocular histopathological lesions and analyze whether they were related to each other and the clinical degree of the disease. For that, we evaluated 15 dogs from CanL-endemic areas. L. infantum PCR-positive dogs were studied according to disease severity into two different groups: Group-1 (G1) had data from seven dogs with mild to moderate CanL and no history of treatment, and G2 was formed with eight dogs with severe to terminal disease that had not responded to CanL treatment. Histopathological analysis of kidneys showed higher frequencies and intensities of glomerular basement membrane thickening (p = 0.026), deposits in glomeruli (p = 0.016), epithelial necrosis (p = 0.020), tubular dilatation (p = 0.003) and interstitial fibrosis (p = 0.04) in G2 dogs than in G1 dogs. Surprisingly, the histopathology of eye bulbs showed a higher frequency and intensity of retinitis (p = 0.019) in G1 dogs than in G2 dogs. The comparative analysis showed that there was no correspondence between histopathological findings in kidneys versus eyes in milder or more severe CanL. Our findings suggested that (1) clinically undetectable eye alterations can be more precocious than those in kidneys in the development of CanL, and (2) the lower frequency of eye lesions and higher frequency of renal lesions in dogs with terminal disease even after treatment indicate that therapy may have been effective in reducing CanL-associated ophthalmic disease but not proportionally in reducing kidney disease.
Subject(s)
Dog Diseases , Kidney , Leishmania infantum , Leishmaniasis, Visceral , Animals , Dogs , Dog Diseases/pathology , Dog Diseases/parasitology , Male , Kidney/pathology , Kidney/parasitology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/pathology , Leishmaniasis, Visceral/parasitology , Female , Eye/pathology , Eye/parasitologyABSTRACT
The incidence of human Visceral Leishmaniasis (VL) has decreased in Brazil; however, the number of areas reporting human and canine cases has increased, with Leishmania infantum usually preceding human infection. This study aimed to analyze the profile of infectious diseases that are endemic for both human and canine VL, in dogs housed in a shelter located in the state of Rio Grande do Norte, Northeast Brazil. Data was obtained between November/2021 to April/2022. All dogs residing at the shelter (98 dogs) were examined and blood was collected for testing for L. infantum, Ehrlichia canis, and Babesia sp. Statistical analyses considered the clinical and laboratory findings. Of the 98 animals, approximately 43% were positive for L. infantum antibodies, 19% were positive for L. infantum kDNA, and 18% were L. infantum positive by culture. Greater levels of anti-leishmania antibodies were observed in dogs with symptoms suggestive of VL. The dogs tested positive for E. canis (19/98) and B. canis (18/98). Lutzomyia longipalpis was captured inside the shelter, representing 74.25% (n = 225) of whole sandflies in the dog shelter. Concomitant infection by L. infantum and E. canis increased the odds of death. Treatment of VL included the use of allopurinol (n = 48) and miltefosine (n = 8). Treated animals showed more signs of Leishmania infection. Tickborn parasites and Leishmania were prevalent in sheltered dogs in a VL-endemic area, which increases the odds of death and poses an additional challenge for caring for abandoned dogs and at the same time setting protocols to manage reservoirs of L. infantum.
Subject(s)
Babesia , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Psychodidae , Humans , Animals , Dogs , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Leishmaniasis/drug therapy , Leishmaniasis/veterinary , Leishmania infantum/genetics , Psychodidae/parasitology , Dog Diseases/epidemiologyABSTRACT
BACKGROUND: Leishmaniases encompass a spectrum of neglected diseases caused by parasites of the genus Leishmania, grouped in two forms: tegumentary and visceral leishmaniasis. OBJECTIVES: In this study, we propose Friend Virus B NIH Jackson (FVB/NJ) mouse strain as a new experimental model of infection with Leishmania (Leishmania) amazonensis, the second most prevalent agent of tegumentary leishmaniasis in Brazil. METHODS AND FINDINGS: We performed in vitro infections of FVB/NJ macrophages and compared them with BALB/c macrophages, showing that BALB/c cells have higher infection percentages and a higher number of amastigotes/cell. Phagocytosis assays indicated that BALB/c and FVB/NJ macrophages have similar capacity to uptake parasites after 5 min incubations. We also investigated promastigotes' resistance to sera from FVB/NJ and BALB/c and observed no difference between the two sera, even though FVB/NJ has a deficiency in complement components. Finally, we subcutaneously infected FVB/NJ and BALB/c mice with 2 × 106 parasites expressing luciferase. Analysis of lesion development for 12 weeks showed that FVB/NJ and BALB/c mice have similar lesion profiles and parasite burdens. MAIN CONCLUSIONS: This work characterises for the first time the FVB/NJ mouse as a new model for tegumentary leishmaniasis caused by Leishmania (L.) amazonensis.
Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , Mice , Animals , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Disease Models, Animal , Macrophages , Mice, Inbred BALB CABSTRACT
BACKGROUND OBJECTIVES: Surveillance of canine leishmaniasis in Colombia is restricted to the appearance of visceral leishmaniasis cases in humans, and is mainly performed by serological tests. This requires blood sampling by veterinarians or technicians according to Colombian laws. The aim of this study was to evaluate the utility of conjunctival swabs in the molecular detection of Leishmania in dogs from the municipality of Ovejas, Sucre. METHODS: The present study was cross-sectional and descriptive. The collection source of samples and information was primary. Blood samples and conjunctival swabs from 121 dogs were analysed by PCR-ITS1 to detect Leishmania spp. Positive samples were used to amplify a conserved region of the Leishmania infantum kinetoplast minicircle. Performance of both sample types was calculated by proportion of positive samples of each type and the degree of agreement between them was determined by Cohen's kappa (κ) agreement index. RESULTS: Leishmania infection was detected in 17.4% (21/121) of blood samples and in 16.5% (20/121) of conjunctival swabs. In total, 28.1% (34/121) of the canines were infected, of which 11.8% (4/34) were infected with L. infantum in the conjunctival swabs and 5.9 % (2/34) in the blood samples. The agreement between blood and conjunctiva was medium (κ = 0.207) by PCR-ITS1 amplification. INTERPRETATION CONCLUSION: The use of conjunctival swab as a non-invasive sample could be used as an alternative method for surveillance of canine leishmaniasis.
Subject(s)
Conjunctiva , Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Polymerase Chain Reaction , Dogs , Animals , Colombia/epidemiology , Leishmania infantum/isolation & purification , Leishmania infantum/genetics , Dog Diseases/diagnosis , Dog Diseases/parasitology , Dog Diseases/epidemiology , Conjunctiva/parasitology , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Cross-Sectional Studies , Male , Polymerase Chain Reaction/veterinary , Polymerase Chain Reaction/methods , Female , Serologic Tests/veterinary , Serologic Tests/methods , Antibodies, Protozoan/bloodABSTRACT
Leishmaniases are zoonotic diseases caused by protozoa of the genus Leishmania. In Bolivia, leishmaniasis occurs mainly in the cutaneous form (CL) followed by the mucosal or mucocutaneous form (ML or MCL), grouped as tegumentary leishmaniosis (TL), while cases of visceral leishmaniasis (VL) are rare. The cases of TL are routinely diagnosed by parasitological methods: Direct Parasitological Exam (DPE) and axenic culture, the latter being performed only by specialized laboratories. The aim of the present study was to optimize the parasitological diagnosis of TL in Bolivia, using two sampling methods. Samples from 117 patients with suspected TL, obtained by aspiration (n = 121) and scraping (n = 121) of the edge of the lesion were tested by: direct parasitological exam, culture in TSTB medium, and miniculture and microculture in Schneider's medium. A positive laboratory result by any of the four techniques evaluated using either of the two sampling methods was considered the gold standard. Of the 117 suspected patients included, TL was confirmed in 96 (82 %), corresponding 79 of the confirmed cases (82.3 %) to CL and 16 (16.7 %) to ML. Parasitological techniques specificity was 100 % and their analytical sensitivity was greater with scraping samples in TSTB culture (98 %). Scraping samples in TSTB and miniculture correlated well with the reference (Cohen's kappa coefficient=0.88) and showed good reliability (Cronbach's alpha coefficient ≥0.91). Microculture provided positive results earlier than the other culture methods (mean day 4.5). By day 14, 98 % of positive cultures had been detected. Scraping sampling and miniculture were associated with higher culture contamination (6 % and 17 %, respectively). Bacterial contamination predominated, regardless of the sampling and culture method, while filamentous fungi and mixed contamination were more frequently observed in cultures from scraping samples. In conclusion: (i) scraping samples proved more suitable for the diagnosis of TL as they increased analytical sensitivity, are less traumatic for the patient and are safer for laboratory personnel than aspirates; (ii) culture, mainly in TSBT medium, should be used for the diagnosis of TL due to its high sensitivity (doubling the number of cases diagnosed by DPE) and its low cost compared to other culture media.
Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , Humans , Bolivia , Reproducibility of Results , Leishmaniasis/diagnosis , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/parasitologyABSTRACT
Miranda Municipality of Mato Grosso do Sul, borders the Pantanal wetland, a famous fishing destination visited by tourists from all over the world, and is a location where visceral leishmaniasis has been reported. To assess the risk of Leishmania infantum transmission, we studied the sandfly community, focusing on known vector and parasite presence. We conducted light trap collections twice per month at nine sites within the city (including two forested areas) for one year. We collected a total of 12,727 sand flies, 10,891 males and 1,836 females belonging to 11 species: Brumptomyia avellari, Evandromyia aldafalcaoae, Ev. evandroi, Ev. lenti, Ev. sallesi, Ev. walkeri, Lu. longipalpis, Nyssomyia whitmani, Psathyromyia bigeniculata, Pa. hermanlenti and Pa. punctigeniculata. Lutzomyia longipalpis, the proven vector of Leishmania infantum, was captured each month, and was the most abundant species observed, accounting for more than 99% of sand flies captured in most sites, especially where chicken coops were present. Evidence of Leishmania infantum infection was detected in 0.40% of Lu. longipalpis tested. We developed a generalized mixed multilevel model for Lu. longipalpis, that includes within-year seasonality, location of capture (indoors vs. outdoors), vector abundance, and sex ratio. The VL vector was abundant both inside and outside houses. Large numbers of Lu. longipalpis were observed in outdoor sites where domestic animals were present but were absent from forest sites. Our findings suggest high vector populations and Le. infantum presence in a city where tourists could be exposed to visceral leishmaniasis, with significant implications for more surveillance and control activities.
Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Psychodidae , Male , Animals , Female , Leishmaniasis, Visceral/parasitology , Wetlands , Hunting , Tourism , Insect Vectors/parasitology , Leishmaniasis/epidemiology , Psychodidae/parasitology , Brazil/epidemiologyABSTRACT
To compare the sensitivity of conjunctival swab (CS) and conventional samples (blood, spleen, liver, lymphoid and cutaneous tissue) in the diagnosis of canine visceral leishmaniasis (CVL) by polymerase chain reaction (PCR), a systematic review and meta-analysis was carried out using PubMed, Science Direct, Scopus, Web of Science, VHL/BVS (Virtual Health Library), CAPES, and Scielo databases. Articles published from 2002 to 2022 were considered and the review was updated in Jul 2023. From the total of 371 identified studies, 8 met all the eligibility criteria and were included in this review. Data from 658 CVL-positive dogs and 2541 PCR results were considered. Using a random effect model, data on the sensitivity of the test was compared between intervention (CS samples) and comparison (all the other samples) groups. Overall, the use of CS in the PCR diagnosis of CVL produced 12% higher sensitivity (p=0.013) in the test than all the other samples in combination. The animals' clinical condition did not influence (p>0.142) this overall result. However, when CS was individually compared to each of the conventional samples, the consistent result was observed (p=0.012) only in the CS versus bone marrow comparison. Given their rapid acquisition, minimal invasiveness, and lower cost relative to conventional samples, CS samples present a promising alternative for the molecular diagnosis of CVL.
Subject(s)
Dog Diseases , Leishmaniasis, Visceral , Animals , Dogs , Dog Diseases/diagnosis , Dog Diseases/parasitology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leishmaniasis, Visceral/parasitology , Polymerase Chain Reaction/veterinary , Specimen Handling/veterinaryABSTRACT
Leishmania infantum is a protozoan that causes visceral leishmaniasis (VL) in the Americas and some regions of Europe. The disease is mainly characterized by hepatosplenomegaly and fever, and can be fatal. Factors related to the host and parasite can contribute to the transmission of Leishmania and the clinical outcome. The intraspecific genetic variability of L. infantum strains may be one of these factors. In this study, we evaluated the genetic variability of L. infantum obtained from bone marrow smear slides from patients in the Sao Paulo State, Brazil. For this, the minicircle of the kDNA hypervariable region was used as target by Sanger sequencing. By analyzing the similarity of the nucleotides and the maximum likelihood tree (Fasttree), we observed a high similarity (98%) among samples. Moreover, we identified four different profiles of L. infantum. In conclusion, L. infantum strains from Sao Paulo State, Brazil, showed low diversity measured by minicircle of the kDNA hypervariable region.
Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Dogs , Humans , Leishmania infantum/genetics , Leishmaniasis, Visceral/parasitology , DNA, Kinetoplast/genetics , Brazil , Dog Diseases/parasitologyABSTRACT
Tegumentary leishmaniasis (TL) is the main clinical manifestation of leishmaniasis, and it can cause the infected hosts to self-healing cutaneous lesions until mutilating scars in mucosal membranes, particularly in the nose and throat. The treatment against disease presents problems, and the diagnosis is hampered by variable sensitivity and/or specificity of the tests. In this context, the development of prophylactic vaccines could be considered as a strategy to control the disease. Previously, we showed that the recombinant LiHyp1 protein plus adjuvant protected mice from infection with Leishmania infantum, which causes visceral leishmaniasis. In the present study, we tested whether rLiHyp1 could induce protection against infection with L. amazonensis, a parasite species able to cause TL. We immunized BALB/c mice with rLiHyp1 plus saponin (rLiHyp1/S) or incorporated in micelles (rLiHyp1/M) as adjuvants and performed parasitological and immunological evaluations before and after infection. Results showed that after in vitro stimulation from spleen cell cultures using rLiHyp1 or a Leishmania antigenic extract (SLA), rLiHyp1/S and rLiHyp1/M groups developed a Th1-type immune response, which was characterized by high levels of IFN-γ, IL-2, TNF-α and IL-12 cytokines, nitrite, and IgG2a isotype antibodies when compared to values found in the control (saline, saponin, micelles alone) groups, which showed higher levels of anti-SLA IL-4, IL-10, and IgG1 antibodies before and after challenge. In addition, mice receiving rLiHyp1/S or rLiHyp1/M presented significant reductions in the lesion average diameter and parasite load in the infected tissue and internal organs. Blood samples were collected from healthy subjects and TL patients to obtain PBMC cultures, which were in vitro stimulated with rLiHyp1 or SLA, and results showed higher lymphoproliferation and IFN-γ production after stimulus using rLiHyp1, as compared to values found using SLA. These results suggest that rLiHyp1 plus adjuvant was protective against experimental TL and could also be considered for future studies as a vaccine candidate against human disease.
Subject(s)
Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Saponins , Humans , Animals , Mice , Micelles , Leukocytes, Mononuclear/metabolism , Recombinant Proteins , Leishmaniasis, Visceral/parasitology , Adjuvants, Immunologic , Cytokines/metabolism , Vaccination , Mice, Inbred BALB C , Antigens, Protozoan/geneticsABSTRACT
Human leishmaniosis caused by Leishmania infantum is an important health problem worldwide. One of the main aspects arousing interest is the epidemiological scenario surrounding Le. infantum infection in the New World (NW) and Old World (OW). This parasite was introduced to the Americas during European colonization leading to different epidemiology outcomes, even more enigmatic in the face of global changes. Thus, this review aims to highlight the differences and similarities between Le. infantum epidemiology between Brazil (NW) and Spain (OW), as both countries are leading the total number of leishmaniosis cases in their respective continents. Grounded on a systemic view, this article also draws attention to possible common innovative strategies to rethink ways of controlling infections caused by Le. infantum.