Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.636
Filter
1.
Clin Exp Med ; 24(1): 174, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078421

ABSTRACT

Elevated levels of circulating C16:0 glucosylceramides (GluCer) and increased mRNA expression of UDP-glucose ceramide glycosyltransferase (UGCG), the enzyme responsible for converting ceramides (Cer) to GluCer, represent unfavorable prognostic markers in chronic lymphocytic leukemia (CLL) patients. To evaluate the therapeutic potential of inhibiting GluCer synthesis, we genetically repressed the UGCG pathway using in vitro models of leukemic B cells, in addition to UGCG pharmacological inhibition with approved drugs such as eliglustat and ibiglustat, both individually and in combination with ibrutinib, assessed in cell models and primary CLL patient cells. Cell viability, apoptosis, and proliferation were evaluated in vitro, and survival and apoptosis were examined ex vivo. UGCG inhibition efficacy was confirmed by quantifying intracellular sphingolipid levels through targeted lipidomics using mass spectrometry. Other inhibitors of sphingolipid biosynthesis pathways were similarly assessed. Blocking UGCG significantly decreased cell viability and proliferation, highlighting the oncogenic role of UGCG in CLL. The efficient inhibition of UGCG was confirmed by a significant reduction in GluCer intracellular levels. The combination of UGCG inhibitors with ibrutinib demonstrated synergistic effect. Inhibitors that target alternative pathways within sphingolipid metabolism, like sphingosine kinases inhibitor SKI-II, also demonstrated promising therapeutic effects both alone and when used in combination with ibrutinib, reinforcing the oncogenic impact of sphingolipids in CLL cells. Targeting sphingolipid metabolism, especially the UGCG pathway, represents a promising therapeutic strategy and as a combination therapy for potential treatment of CLL patients, warranting further investigation.


Subject(s)
Cell Survival , Leukemia, Lymphocytic, Chronic, B-Cell , Sphingolipids , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Humans , Sphingolipids/metabolism , Cell Survival/drug effects , Glucosyltransferases/antagonists & inhibitors , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Piperidines/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Glucosylceramides/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology
3.
Sci Transl Med ; 16(758): eadg7915, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083585

ABSTRACT

Richter's transformation (RT) is a progression of chronic lymphocytic leukemia (CLL) to aggressive lymphoma. MGA (Max gene associated), a functional MYC suppressor, is mutated at 3% in CLL and 36% in RT. However, genetic models and molecular mechanisms of MGA deletion that drive CLL to RT remain elusive. We established an RT mouse model by knockout of Mga in the Sf3b1/Mdr CLL model using CRISPR-Cas9 to determine the role of Mga in RT. Murine RT cells exhibited mitochondrial aberrations with elevated oxidative phosphorylation (OXPHOS). Through RNA sequencing and functional characterization, we identified Nme1 (nucleoside diphosphate kinase) as an Mga target, which drives RT by modulating OXPHOS. Given that NME1 is also a known MYC target without targetable compounds, we found that concurrent inhibition of MYC and electron transport chain complex II substantially prolongs the survival of RT mice in vivo. Our results suggest that the Mga-Nme1 axis drives murine CLL-to-RT transition via modulating OXPHOS, highlighting a potential therapeutic avenue for RT.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Mitochondria , Oxidative Phosphorylation , Animals , Mitochondria/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mice , Gene Deletion , Humans , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Disease Models, Animal
4.
Hematol Oncol ; 42(2): e3250, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38949887

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common leukemia in western societies, recognized by clinical and molecular heterogeneity. Despite the success of targeted therapies, acquired resistance remains a challenge for relapsed and refractory CLL, as a consequence of mutations in the target or the upregulation of other survival pathways leading to the progression of the disease. Research on proteins that can trigger such pathways may define novel therapies for a successful outcome in CLL such as the receptor tyrosine kinase-like orphan receptor 1 (ROR1). ROR1 is a signaling receptor for Wnt5a, with an important role during embryogenesis. The aberrant expression on CLL cells and several types of tumors, is involved in cell proliferation, survival, migration as well as drug resistance. Antibody-based immunotherapies and small-molecule compounds emerged to target ROR1 in preclinical and clinical studies. Efforts have been made to identify new prognostic markers having predictive value to refine and increase the detection and management of CLL. ROR1 can be considered as an attractive target for CLL diagnosis, prognosis, and treatment. It can be clinically effective alone and/or in combination with current approved agents. In this review, we summarize the scientific achievements in targeting ROR1 for CLL diagnosis, prognosis, and treatment.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Receptor Tyrosine Kinase-like Orphan Receptors , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Humans , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Prognosis , Molecular Targeted Therapy , Animals , Biomarkers, Tumor/metabolism
5.
Nat Commun ; 15(1): 5180, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890323

ABSTRACT

Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.


Subject(s)
Cell Adhesion , Cell Movement , Lectins , Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Humans , Animals , Lectins/metabolism , Mice , Antigens, CD/metabolism , Antigens, CD/genetics , Female , B-Lymphocytes/metabolism , B-Lymphocytes/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, Differentiation, Myelomonocytic/genetics , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Male , Xenograft Model Antitumor Assays
6.
Front Immunol ; 15: 1409333, 2024.
Article in English | MEDLINE | ID: mdl-38919608

ABSTRACT

Introduction: Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods: Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results: Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions: Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Macrophages , Nod2 Signaling Adaptor Protein , Receptors, IgG , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/immunology , Animals , Humans , Receptors, IgG/metabolism , Receptors, IgG/immunology , Mice , Macrophages/immunology , Macrophages/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Female , Mice, Inbred C57BL , Signal Transduction , Phagocytosis , Rituximab/pharmacology , Rituximab/therapeutic use
7.
Cells ; 13(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38920669

ABSTRACT

Venetoclax and obinutuzumab are becoming frontline therapies for chronic lymphocytic leukemia (CLL) patients. Unfortunately, drug resistance still occurs, and the combination could be immunosuppressive. Lysosomes have previously been identified as a target for obinutuzumab cytotoxicity in CLL cells, but the mechanism remains unclear. In addition, studies have shown that lysosomotropic agents can cause synergistic cell death in vitro when combined with the BTK inhibitor, ibrutinib, in primary CLL cells. This indicates that targeting lysosomes could be a treatment strategy for CLL. In this study, we have shown that obinutuzumab induces lysosome membrane permeabilization (LMP) and cathepsin D release in CLL cells. Inhibition of cathepsins reduced obinutuzumab-induced cell death in CLL cells. We further determined that the lysosomotropic agent siramesine in combination with venetoclax increased cell death in primary CLL cells through an increase in reactive oxygen species (ROS) and cathepsin release. Siramesine treatment also induced synergistic cytotoxicity when combined with venetoclax. Microenvironmental factors IL4 and CD40L or incubation with HS-5 stromal cells failed to significantly protect CLL cells from siramesine- and venetoclax-induced apoptosis. We also found that siramesine treatment inhibited autophagy through reduced autolysosomes. Finally, the autophagy inhibitor chloroquine failed to further increase siramesine-induced cell death. Taken together, lysosome-targeting drugs could be an effective strategy in combination with venetoclax to overcome drug resistance in CLL.


Subject(s)
Apoptosis , Autophagy , Bridged Bicyclo Compounds, Heterocyclic , Cathepsin D , Leukemia, Lymphocytic, Chronic, B-Cell , Lysosomes , Sulfonamides , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology , Lysosomes/metabolism , Lysosomes/drug effects , Apoptosis/drug effects , Autophagy/drug effects , Cathepsin D/metabolism , Reactive Oxygen Species/metabolism , Drug Synergism , Cell Line, Tumor
8.
Clin Chim Acta ; 561: 119758, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38848898

ABSTRACT

BACKGROUND AND AIMS: Modern mass spectrometry imaging (MSI) enables single cells' metabolism exploration. Aims of this study were development of the single-cell MSI of human CD19+ lymphocytes and metabolic profiling of chronic lymphocytic leukemia (CLL). MATERIALS AND METHODS: Blood donor (BD) samples were used for the optimization of CD19+ lymphocyte isolation and single-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) MSI. Independent set of 200 CD19+ lymphocytes coming from 5 CLL patients and 5 BD was used for the CD19+ lymphocytes classification assessment and the untargeted metabolic profiling. CLL vs BD lymphocyte classification was performed using partial least squares-discriminant analysis (PLS-DA) using normalized single-cell mass spectra recorded in 300-600 and 600-950 Da ranges was applied. RESULTS: Accuracy assessed by 10-fold cross-validation of CD19+ lymphocyte PLS-DA classification reached >90.0 %. Volcano plots showed 106 significantly altered m/z signals in CLL of which 9 were tentatively annotated. Among tentatively annotated m/z signals formaldehyde and glutathione metabolites and tetrahydrofolate stand out. CONCLUSION: A method for single-cell MALDI TOF MSI of CD19+ lymphocytes was successfully developed. The method confirmed the significance of oxidative stress and single-carbon metabolism, pyruvate and fatty acid metabolism and apoptosis in CLL and it provided metabolic candidates for diagnostic applications.


Subject(s)
Antigens, CD19 , Leukemia, Lymphocytic, Chronic, B-Cell , Single-Cell Analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Antigens, CD19/metabolism , Metabolomics/methods , Lymphocytes/metabolism
9.
Semin Hematol ; 61(3): 194-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839457

ABSTRACT

The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.


Subject(s)
Disease Models, Animal , Leukemia, Lymphocytic, Chronic, B-Cell , Mice, Transgenic , Proto-Oncogene Proteins , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Mice , Humans , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Tumor Microenvironment/immunology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics
10.
Cell Death Dis ; 15(5): 323, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724507

ABSTRACT

Richter's syndrome (RS) is the transformation of chronic lymphocytic leukemia (CLL) into a high-grade B-cell malignancy. Molecular and functional studies have pointed out that CLL cells are close to the apoptotic threshold and dependent on BCL-2 for survival. However, it remains undefined how evasion from apoptosis evolves during disease transformation. Here, we employed functional and static approaches to compare the regulation of mitochondrial apoptosis in CLL and RS. BH3 profiling of 17 CLL and 9 RS samples demonstrated that RS cells had reduced apoptotic priming and lower BCL-2 dependence than CLL cells. While a subset of RS was dependent on alternative anti-apoptotic proteins and was sensitive to specific BH3 mimetics, other RS cases harbored no specific anti-apoptotic addiction. Transcriptomics of paired CLL/RS samples revealed downregulation of pro-apoptotic sensitizers during disease transformation. Albeit expressed, effector and activator members were less likely to colocalize with mitochondria in RS compared to CLL. Electron microscopy highlighted reduced cristae width in RS mitochondria, a condition further promoting apoptosis resistance. Collectively, our data suggest that RS cells evolve multiple mechanisms that lower the apoptotic priming and shift the anti-apoptotic dependencies away from BCL-2, making direct targeting of mitochondrial apoptosis more challenging after disease transformation.


Subject(s)
Apoptosis , Leukemia, Lymphocytic, Chronic, B-Cell , Mitochondria , Proto-Oncogene Proteins c-bcl-2 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Mitochondria/metabolism , Male , Female , Middle Aged
11.
Semin Hematol ; 61(2): 100-108, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38749798

ABSTRACT

Aberrant signal transduction through the B cell receptor (BCR) plays a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). BCR-dependent signaling is necessary for the growth and survival of neoplastic cells, making inhibition of down-stream pathways a logical therapeutic strategy. Indeed, selective inhibitors against Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) have been shown to induce high rates of response in CLL and other B cell lymphomas. In particular, the development of BTK inhibitors revolutionized the treatment approach to CLL, demonstrating long-term efficacy. While BTK inhibitors are widely used for multiple lines of treatment, PI3K inhibitors are much less commonly utilized, mainly due to toxicities. CLL remains an incurable disease and effective treatment options after relapse or development of TKI resistance are greatly needed. This review provides an overview of BCR signaling, a summary of the current therapeutic landscape, and a discussion of the ongoing trials targeting BCR-associated kinases.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Leukemia, Lymphocytic, Chronic, B-Cell , Protein Kinase Inhibitors , Receptors, Antigen, B-Cell , Signal Transduction , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Signal Transduction/drug effects , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase/metabolism , Molecular Targeted Therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Phosphoinositide-3 Kinase Inhibitors/pharmacology
12.
Cell Biochem Funct ; 42(4): e4035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38715180

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a chronic lymphoproliferative disorder characterized by monoclonal B cell proliferation. Studies carried out in recent years suggest that extracellular vesicles (EVs) may be a potential biomarker in cancer. Tyro3-Axl-Mertk (TAM) Receptor Tyrosine Kinases (RTKs) and Phosphatidylserine (PS) have crucial roles in macrophage-mediated immune response under normal conditions. In the tumor microenvironment, these molecules contribute to immunosuppressive signals and prevent the formation of local and systemic antitumor immune responses. Based on this, we aimed to evaluate the amount of PS and TAM RTK in plasma and on the surface of EVs in CLL patients and healthy volunteers in this study. In this study, 25 CLL (11 F/14 M) patients in the Rai (O-I) stage, newly diagnosed or followed up without treatment, and 15 healthy volunteers (11 F/4 M) as a control group were included. For all samples, PS and TAM RTK levels were examined first in the plasma and then in the EVs obtained from the plasma. We detected a significant decrease in plasma PS, and TAM RTK levels in CLL patients compared to the control. Besides, we determined a significant increase in TAM RTK levels on the EV surface in CLL, except for PS. In conclusion, these receptor levels measured by ELISA in plasma may not be effective for the preliminary detection of CLL. However, especially TAM RTKs on the surface of EVs may be good biomarkers and potential targets for CLL therapies.


Subject(s)
Extracellular Vesicles , Leukemia, Lymphocytic, Chronic, B-Cell , Phosphatidylserines , Receptor Protein-Tyrosine Kinases , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Female , Phosphatidylserines/metabolism , Phosphatidylserines/blood , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/blood , Male , Middle Aged , Aged , Axl Receptor Tyrosine Kinase , Proto-Oncogene Proteins/blood , Proto-Oncogene Proteins/metabolism , Adult , c-Mer Tyrosine Kinase/metabolism , Aged, 80 and over
13.
Semin Hematol ; 61(3): 201-207, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38755077

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a highly complex disease characterized by the proliferation of CD5+ B cells in lymphoid tissues. Current modern treatments have brought significant clinical benefits to CLL patients. However, there are still unmet needs. Patients relapse on Bruton's tyrosine kinase inhibitors and BCL2 inhibitors and often develop more aggressive diseases including Richter transformation (RT), an incurable complication of up to ∼10% patients. This evidence underscores the need for improved immunotherapies, combination treatment strategies, and predictive biomarkers. A mouse model that can recapitulate human CLL disease and certain components of the tumor immune microenvironment represents a promising preclinical tool for such purposes. In this review, we provide an overview of CRISPR-engineered and xenograft mouse models utilizing either cell lines, or primary CLL cells suitable for studies of key events driving the disease onset, progression and transformation of CLL. We also review how CRISPR/Cas9 established mouse models carrying loss-of-function lesions allow one to study key mutations driving disease progression. Finally, we discuss how next generation humanized mice might improve to generation of faithful xenograft mouse models of human CLL.


Subject(s)
Disease Models, Animal , Disease Progression , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Humans , Mice , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/metabolism , Tumor Microenvironment/immunology , CRISPR-Cas Systems
14.
Semin Hematol ; 61(3): 181-193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724414

ABSTRACT

microRNAs (miRNAs) are a class of small non-coding RNAs that play a crucial regulatory role in fundamental biological processes and have been implicated in various diseases, including cancer. The first evidence of the cancer-related function of miRNAs was discovered in chronic lymphocytic leukemia (CLL) in the early 2000s. Alterations in miRNA expression have since been shown to strongly influence the clinical course, prognosis, and response to treatment in patients with CLL. Therefore, the identification of specific miRNA alterations not only enhances our understanding of the molecular mechanisms underlying CLL but also holds promise for the development of novel diagnostic and therapeutic strategies. This review aims to provide a comprehensive summary of the current knowledge and recent insights into miRNA dysregulation in CLL, emphasizing its pivotal roles in disease progression, including the development of the lethal Richter syndrome, and to provide an update on the latest translational research in this field.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , MicroRNAs , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Leukemic , Prognosis , Disease Progression
16.
Ann Hematol ; 103(8): 2865-2875, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38713255

ABSTRACT

Chronic inflammation has been identified in leukemias as an essential regulator of angiogenesis. B-chronic lymphocytic leukemia (CLL) cells secrete high levels of vascular endothelial growth factor (VEGF) and hypoxia inducible factor 1 alpha (HIF1α). The aim was to assess the role of inflammation in activation of angiogenic factors: endothelial nitric oxide synthase (eNOS), HIF1α and VEGF via proliferation related signaling pathways and VEGF autocrine control. We isolated mononuclear cells (MNC) and CD19+ cells from peripheral blood of 60 patients with CLL. MNC were treated with pro-inflammatory interleukin-6 (IL-6) and VEGF, in combination with inhibitors of JAK1/2 (Ruxolitinib), mTOR (Rapamycin), NF-κB (JSH23), SMAD (LDN-193189) and PI3K/AKT (Ly294002) signaling pathways, to evaluate eNOS, VEGF and HIF1α expression by immunoblotting, immunocytochemistry and RT-qPCR. Also, we investigated IL-6 dependent neovascularization in human microvascular endothelial cells (HMEC-1) in co-culture with MNC of CLL. The angiogenic factors eNOS, VEGF and HIF1α had significantly higher frequencies in MNC of CLL in comparison to healthy controls (p < 0.001) and CD19+ cells of CLL. IL-6 increased the quantity of HIF1α (p < 0.05) and VEGF positive cells in the presence of JSH23 (p < 0.01). VEGF increased HIF1α (p < 0.05), and decreased eNOS gene expression (p < 0.01) in MNC of CLL. VEGF significantly (p < 0.001) increased the number of HIF1α positive MNC of CLL, prevented by inhibitors of JAK1/2, PI3K and mTOR signaling pathways. VEGF stimulation of SMAD (p < 0.05) and STAT5 (p < 0.01) signaling has been prevented by inhibitors of JAK1/2, mTOR, PI3K and SMAD signaling, individually (p < 0.01) or mutually (p < 0.001). Also, we showed that MNC of CLL and IL-6 individually stimulate neovascularization in co-culture with HMEC-1, without a cumulative effect. We demonstrated elevated angiogenic factors in CLL, while VEGF and IL-6 independently stimulated HIF1α. VEGF stimulation of HIF1α was mostly mTOR dependent, while IL-6 stimulation was NF-κB dependent.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Inflammation , Leukemia, Lymphocytic, Chronic, B-Cell , Neovascularization, Pathologic , Vascular Endothelial Growth Factor A , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Neovascularization, Pathologic/metabolism , Female , Male , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Aged , Middle Aged , Inflammation/metabolism , Signal Transduction , Interleukin-6/metabolism , Nitric Oxide Synthase Type III/metabolism , Aged, 80 and over , Adult , Angiogenesis
17.
Leuk Lymphoma ; 65(8): 1031-1043, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38619476

ABSTRACT

The molecular landscape of chronic lymphocytic leukemia (CLL) has been extensively characterized, and various potent prognostic biomarkers were discovered. The genetic composition of the B-cell receptor (BCR) immunoglobulin (IG) was shown to be especially powerful for discerning indolent from aggressive disease at diagnosis. Classification based on the IG heavy chain variable gene (IGHV) somatic hypermutation status is routinely applied. Additionally, BCR IGH stereotypy has been implicated to improve risk stratification, through characterization of subsets with consistent clinical profiles. Despite these advances, it remains challenging to predict when CLL progresses to requiring first-line therapy, thus emphasizing the need for further refinement of prognostic indicators. Signaling pathways downstream of the BCR are essential in CLL pathogenesis, and dysregulated components within these pathways impact disease progression. Considering not only genomics but the entirety of factors shaping BCR signaling activity, this review offers insights in the disease for better prognostic assessment of CLL.


Subject(s)
Biomarkers, Tumor , Disease Progression , Leukemia, Lymphocytic, Chronic, B-Cell , Receptors, Antigen, B-Cell , Signal Transduction , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Biomarkers, Tumor/genetics , Prognosis
18.
Biomed Pharmacother ; 174: 116537, 2024 May.
Article in English | MEDLINE | ID: mdl-38579402

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) patients have a defective expression of the proapoptotic protein p66Shc and of its transcriptional factor STAT4, which evoke molecular abnormalities, impairing apoptosis and worsening disease prognosis and severity. p66Shc expression is epigenetically controlled and transcriptionally modulated by STAT4; epigenetic modifiers are deregulated in CLL cells and specific histone deacetylases (HDACs) like HDAC1, are overexpressed. Reactivation of STAT4/p66Shc expression may represent an attractive and challenging strategy to reverse CLL apoptosis defects. New selective class I HDAC inhibitors (HDACis, 6a-g) were developed with increased potency over existing agents and preferentially interfering with the CLL-relevant isoform HDAC1, to unveil the role of class I HDACs in the upregulation of STAT4 expression, which upregulates p66Shc expression and hence normalizes CLL cell apoptosis. 6c (chlopynostat) was identified as a potent HDAC1i with a superior profile over entinostat. 6c induces marked apoptosis of CLL cells compared with SAHA, which was associated with an upregulation of STAT4/p66Shc protein expression. The role of HDAC1, but not HDAC3, in the epigenetic upregulation of STAT4/p66Shc was demonstrated for the first time in CLL cells and was validated in siRNA-induced HDAC1/HDAC3 knock-down EBV-B cells. To sum up, HDAC1 inhibition is necessary to reactivate STAT4/p66Shc expression in patients with CLL. 6c is one of the most potent HDAC1is known to date and represents a novel pharmacological tool for reversing the impairment of the STAT4/p66Shc apoptotic machinery.


Subject(s)
Apoptosis , B-Lymphocytes , Histone Deacetylase Inhibitors , Leukemia, Lymphocytic, Chronic, B-Cell , STAT4 Transcription Factor , Src Homology 2 Domain-Containing, Transforming Protein 1 , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Apoptosis/drug effects , Histone Deacetylase Inhibitors/pharmacology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , STAT4 Transcription Factor/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Benzamides/pharmacology , Male , Aged , Female , Middle Aged
19.
Cancer Res Commun ; 4(5): 1328-1343, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38687198

ABSTRACT

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE: SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Signal Transduction , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Humans , Animals , Mice , Signal Transduction/drug effects , Piperidines/pharmacology , Piperidines/therapeutic use , Cell Line, Tumor , Unfolded Protein Response/drug effects , Adenine/analogs & derivatives , Adenine/pharmacology , Drug Resistance, Neoplasm/drug effects , NF-kappa B/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/therapeutic use , Cell Survival/drug effects , Tumor Microenvironment/drug effects , Receptors, Antigen, B-Cell/metabolism , Cell Proliferation/drug effects
20.
Leukemia ; 38(6): 1287-1298, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575671

ABSTRACT

The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , NF-kappa B , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Animals , Mice , Humans , NF-kappa B/metabolism , Cell Proliferation , Piperidines/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL