Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.659
1.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Article En | MEDLINE | ID: mdl-38726747

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Biological Products , Type C Phospholipases , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Type C Phospholipases/metabolism , Type C Phospholipases/chemistry , Type C Phospholipases/antagonists & inhibitors , Chromatography, High Pressure Liquid , Molecular Docking Simulation , Lignans/chemistry , Lignans/isolation & purification , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/isolation & purification , Humans , Allyl Compounds , Phenols
2.
Bioorg Chem ; 147: 107392, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723423

Diabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1). In this work, we report the synthesis of 1 and a library of new analogues. The synthesis of these compounds was achieved by implementing methodologies based on: phenol allylation, Claisen/Cope rearrangements, methylation, Ullmann coupling, demethylation, phenol oxidation and Michael-type addition. Obovatol (1) and ten analogues were evaluated for their in vitro inhibitory activity towards α-Glu and α-Amy. Our investigation highlighted that the naturally occurring 1 and four neolignan analogues (11, 22, 26 and 27) were more effective inhibitors than the hypoglycemic drug acarbose (α-Amy: 34.6 µM; α-Glu: 248.3 µM) with IC5O value of 6.2-23.6 µM toward α-Amy and 39.8-124.6 µM toward α-Glu. Docking investigations validated the inhibition outcomes, highlighting optimal compatibility between synthesized neolignans and both the enzymes. Concurrently circular dichroism spectroscopy detected the conformational changes in α-Glu induced by its interaction with the studied neolignans. Detailed studies through fluorescence measurements and kinetics of α-Glu and α-Amy inhibition also indicated that 1, 11, 22, 26 and 27 have the greatest affinity for α-Glu and 1, 11 and 27 for α-Amy. Surface plasmon resonance imaging (SPRI) measurements confirmed that among the compounds studied, the neolignan 27 has the greater affinity for both enzymes, thus corroborating the results obtained by kinetics and fluorescence quenching. Finally, in vitro cytotoxicity of the investigated compounds was tested on human colon cancer cell line (HCT-116). All these results demonstrate that these obovatol-based neolignan analogues constitute promising candidates in the pursuit of developing novel hypoglycemic drugs.


Glycoside Hydrolase Inhibitors , Lignans , alpha-Amylases , alpha-Glucosidases , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Structure-Activity Relationship , Humans , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry
3.
PLoS One ; 19(5): e0302254, 2024.
Article En | MEDLINE | ID: mdl-38743749

The gut microbiome may affect overall cardiometabolic health. Enterolactone is an enterolignan reflective of dietary lignan intake and gut microbiota composition and diversity that can be measured in the urine. The purpose of this study was to examine the association between urinary enterolactone concentration as a reflection of gut health and blood pressure/risk of hypertension in a large representative sample from the US population. This analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) collected from January 1999 through December 2010. Variables of interest included participant characteristics (including demographic, anthropometric and social/environmental factors), resting blood pressure and hypertension history, and urinary enterolactone concentration. 10,637 participants (45 years (SE = 0.3), 51.7% (SE = 0.6%) were female) were included in analyses. In multivariable models adjusted for demographic, socioeconomic and behavioral/environmental covariates, each one-unit change in log-transformed increase in enterolactone was associated with a 0.738 point (95% CI: -0.946, -0.529; p<0.001) decrease in systolic blood pressure and a 0.407 point (95% CI: -0.575, -0.239; p<0.001) decrease in diastolic blood pressure. Moreover, in fully adjusted models, each one-unit change in log-transformed enterolactone was associated with 8.2% lower odds of hypertension (OR = 0.918; 95% CI: 0.892, 0.944; p<0.001). Urinary enterolactone, an indicator of gut microbiome health, is inversely associated with blood pressure and hypertension risk in a nationally representative sample of U.S. adults.


4-Butyrolactone , Blood Pressure , Hypertension , Lignans , Nutrition Surveys , Humans , Hypertension/epidemiology , Hypertension/urine , Female , Male , Middle Aged , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/urine , Lignans/urine , Gastrointestinal Microbiome , Adult , Risk Factors , United States/epidemiology
4.
Am J Chin Med ; 52(3): 717-752, 2024.
Article En | MEDLINE | ID: mdl-38716620

Schisandra chinensis (S. chinensis) has a long history as a traditional Chinese medicine that is astringent, beneficial to vital energy, tonifies the kidney, tranquilizes the heart, etc. Significantly, Schisandrol A (SA) is extracted from S. chinensis and shows surprising and satisfactory biological activity, including anti-inflammatory, hepatoprotective, cardiovascular protection, and antitumor properties, among others. SA has a more pronounced protective effect on central damaged nerves among its numerous pharmacological effects, improving neurodegenerative diseases such as Alzheimer's and Parkinson's through the protection of damaged nerve cells and the enhancement of anti-oxidant capacity. Pharmacokinetic studies have shown that SA has a pharmacokinetic profile with a rapid absorption, wide distribution, maximal concentration in the liver, and primarily renal excretion. However, hepatic and intestinal first-pass metabolism can affect SA's bioavailability. In addition, the content of SA, as an index component of S. chinensis Pharmacopoeia, should not be less than 0.40%, and the content of SA in S. chinensis compound formula was determined with the help of high-performance liquid chromatography (HPLC), which is a stable and reliable method, and it can lay a foundation for the subsequent quality control. Therefore, this paper systematically reviews the preparation, pharmacological effects, pharmacokinetic properties, and content determination of SA with the goal of updating and deepening the understanding of SA, as well as providing a theoretical basis for the study of SA at a later stage.


Cyclooctanes , Lignans , Schisandra , Schisandra/chemistry , Lignans/pharmacokinetics , Cyclooctanes/pharmacokinetics , Humans , Anti-Inflammatory Agents/pharmacokinetics , Animals , Antioxidants/pharmacokinetics , Biological Availability
5.
Eur J Med Chem ; 271: 116445, 2024 May 05.
Article En | MEDLINE | ID: mdl-38701715

Lignans are widely distributed in nature, primarily found in the xylem and resins of plants, with the constituent units C6-C3, and their dimers are the most common in plants. In recent years, the trimeric sesquilignans have also received increasing attention from scholars. More than 200 derivatives have been isolated and identified from nearly 50 families, most of which are different types (monoepoxy lignans, bisepoxy lignans, benzofuran lignans) connected with simple phenylpropanoids through ether bonds, C-C bonds, and oxygen-containing rings to constitute sesquilignans. Some of them also possess pharmacological properties, including antioxidants, hepatoprotectives, antitumors, anti-inflammatory properties, and other properties. In addition, the chemical structure of sesquilignans is closely related to the pharmacological activity, and chemical modification of methoxylation enhances the pharmacological activity. In contrast, phenolic hydroxyl and hydroxyl glycosides reduce the pharmacological activity. Therefore, the present review aims to summarize the chemical diversity, bioactivities, and constitutive relationships to provide a theoretical basis for the more profound development and utilization of sesquilignans.


Lignans , Lignans/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Molecular Structure , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
6.
J Ethnopharmacol ; 331: 118300, 2024 Sep 15.
Article En | MEDLINE | ID: mdl-38718889

ETHNOPHARMACOLOGICAL RELEVANCE: Schisandra sphenanthera (Schisandra sphenanthera Rehd. et Wils.) is the dried mature fruit of Schisandra sphenanthera, a plant in the Magnoliaceae family. It was used in the treatment of diabetes mellitus in the Jade Fluid Decoction and the Xiaoke pills, which were recorded in ancient books. However, its mechanism of action in the treatment of type 2 diabetes mellitus (T2DM) was unclear and needs further study. AIM OF THE STUDY: This research aimed to investigate the chemical composition and lignan content of Schisandra sphenanthera petroleum ether parts (SPEP) and to evaluate the effects of SPEP on sweet taste receptors (STRs) and intestinal flora in rats on a high-fat diet (HFD). Additionally, the relationships between SPEP and hyperglycemia and insulin resistance were examined. MATERIALS AND METHODS: GC-MS was used to determine the chemical composition of SPEP, and HPLC was used to determine the lignin content. A combination of the HFD and the administration of streptozotocin (STZ) was employed to generate a rat model of T2DM. Petroleum ether extracts from Schisandra sphenanthera were used as the focus of the research to evaluate the effects of these extracts on the glucolipid metabolism of T2DM rats, as well as the underlying mechanisms. RESULTS: Analysis of the GC-MS spectrum of SESP revealed a total of 58 compounds. HPLC analysis revealed that SPEP had the highest concentration of Schisandrin A and the lowest concentration of Schisandrol A. The drug administration intervention resulted in a significant decrease in body weight and pancreatic weight of diabetic rats compared to the Normal group. When compared to the Model group, the body weight of rats in the drug administration group and the Metformin group had a more moderate decrease, while the pancreatic weight and pancreatic-to-body ratio increased. The Model group shown significant increases in FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, and NEFA, as well as significant decreases in HDL-C and SOD, when compared to the Normal group (P < 0.05). The administration of each group was found to be significantly effective in decreasing FBG, OGTT, GHb, TC, TG, LDL-C, ALT, AST, MDA, FINS, NEFA, while increasing HDL-C and SOD when compared to the Model group. The application of SPEP had a positive impact on hepatocyte swelling, hepatocyte degeneration, and necrosis, as well as the morphological structure of pancreatic islet cells. Furthermore, the protein expression levels of T1R2, TRPM5 and GLP-1 in the small intestine of the Model group were reduced. After a period of six weeks, the protein expression levels began to align more closely with those of the Normal group of rats. Analysis of 16S rRNA sequencing revealed that the intestinal microbiota of diabetic rats was significantly disrupted, with a decrease in the abundance of the Firmicutes phylum and an increase in the abundance of the Bacteroidetes phylum. Furthermore, the composition of the dominant genus was distinct from that of the control group. After the drug intervention, the microbiota of diabetic rats was significantly altered, exhibiting a higher abundance and diversity, as well as a significant enrichment of the community. The SPEP treatment resulted in a significant increase in acetic acid, propionic acid, and butyric acid. CONCLUSIONS: The findings of this research indicated that SPEP could be effective in treating T2DM through the regulation of STRs, the adjustment of disturbed metabolite levels, and the alteration of intestinal flora.


Alkanes , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hyperglycemia , Insulin Resistance , Plant Extracts , Rats, Sprague-Dawley , Schisandra , Animals , Schisandra/chemistry , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Experimental/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Hyperglycemia/drug therapy , Rats , Alkanes/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Receptors, G-Protein-Coupled/metabolism , Lignans/pharmacology , Lignans/isolation & purification
7.
Chem Biol Interact ; 396: 111039, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38719171

In this work, two neolignans - dehydrodieugenol (1) and dehydrodieugenol B (2) - were isolated from leaves of Ocotea cymbarum (H. B. K.) Ness. (Lauraceae). When tested against two human breast cancer cell lines (MCF7 and MDA-MB-231), compound 1 was inactive (IC50 > 500 µM) whereas compound 2 displayed IC50 values of 169 and 174 µM, respectively. To evaluate, for the first time in the literature, the synergic cytotoxic effects of compounds 1 and 2 with ion Cu2+, both cell lines were incubated with equimolar solutions of these neolignans and Cu(ClO4)2·6H2O. Obtained results revealed no differences in cytotoxicity upon the co-administration of compound 2 and Cu2+. However, the combination of compound 1 and Cu2+ increases the cytotoxicity against MCF7 and MDA-MB-231 cells, with IC50 values of 165 and 204 µM, respectively. The activity of compound 1 and Cu2+ in MCF7 spheroids regarding the causes/effects considering the tumoral microenvironment were accessed using fluorescence staining and imaging by fluorescence microscopy. This analysis enabled the observation of a higher red filter fluorescence intensity in the quiescence zone and the necrotic core, indicating a greater presence of dead cells, suggesting that the combination permeates the spheroid. Finally, using ICP-MS analysis, the intracellular copper disbalance caused by mixing compound 1 and Cu2+ was determined quantitatively. The findings showcased a 50-fold surge in the concentration of Cu2+ compared with untreated cells (p > 0.0001) - 18.7 ng of Cu2+/mg of proteins and 0.37 ng of Cu2+/mg of protein, respectively. Conversely, the concentration of Cu2+ in cells treated with compound 1 was similar to values of the negative control group (0.29 ng of Cu2+/mg of protein). This alteration allowed us to infer that compound 1 combined with Cu2+ induces cell death through copper homeostasis dysregulation.


Breast Neoplasms , Copper , Humans , Copper/chemistry , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Cell Death/drug effects , Eugenol/analogs & derivatives , Eugenol/pharmacology , Eugenol/chemistry , Plant Leaves/chemistry , MCF-7 Cells , Lignans/pharmacology , Lignans/chemistry
8.
J Hazard Mater ; 472: 134502, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38743980

The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.


Anti-Bacterial Agents , Biphenyl Compounds , Lignans , Ralstonia solanacearum , Ralstonia solanacearum/drug effects , Lignans/pharmacology , Lignans/chemistry , Biphenyl Compounds/chemistry , Hydrogen-Ion Concentration , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc Oxide/chemistry , Zinc Oxide/toxicity , Zinc Oxide/pharmacology , Soil Microbiology , Nanoparticles/chemistry , Nanoparticles/toxicity , Plant Diseases/microbiology , Plant Diseases/prevention & control , Reactive Oxygen Species/metabolism , Allyl Compounds , Phenols
9.
Phytochemistry ; 223: 114132, 2024 Jul.
Article En | MEDLINE | ID: mdl-38714288

Honokiol (HK) and magnolol (MAG) are typical representatives of neolignans possessing a wide range of biological activities and are employed as traditional medicines in Asia. In the past few decades, HK and MAG have been proven to be promising chemical scaffolds for the development of novel neolignan drugs. This review focuses on recent advances in the medicinal chemistry of HK and MAG derivatives, especially their structure-activity relationships. In addition, it also presents a comprehensive summary of the pharmacology, biosynthetic pathways, and metabolic characteristics of HK and MAG. This review can provide pharmaceutical chemists deeper insights into medicinal research on HK and MAG, and a reference for the rational design of HK and MAG derivatives.


Biphenyl Compounds , Lignans , Lignans/chemistry , Lignans/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Humans , Molecular Structure , Allyl Compounds , Phenols
10.
Aging (Albany NY) ; 16(9): 8142-8154, 2024 May 08.
Article En | MEDLINE | ID: mdl-38728253

The specific mechanism of 4-hydroxysesamin (4-HS), a modification of Sesamin, on right ventricular failure due to pulmonary hypertension (PH) is ominous. By creating a rat model of PH in vivo and a model of pulmonary artery smooth muscle cell (PASMC) hypoxia and inflammation in vitro, the current work aimed to investigate in depth the molecular mechanism of the protective effect of 4-HS. In an in vitro model of hypoxia PASMC, changes in cell proliferation and inflammatory factors were detected after treatment with 4-HS, followed by changes in the JNK/p38 MAPK signaling pathway as detected by Western blot signaling pathway. The findings demonstrated that 4-HS was able to minimize PASMC cell death, block the JNK/p38 MAPK signaling pathway, and resist the promoting effect of hypoxia on PASMC cell proliferation. Following that, we found that 4-HS could both mitigate the right ventricular damage brought on by MCT and had a protective impact on rats Monocrotaline (MCT)-induced PH in in vivo investigations. The key finding of this study is that 4-HS may protect against PH by inhibiting the JNK/p38 MAPK signaling pathway.


Cell Proliferation , Hypertension, Pulmonary , MAP Kinase Signaling System , p38 Mitogen-Activated Protein Kinases , Animals , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/drug therapy , Rats , p38 Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Male , Cell Proliferation/drug effects , Ventricular Dysfunction, Right/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Lignans/pharmacology , Lignans/therapeutic use , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Heart Failure/metabolism , Rats, Sprague-Dawley , Monocrotaline , Disease Models, Animal
11.
Nutrients ; 16(10)2024 May 13.
Article En | MEDLINE | ID: mdl-38794712

Extra virgin olive oil (EVOO) is a symbol of the Mediterranean diet, constituting its primary source of fat. The beneficial effect of EVOO is strictly related to the presence of fatty acids and polyphenols, bioactive compounds endowed with nutraceutical properties. Among EVOO polyphenols, lignans possess a steroid-like chemical structure and are part of the phytoestrogen family, which is renowned for its health properties. The natural lignans (+)-pinoresinol and 1-acetoxypinoresinol (1-AP) are commonly present in olives and in EVOO. Although (+)-pinoresinol is found in different edible plants, such as flaxseed, beans, whole-grain cereals, sesame seeds, and certain vegetables and fruit, 1-AP was exclusively identified in olives in 2000. So far, the scientific literature has extensively covered different aspects of (+)-pinoresinol, including its isolation and nutraceutical properties. In contrast, less is known about the olive lignan 1-AP. Therefore, this review aimed to comprehensively evaluate the more important aspects of 1-AP, collecting all the literature from 2016 to the present, exploring its distribution in different cultivars, analytical isolation and purification, and nutraceutical properties.


Dietary Supplements , Lignans , Olea , Olive Oil , Lignans/analysis , Olea/chemistry , Humans , Olive Oil/chemistry , Fruit/chemistry , Furans
12.
Phytomedicine ; 129: 155625, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692077

BACKGROUND: Shengmai Formula (SMF), a classic formula in treating Qi-Yin deficiency, is composed of Ginseng Radix et Rhizoma Rubra (GRR), Ophiopogon Radix (OR), and Schisandra chinensis Fructus (SC), and has been developed into various dosage forms including Shengmai Yin Oral Liquid (SMY), Shengmai Capsules (SMC), and Shengmai Injection (SMI). The pharmacological effects of compound Chinese medicine are attributed to the integration of multiple components. Yet the quality criteria of SMF are limited to monitoring schisandrol A or ginsenosides Rg1 and Re, but none for OR. Since the complexity of raw materials and preparations, establishing a economical and unified method for SMF is challenging. It is urgent to simultaneously quantify multiple components with different structures using a universal method for quality control of SMF. Charged aerosol detector (CAD) overcame the above shortcomings owing to its characteristics of high responsiveness, nondiscrimination, and low cost. PURPOSE: We aimed to establish a versatile analysis strategy using HPLC-CAD for simultaneously quantifying the structurally diverse markers in quality control of SMF from raw materials to preparations. METHOD: By optimizing the column, mobile phase, column temperature, flow rate, and CAD parameters, a HPLC-CAD method that integrated multi-component characterization, authenticity identification, transfer information of raw materials and quantitative determination of Shengmai preparations was established. RESULTS: In total 50 components from SMF were characterized (28 in GRR, 13 in SC, and 9 in OR). The differences in raw materials between species of SC and Schisandrae sphenantherae Fructus (SS), processing methods of Ginseng Radix (GR) and GRR, and locations of OR from Sichuan (ORS) and Zhejiang (ORZ) were compared. Fourteen components in 19 batches of SMY, SMC and SMI from different manufacturers were quantified, including 11 ginsenosides and 3 lignans. The multivariate statistical analysis results further suggested that Rb1, Rg1 and Ro were the main differences among Shengmai preparations. CONCLUSION: The established versatile analysis strategy based on HPLC-CAD was proven sensitive, simple, convenient, overcoming the discriminatory effect of UV detector, revealing the composition and transfer information of SMF and applicable for authentication of the ingredient herbs and improving the quality of Shengmai preparations.


Drug Combinations , Drugs, Chinese Herbal , Quality Control , Schisandra , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/standards , Schisandra/chemistry , Ginsenosides/analysis , Ginsenosides/chemistry , Lignans/analysis , Cyclooctanes/analysis , Cyclooctanes/chemistry , Panax/chemistry
13.
PLoS One ; 19(5): e0302657, 2024.
Article En | MEDLINE | ID: mdl-38787908

Ethnopharmacological relevance of Saussurea species for anti-cancer compounds instigated us to develop chemotherapeutic herbal tablets. This study was an ongoing part of our previous research based on the scientific evaluation of Saussurea heteromalla (S. heteromalla) for anti-cancer lead compounds. In the current study, S. heteromalla herbal tablets (500 /800 mg) were designed and evaluated for anti-cancer activity. Arctigenin was found as a bioactive lead molecule with anti-cancer potential for cervical cancer. The in vitro results on the HeLa cell line supported the ethnopharmacological relevance and traditional utilization of S. heteromalla and provided the scientific basis for the management of cervical cancer as proclaimed by traditional practitioners in China. LD50 of the crude extract was established trough oral acute toxicity profiling in mice, wherein the minimum lethal dose was noticed as higher than 1000 mg/kg body weight orally. Chromatographic fingerprint analysis ensured the identity and consistency of S. heteromalla in herbal tablets in terms of standardization of the herbal drug. About 99.15% of the drug (S. heteromalla crude extract) was recovered in herbal tablets (RSD: 0.45%). In vitro drug release profile was found to be more than 87% within 1 h, which was also correlated with different mathematical kinetic models of drug release (r2 = 0.992), indicating that drug release from matrix tablets into the blood is constant throughout the delivery. The dosage form was found stable after an accelerated stability parameters study which may be used for anti-cervical cancer therapy in the future, if it qualifies successful preclinical investigation parameters.


Plant Extracts , Saussurea , Saussurea/chemistry , Animals , Humans , Mice , HeLa Cells , Plant Extracts/chemistry , Plant Extracts/toxicity , Plant Extracts/pharmacology , Lignans/pharmacology , Lignans/chemistry , Female , Furans/toxicity , Furans/chemistry , Furans/pharmacology , Tablets , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Male , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Lethal Dose 50 , Toxicity Tests, Acute , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Drugs, Chinese Herbal/pharmacology
14.
Planta ; 260(1): 9, 2024 May 25.
Article En | MEDLINE | ID: mdl-38795149

MAIN CONCLUSION: The secondary metabolic conversion of monolignans to sesquilignans/dilignans was closely related to seed germination and seedling establishment in Arctium lappa. Arctium lappa plants are used as a kind of traditional Chinese medicines for nearly 1500 years, and so far, only a few studies have put focus on the key secondary metabolic changes during seed germination and seedling establishment. In the current study, a combined approach was used to investigate the correlation among secondary metabolites, plant hormone signaling, and transcriptional profiles at the early critical stages of A. lappa seed germination and seedling establishment. Of 50 metabolites in methonolic extracts of A. lappa samples, 35 metabolites were identified with LC-MS/MS and 15 metabolites were identified with GC-MS. Their qualitative properties were examined according to the predicted chemical structures. The quantitative analysis was performed for deciphering their metabolic profiles, discovering that the secondary metabolic conversion from monolignans to sesquilignans/dilignans was closely correlated to the initiation of A. lappa seed germination and seedling establishment. Furthermore, the critical transcriptional changes in primary metabolisms, translational regulation at different cellular compartments, and multiple plant hormone signaling pathways were revealed. In addition, the combined approach provides unprecedented insights into key regulatory mechanisms in both gene transcription and secondary metabolites besides many known primary metabolites during seed germination of an important traditional Chinese medicinal plant species. The results not only provide new insights to understand the regulation of key medicinal components of 'ARCTII FRUCTUS', arctiin and arctigenin at the stages of seed germination and seedling establishment, but also potentially spur the development of seed-based cultivation in A. lappa plants.


Arctium , Germination , Lignans , Seeds , Arctium/genetics , Arctium/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Lignans/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Gene Expression Regulation, Plant , Tandem Mass Spectrometry , Lignin/metabolism , Plant Growth Regulators/metabolism , Gas Chromatography-Mass Spectrometry , Secondary Metabolism
15.
Bioorg Med Chem ; 107: 117762, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38759254

Honokiol, derived from Magnolia officinalis (a traditional Chinese medicine), has been reported to have anticancer activity. Here, a series of novel honokiol thioethers bearing a 1,3,4-oxadiazole moiety were prepared and evaluated for their anticancer activities against three types of digestive system tumor cells. Biological evaluation showed that honokiol derivative 3k exhibited the best antiproliferative activity against HCT116 cells with an IC50 value of 6.1 µmol/L, superior to the reference drug 5-fluorouracil (IC50: 9.63 ± 0.27 µmol/L). The structure-activity relationships (SARs) indicated that the introduction of -(4-NO2)Ph, 3-pyridyl, -(2-F)Ph, -(4-F)Ph, -(3-F)Ph, -(4-Cl)Ph, and -(3-Cl)Ph groups was favorable for enhancing the anticancer activity of the title honokiol thioethers. Further study revealed that honokiol thioether 3k can well inhibit the proliferation of colon cancer cells HCT116, arresting the cells in G1 phase and inducing cell death. Moreover, a preliminary mechanism study indicated that 3k directly inhibits the transcription and expression of YAP protein without activating the Hippo signaling pathway. Thus, honokiol thioether 3k could be deeply developed for the development of honokiol-based anticancer candidates.


Biphenyl Compounds , Cell Proliferation , Drug Screening Assays, Antitumor , Lignans , YAP-Signaling Proteins , Humans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Structure-Activity Relationship , Cell Proliferation/drug effects , HCT116 Cells , YAP-Signaling Proteins/metabolism , Molecular Structure , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Sulfides/chemistry , Sulfides/pharmacology , Sulfides/chemical synthesis , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Allyl Compounds , Phenols
16.
Chemosphere ; 359: 142300, 2024 Jul.
Article En | MEDLINE | ID: mdl-38729444

The neurotoxicity of fumonisin B1 (FB1), a commonly detected mycotoxin in crops and the environment, has attracted considerable attention in recent years. However, no effective method for eliminating FB1 completely exists due to the thermal stability and water solubility of this mycotoxin. Magnolol (MAG) is a neolignane with antioxidative and neuroprotective effects. It has been applied in neurotoxicity treatment. However, the application of MAG to attenuate FB1-induced toxicity has not been reported. This study explored the protective mechanism of MAG against FB1-induced damage in C6 cells through antioxidant and lipid metabolism modulation. Results showed that exposure to 15 µM FB1 caused oxidative stress by changing the levels of malondialdehyde, reactive oxygen species, total superoxide dismutase, catalase, and total glutathione. These changes were reversed by MAG addition, especially at the concentration of 80 µM. The protective effects of MAG were further confirmed by the reduction in the phosphorylation levels of proteins in the MAPK signaling pathway. Lipidomics analysis identified 263 lipids, which belong to 24 lipid classes. Among all of the identified lipids, triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), wax monoesters (WEs), Cers, and phosphatidylethanolamines (PEs) were major categories. Moreover, nine categories of lipids showed the opposite change trend in the FB1 exposure and MAG 80 groups. A further investigation of the 34 co-occurring differential lipids with remarkable changes (P value < 0.05 and VIP value > 1) in the control, FB1 exposure, and MAG 80 groups was performed. Therein, nine lipids (PCs, LPCs, and SM) were screened out as potential biomarkers to reveal the cytoprotective effects of MAG. This work is the first to investigate the rescue mechanism of MAG in FB1-induced cytotoxicity. The obtained results may expand the application of MAG to alleviate the toxicity of mycotoxins.


Biphenyl Compounds , Fumonisins , Lignans , Lipid Metabolism , Oxidative Stress , Fumonisins/toxicity , Oxidative Stress/drug effects , Lipid Metabolism/drug effects , Lignans/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Cell Line , Rats , Neuroprotective Agents/pharmacology , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Lipidomics , Glutathione/metabolism
18.
Int J Nanomedicine ; 19: 3907-3917, 2024.
Article En | MEDLINE | ID: mdl-38708183

Background: As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods: We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results: We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion: It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.


Antiviral Agents , Lignans , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Recombinant Proteins/chemistry , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism
19.
Eur J Med Chem ; 272: 116471, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704945

Honokiol (HNK) is a typical natural biphenyl polyphenol compound. It has been proven to have a wide range of biological activities, including pharmacological effects such as anti-cancer, anti-inflammatory, neuroprotective, and antimicrobial. However, due to the poor stability, water solubility, and bioavailability of HNK, HNK has not been used in clinical treatment. This article reviews the latest research on the pharmacological activity of HNK and summarizes the HNK derivatives designed and improved by several researchers. Reviewing these contents could promote the research process of HNK and guide the design of better HNK derivatives for clinical application in the future.


Biphenyl Compounds , Lignans , Lignans/pharmacology , Lignans/chemistry , Lignans/chemical synthesis , Biphenyl Compounds/pharmacology , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Humans , Structure-Activity Relationship , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Allyl Compounds , Phenols
20.
Eur J Pharmacol ; 975: 176642, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38754538

The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.


Biphenyl Compounds , Depression , Diabetes Mellitus, Experimental , Lignans , Molecular Docking Simulation , Network Pharmacology , Receptors, Calcitriol , Animals , Lignans/pharmacology , Lignans/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Mice , Male , Depression/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/agonists , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Retinoid X Receptor alpha/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Autophagy/drug effects , Behavior, Animal/drug effects , Comorbidity , Allyl Compounds , Phenols
...