Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.897
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 840-843, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946369

ABSTRACT

OBJECTIVE: To explore the clinical phenotype and genetic basis of a child with Neutral lipid storage disease with myopathy (NLSDM). METHODS: A child who was admitted to the First Affiliated Hospital of Zhengzhou University in February 2021 for a history of elevated creatine kinase (CK) for over 2 months was selected as the study subject. Clinical and laboratory examinations were carried out, and the child was subjected to whole exome sequencing. Candidate variants were validated by Sanger sequencing of her family members. RESULTS: The patient, a 9-year-old female, had exhibited weakness in the lower limbs, elevated CK level, and refractory cardiomyotrophy. Genetic testing revealed that she has harbored c.32C>G (p.S11W) and c.516C>G (p.N172K) compound heterozygous variants of the PNPLA2 gene, which were respectively inherited from her mother and father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as likely pathogenic (PM1+PM2_Supporting+PP3+PP4). CONCLUSION: The c.32C>G (p.S11W) and c.516C>G (p.N172K) compound heterozygous variants of the PNPLA2 gene probably underlay the myasthenia gravis and elevated creatine kinase in this child.


Subject(s)
Lipase , Lipid Metabolism, Inborn Errors , Muscular Diseases , Humans , Female , Child , Muscular Diseases/genetics , Lipid Metabolism, Inborn Errors/genetics , Lipase/genetics , Mutation , Genetic Testing , Exome Sequencing , Creatine Kinase/blood , Pedigree , Phenotype , Acyltransferases
2.
J Gastrointestin Liver Dis ; 33(2): 203-211, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38944871

ABSTRACT

BACKGROUND AND AIMS: Progression to hepatocellular carcinoma (HCC) is restricted by viral suppression in chronic hepatitis B (CHB); however, some patients still progress despite antiviral therapy. Presence of single nucleotide polymorphisms (SNPs) such as PNPLA3 rs738409 and TM6SF2 rs58542926 are associated with the development and progression of steatotic liver disease to HCC, whereas a splice variant in HSD17B13 rs72613567:TA has been shown to be protective. We investigated the role of these SNPs in the development or prognosis of HCC in pure CHB etiology, in the absence of hepatic steatosis, remains unknown. MATERIALS: We analysed PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 SNPs in a prospectively recruited cohort (n=323) consisting of healthy controls, CHB and CHB-HCC patients without hepatic steatosis. SNPs were determined by PCR analysis and associations for the alleles and genotypes were investigated using adjusted-logistic regression analyses. The overall survival (OS) data were collected from CHB-HCC patients for survival analysis. RESULTS: The genotype and allelic distribution of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 were similar between healthy controls, CHB, and CHB-HCC groups. No genotype, allele or haplotype analysis was found to be associated with increased risk for CHB-HCC. Survival analysis revealed no genotype or allele to be associated with OS in patients with CHB-HCC. CONCLUSIONS: We could not demonstrate any association of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567 with the development or prognosis of CHB-HCC, supporting the initial hypothesis that they should be considered specific hotspots for liver diseases characterized with hepatic steatosis.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Carcinoma, Hepatocellular , Genetic Predisposition to Disease , Hepatitis B, Chronic , Lipase , Liver Neoplasms , Membrane Proteins , Polymorphism, Single Nucleotide , Humans , Membrane Proteins/genetics , Lipase/genetics , Female , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , 17-Hydroxysteroid Dehydrogenases/genetics , Case-Control Studies , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/complications , Prognosis , Adult , Turkey/epidemiology , Risk Factors , Prospective Studies , Phenotype , Genetic Association Studies , Acyltransferases , Phospholipases A2, Calcium-Independent
3.
Nutrients ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931155

ABSTRACT

Gut microbiota might affect the severity and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to characterize gut dysbiosis and clinical parameters regarding fibrosis stages assessed by magnetic resonance elastography. This study included 156 patients with MASLD, stratified into no/mild fibrosis (F0-F1) and moderate/severe fibrosis (F2-F4). Fecal specimens were sequenced targeting the V4 region of the 16S rRNA gene and analyzed using bioinformatics. The genotyping of PNPLA3, TM6SF2, and HSD17B13 was assessed by allelic discrimination assays. Our data showed that gut microbial profiles between groups significantly differed in beta-diversity but not in alpha-diversity indices. Enriched Fusobacterium and Escherichia_Shigella, and depleted Lachnospira were found in the F2-F4 group versus the F0-F1 group. Compared to F0-F1, the F2-F4 group had elevated plasma surrogate markers of gut epithelial permeability and bacterial translocation. The bacterial genera, PNPLA3 polymorphisms, old age, and diabetes were independently associated with advanced fibrosis in multivariable analyses. Using the Random Forest classifier, the gut microbial signature of three genera could differentiate the groups with high diagnostic accuracy (AUC of 0.93). These results indicated that the imbalance of enriched pathogenic genera and decreased beneficial bacteria, in association with several clinical and genetic factors, were potential contributors to the pathogenesis and progression of MASLD.


Subject(s)
Gastrointestinal Microbiome , Liver Cirrhosis , Membrane Proteins , Severity of Illness Index , Humans , Gastrointestinal Microbiome/genetics , Liver Cirrhosis/microbiology , Liver Cirrhosis/genetics , Female , Male , Middle Aged , Membrane Proteins/genetics , Lipase/genetics , Aged , RNA, Ribosomal, 16S/genetics , Dysbiosis , Fatty Liver/microbiology , Fatty Liver/genetics , Feces/microbiology , Adult , Genetic Variation , Elasticity Imaging Techniques , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/classification , Acyltransferases , 17-Hydroxysteroid Dehydrogenases , Phospholipases A2, Calcium-Independent
4.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38940054

ABSTRACT

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Subject(s)
Adipose Tissue, Brown , Diet, High-Fat , Lipolysis , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Male , Mice , Adiponectin/metabolism , Adiponectin/genetics , Insulin Resistance , Lipase/metabolism , Lipase/genetics , Cell Differentiation , Adipogenesis/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , Acyltransferases , Glycoproteins
5.
Appl Microbiol Biotechnol ; 108(1): 365, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842543

ABSTRACT

Lipases are important biocatalysts and ubiquitous in plants, animals, and microorganisms. The high growth rates of microorganisms with low production costs have enabled the wide application of microbial lipases in detergent, food, and cosmetic industries. Herein, a novel lipase from Lacticaseibacillus rhamnosus IDCC 3201 (Lac-Rh) was isolated and its activity analyzed under a range of reaction conditions to evaluate its potential industrial application. The isolated Lac-Rh showed a molecular weight of 24 kDa and a maximum activity of 3438.5 ± 1.8 U/mg protein at 60 °C and pH 8. Additionally, Lac-Rh retained activity in alkaline conditions and in 10% v/v concentrations of organic solvents, including glycerol and acetone. Interestingly, after pre-incubation in the presence of multiple commercial detergents, Lac-Rh maintained over 80% of its activity and the stains from cotton were successfully removed under a simulated laundry  setting. Overall, the purified lipase from L. rhamnosus IDCC 3201 has potential for use as a detergent in industrial applications. KEY POINTS: • A novel lipase (Lac-Rh) was isolated from Lacticaseibacillus rhamnosus IDCC 3201 • Purified Lac-Rh exhibited its highest activity at a temperature of 60 °C and a pH of 8, respectively • Lac-Rh remains stable in commercial laundry detergent and enhances washing performance.


Subject(s)
Detergents , Enzyme Stability , Lacticaseibacillus rhamnosus , Lipase , Lipase/metabolism , Lipase/chemistry , Lipase/genetics , Lacticaseibacillus rhamnosus/enzymology , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/chemistry , Hydrogen-Ion Concentration , Detergents/chemistry , Temperature , Molecular Weight , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
6.
Microb Biotechnol ; 17(6): e14502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38888486

ABSTRACT

Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.


Subject(s)
Butyrates , Fermentation , Metabolic Engineering , Butyrates/metabolism , Metabolic Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Clostridium/metabolism , Clostridium/genetics , Lipase/metabolism , Lipase/genetics , Acyltransferases/genetics , Acyltransferases/metabolism , Industrial Microbiology/methods , Biofuels
7.
Nat Commun ; 15(1): 4847, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844467

ABSTRACT

The I148M variant of PNPLA3 is closely associated with hepatic steatosis. Recent evidence indicates that the I148M mutant functions as an inhibitor of PNPLA2/ATGL-mediated lipolysis, leaving the role of wild-type PNPLA3 undefined. Despite showing a triglyceride hydrolase activity in vitro, PNPLA3 has yet to be established as a lipase in vivo. Here, we show that PNPLA3 preferentially hydrolyzes polyunsaturated triglycerides, mobilizing polyunsaturated fatty acids for phospholipid desaturation and enhancing hepatic secretion of triglyceride-rich lipoproteins. Under lipogenic conditions, mice with liver-specific knockout or acute knockdown of PNPLA3 exhibit aggravated liver steatosis and reduced plasma VLDL-triglyceride levels. Similarly, I148M-knockin mice show decreased hepatic triglyceride secretion during lipogenic stimulation. Our results highlight a specific context whereby the wild-type PNPLA3 facilitates the balance between hepatic triglyceride storage and secretion, and suggest the potential contribution of a loss-of-function by the I148M variant to the development of fatty liver disease in humans.


Subject(s)
Fatty Acids, Unsaturated , Lipase , Lipoproteins, VLDL , Liver , Mice, Knockout , Triglycerides , Animals , Lipase/metabolism , Lipase/genetics , Liver/metabolism , Triglycerides/metabolism , Mice , Lipoproteins, VLDL/metabolism , Humans , Fatty Acids, Unsaturated/metabolism , Male , Fatty Liver/metabolism , Fatty Liver/genetics , Mice, Inbred C57BL , Lipolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
8.
Microb Cell Fact ; 23(1): 155, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802857

ABSTRACT

BACKGROUND: Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system. RESULTS: The sfGFP(-15) mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein. CONCLUSION: The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.


Subject(s)
Escherichia coli , Lipase , Rhizomucor , Lipase/genetics , Lipase/metabolism , Lipase/chemistry , Rhizomucor/enzymology , Rhizomucor/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/genetics , Enzymes, Immobilized/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/biosynthesis , Fermentation
9.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780253

ABSTRACT

BACKGROUND: The PNPLA3-rs738409-G, TM6SF2-rs58542926-T, and HSD17B13-rs6834314-A polymorphisms have been associated with cirrhosis, hepatic decompensation, and HCC. However, whether they remain associated with HCC and decompensation in people who already have cirrhosis remains unclear, which limits the clinical utility of genetics in risk stratification as HCC is uncommon in the absence of cirrhosis. We aimed to characterize the effects of PNPLA3, TM6SF2, and HSD17B13 genotype on hepatic decompensation, HCC, and liver-related mortality or liver transplant in patients with baseline compensated cirrhosis. METHODS: We conducted a single-center retrospective study of patients in the Michigan Genomics Initiative who underwent genotyping. The primary predictors were PNPLA3, TM6SF2, and HSD17B13 genotypes. Primary outcomes were either hepatic decompensation, HCC, or liver-related mortality/transplant. We conducted competing risk Fine-Gray analyses on our cohort. RESULTS: We identified 732 patients with baseline compensated cirrhosis. During follow-up, 50% of patients developed decompensation, 13% developed HCC, 24% underwent liver transplant, and 27% died. PNPLA3-rs738409-G genotype was associated with risk of incident HCC: adjusted subhazard hazard ratio 2.42 (1.40-4.17), p=0.0015 for PNPLA3-rs738409-GG vs. PNPLA3-rs738409-CC genotype. The 5-year cumulative incidence of HCC was higher in PNPLA3-rs738409-GG carriers than PNPLA3-rs738409-CC/-CG carriers: 15.6% (9.0%-24.0%) vs. 7.4% (5.2%-10.0%), p<0.001. PNPLA3 genotype was not associated with decompensation or the combined outcome of liver-related mortality or liver transplant. TM6SF2 and HSD17B13 genotypes were not associated with decompensation or HCC. CONCLUSIONS: The PNPLA3-rs738409-G allele is associated with an increased risk of HCC among patients with baseline compensated cirrhosis. People with cirrhosis and PNPLA3-rs738409-GG genotype may warrant more intensive HCC surveillance.


Subject(s)
Alleles , Carcinoma, Hepatocellular , Lipase , Liver Cirrhosis , Liver Neoplasms , Membrane Proteins , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Lipase/genetics , Female , Liver Cirrhosis/genetics , Liver Cirrhosis/complications , Liver Cirrhosis/mortality , Membrane Proteins/genetics , Middle Aged , Retrospective Studies , Aged , 17-Hydroxysteroid Dehydrogenases/genetics , Genotype , Liver Transplantation , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Risk Factors , Acyltransferases , Phospholipases A2, Calcium-Independent
10.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780312

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of metabolic dysfunction-associated steatotic liver disease, for which there is limited information about patient experience, including the patient journey. METHODS: In this study, we conducted interviews with patients with MASH to qualitatively evaluate the patient journey and help elucidate the experiences of this patient population. We also investigated if the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant (non-Hispanic) or being of Hispanic ethnicity may influence patient experiences because these 2 subgroups develop advanced liver disease more frequently than other patient groups. RESULTS: One-to-one interviews were conducted with 28 adults (with PNPLA3 I148M genetic variant, n = 10; Hispanic, n = 8) living in the United States who had been diagnosed with MASH with liver fibrosis. Patients were asked open-ended questions about their experiences before, at, and after their diagnosis. The data collected found that patients experienced a long process of misdiagnoses before their diagnosis of MASH, a lack of clear information provided by clinicians, and limited accessibility to support groups. Hispanic patients reported "impact on family/friends" (75%) and "fear of disease progression" (75%) more frequently than the other patient cohorts interviewed. This is the first report of "fear of progression" in patients with MASH. No patients who were White and had the PNPLA3 I148M variant reported nausea/vomiting, in contrast to other patient cohorts. CONCLUSIONS: This qualitative study identified key aspects of the patient journey that are important for clinical providers and medical teams to recognize. We also propose a new algorithm that could be developed to help screen relatives of patients who are found to carry the PNPLA3 I148M variant.


Subject(s)
Lipase , Membrane Proteins , Qualitative Research , Humans , Membrane Proteins/genetics , Lipase/genetics , Male , Female , Middle Aged , Adult , Hispanic or Latino/genetics , Aged , Fatty Liver/genetics , United States , Liver Cirrhosis/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
11.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782979

ABSTRACT

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Subject(s)
Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
12.
J Pak Med Assoc ; 74(5): 993-997, 2024 May.
Article in English | MEDLINE | ID: mdl-38783455

ABSTRACT

Mesenter ic p anniculitis (MP) is a b enign infla mmatory condi tion of the abdomin al mesentery, whi ch presents with a wid e variety of symptoms. I t is diagnosed non - invasively through com puted to mography (CT ) scan, whereas biopsy is still co nside red th e gold standa rd. Steroids are the first line of treatment. Here, we report four cases who presented with abdominal pain. These patients were overweight and the CT scan findings were suggestive of mese nte ric panniculitis. Three cases had concomitant non- alcoholic steatohep atitis w ith el evated alanine transaminase levels, dyslipidaemia, and insulin resistance. FibroSca n showed moderate to severe steatosis. PNPLA3 rs738409 genotype was homozygous positive (GG) in one patient, whereas two patients were heterozygous positive (CG ). This a ssociat io n has not been well-described so far and w arrants f ur ther inve s tigation. There may be some common predisposing factors.


Subject(s)
Non-alcoholic Fatty Liver Disease , Panniculitis, Peritoneal , Humans , Panniculitis, Peritoneal/complications , Panniculitis, Peritoneal/diagnosis , Male , Female , Adult , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Middle Aged , Tomography, X-Ray Computed , Lipase/genetics , Lipase/blood , Membrane Proteins/genetics , Abdominal Pain/etiology , Acyltransferases , Phospholipases A2, Calcium-Independent
13.
J Diabetes Res ; 2024: 5511454, 2024.
Article in English | MEDLINE | ID: mdl-38736904

ABSTRACT

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Subject(s)
Adipogenesis , Lipase , Animals , Male , Mice , Acyltransferases , Adipocytes/metabolism , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Diet, High-Fat , Fibroblast Growth Factors/metabolism , Lipase/metabolism , Lipase/genetics , Lipogenesis , Lipolysis , Mice, Inbred C57BL , Obesity/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Uncoupling Protein 1/metabolism
14.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760519

ABSTRACT

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Subject(s)
Ascomycota , Enzyme Stability , Fungal Proteins , Lipase , Plant Leaves , Lipase/metabolism , Lipase/genetics , Plant Leaves/microbiology , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/metabolism , Hydrogen-Ion Concentration , Fungal Proteins/metabolism , Fungal Proteins/genetics , Temperature , Substrate Specificity , Hot Temperature , Bacterial Proteins
15.
Plant Cell Rep ; 43(6): 145, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761220

ABSTRACT

KEY MESSAGE: We highlight the emerging role of the R. solani novel lipase domain effector AGLIP1 in suppressing pattern-triggered immunity and inducing plant cell death. The dynamic interplay between plants and Rhizoctonia solani constitutes a multifaceted struggle for survival and dominance. Within this complex dynamic, R. solani has evolved virulence mechanisms by secreting effectors that disrupt plants' first line of defense. A newly discovered effector, AGLIP1 in R. solani, plays a pivotal role in inducing plant cell death and subverting immune responses. AGLIP1, a protein containing a signal peptide and a lipase domain, involves complex formation in the intercellular space, followed by translocation to the plant cytoplasm, where it induces cell death (CD) and suppresses defense gene regulation. This study provides valuable insights into the intricate molecular interactions between plants and necrotrophic fungi, underscoring the imperative for further exploration in this field.


Subject(s)
Lipase , Plant Diseases , Rhizoctonia , Rhizoctonia/pathogenicity , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Lipase/metabolism , Lipase/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Cell Death , Plant Immunity/genetics , Protein Domains , Gene Expression Regulation, Plant
16.
Commun Biol ; 7(1): 572, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750133

ABSTRACT

Long-chain fatty acids with antimicrobial properties are abundant on the skin and mucosal surfaces, where they are essential to restrict the proliferation of opportunistic pathogens such as Staphylococcus aureus. These antimicrobial fatty acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully elucidated. Characterizing the pervasive mechanisms used by S. aureus to resist AFAs could open new avenues to prevent pathogen colonization. Here, we identify the S. aureus lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty acid-modifying enzyme (FAME), whose identity has remained elusive for over three decades. In vitro, Lip2-dependent AFA-detoxification was apparent during planktonic growth and biofilm formation. Our genomic analysis revealed that prophage-mediated inactivation of Lip2 was rare in blood, nose, and skin strains, suggesting a particularly important role of Lip2 for host - microbe interactions. In a mouse model of S. aureus skin colonization, bacteria were protected from sapienic acid (a human-specific AFA) in a cholesterol- and lipase-dependent manner. These results suggest Lip2 is the long-sought FAME that exquisitely manipulates environmental lipids to promote bacterial growth in otherwise inhospitable niches.


Subject(s)
Fatty Acids , Lipase , Staphylococcus aureus , Staphylococcus aureus/metabolism , Fatty Acids/metabolism , Animals , Mice , Lipase/metabolism , Lipase/genetics , Humans , Staphylococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Female , Staphylococcal Skin Infections/microbiology
17.
Elife ; 122024 May 28.
Article in English | MEDLINE | ID: mdl-38805376

ABSTRACT

Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Lipase , Spermatogenesis , Testis , Triglycerides , Animals , Male , Triglycerides/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Testis/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Spermatozoa/metabolism
18.
Free Radic Biol Med ; 221: 155-168, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38777204

ABSTRACT

Transient receptor potential vanilloid (TRPV) ion channels play a crucial role in various cellular functions by regulating intracellular Ca2+ levels and have been extensively studied in the context of several metabolic diseases. However, the regulatory effects of TRPV3 in obesity and lipolysis are not well understood. In this study, utilizing a TRPV3 gain-of-function mouse model (TRPV3G568V/G568V), we assessed the metabolic phenotype of both TRPV3G568V/G568V mice and their control littermates, which were randomly assigned to either a 12-week high-fat diet or a control diet. We investigated the potential mechanisms underlying the role of TRPV3 in restraining obesity and promoting lipolysis both in vivo and in vitro. Our findings indicate that a high-fat diet led to significant obesity, characterized by increased epididymal and inguinal white adipose tissue weight and higher fat mass. However, the gain-of-function mutation in TRPV3 appeared to counteract these adverse effects by enhancing lipolysis in visceral fat through the upregulation of the major lipolytic enzyme, adipocyte triglyceride lipase (ATGL). In vitro experiments using carvacrol, a TRPV3 agonist, demonstrated the promotion of lipolysis and antioxidation in 3T3-L1 adipocytes after TRPV3 activation. Notably, carvacrol failed to stimulate Ca2+ influx, lipolysis, and antioxidation in 3T3-L1 adipocytes treated with BAPTA-AM, a cell-permeable calcium chelator. Our results revealed that TRPV3 activation induced the action of transcriptional factor nuclear factor erythroid 2-related factor 2 (NRF2), resulting in increased expression of ferroptosis suppressor protein 1 (FSP1) and superoxide dismutase2 (SOD2). Moreover, the inhibition of NRF2 impeded carvacrol-induced lipolysis and antioxidation in 3T3-L1 adipocytes, with downregulation of ATGL, FSP1, and SOD2. In summary, our study suggests that TRPV3 promotes visceral fat lipolysis and inhibits diet-induced obesity through the activation of the NRF2/FSP1 signaling axis. We propose that TRPV3 may be a potential therapeutic target in the treatment of obesity.


Subject(s)
Diet, High-Fat , Lipolysis , NF-E2-Related Factor 2 , Obesity , Signal Transduction , TRPV Cation Channels , Animals , Male , Mice , 3T3-L1 Cells , Acyltransferases , Adipocytes/metabolism , Adipocytes/pathology , Diet, High-Fat/adverse effects , Gain of Function Mutation , Lipase/metabolism , Lipase/genetics , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Obesity/metabolism , Obesity/genetics , Obesity/pathology , Obesity/etiology , TRPV Cation Channels/metabolism , TRPV Cation Channels/genetics
19.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693144

ABSTRACT

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Subject(s)
Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
20.
Mol Biol Rep ; 51(1): 511, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622444

ABSTRACT

BACKGROUND: Lipases play a crucial role in various industrial applications, and microbial lipases, particularly those from bacteria, possess significant properties. With increasing concerns about the environmental and health impacts of hydrocarbons from pipelines and refineries, there is a growing need to mitigate the risks associated with these compounds. METHODS: In this study, 40 bacterial isolates were recovered from contaminated soil samples collected from multiple refineries across Iraq. Using the Vitek system, bacterial isolates were identified up to the species level, revealing that only 12 isolates exhibited lipase-producing capabilities. RESULTS: Among the lipase-producing isolates, Ralstonia mannitolilytica demonstrated the highest extracellular lipase activity, as determined by an olive oil plate assay supplemented with rhodamine B. Confirmation of the species identity was achieved through 16S rRNA gene sequencing, with the obtained sequence deposited under accession number LC772176.1. Further sequence analysis revealed single nucleotide polymorphisms (SNPs) in the genome of Ralstonia mannitolilytica strain H230303-10_N19_7x_R2 (CP011257.1, positions 1,311,102 and 1,311,457). Additionally, the presence of the lipase gene was confirmed through amplification and sequencing using a thermocycler PCR. Sequence analysis of the gene, aligned using Geneious Prime software, identified SNPs (CP010799, CP049132, AY364601, CP011257, and CP023537), and a phylogenetic tree was constructed based on genetic characterization. CONCLUSION: Our findings highlight the potential of Ralstonia mannitolilytica as a promising candidate for lipase production and contribute to our understanding of its genetic diversity and biotechnological applications in hydrocarbon degradation and industrial processes.


Subject(s)
Petroleum , Ralstonia , Petroleum/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Iraq , Lipase/genetics , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...